
Software Engineering for Smart Cyber-Physical Systems:
Challenges and Promising Solutions

Tomas Bures1, Bradley Schmerl2, Danny Weyns3, Eduardo Tovar4 (workshop organizers)

Eric Boden5, Thomas Gabor6, Ilias Gerostathopoulos7, Pragya Gupta8, Eunsuk Kang9, Alessia
Knauss10, Pankesh Patel11, Awais Rashid12, Ivan Ruchkin3, Roykrong Sukkerd3, Christos Tsigkanos13

(contributing participants)

1Charles University Prague, 2Katholieke Universiteit Leuven & Linnaeus University, 3Carnegie Mellon University, 4CISTER-
ISEP, 5University of Paderborn, 6LMU München, 7TU München, 8fortiss, 9Massachusetts Institute of Technology,
10Chalmers University of Technology, 11ABB Corporate Research, 12Lancaster University, 13Politecnico di Milano

bures@d3s.mff.cuni.cz, danny.weyns@kuleaven.be, schmerl@cs.cmu.edu, emt@isep.ipp.pt, eric.boden@uni-

paderborn.de, thomas.gabor@ifi.lmu.de, ilias.gerostathopoulos@tum.de, gupta@fortiss.org, eunsuk.kang@berkeley.edu,
alessia.knauss@chalmers.se, pankesh.patel@in.abb.com, a.rashid@lancaster.ac.uk, iruchkin@cs.cmu.edu, rsuk-

kerd@cs.cmu.edu, christos.tsigkanos@polimi.it

Abstract
Smart Cyber-Physical Systems (sCPS) are modern CPS systems
that are engineered to seamlessly integrate a large number of com-
putation and physical components; they need to control entities in
their environment in a smart and collective way to achieve a high
degree of effectiveness and efficiency. At the same time, these
systems are supposed to be safe and secure, deal with environment
dynamicity and uncertainty, cope with external threats, and opti-
mize their behavior to achieve the best possible outcome. This
“smartness” typically stems from highly cooperative behavior,
self-awareness, self-adaptation, and self-optimization. Most of the
“smartness” is implemented in software, which makes the software
one of the most complex and most critical constituents of sCPS.
As the specifics of sCPS render traditional software engineering
approaches not directly applicable, new and innovative approaches
to software engineering of sCPS need to be sought. This paper
reports on the results of the Second International Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS
2016), which specifically focuses on challenges and promising
solutions in the area of software engineering for sCPS.

Keywords: software engineering, cyber-physical systems

Introduction
Cyber-Physical Systems (CPS) are “engineered systems that are
built from, and depend upon, the seamless integration of computa-
tional and physical components” [1]. With the proliferation of
smart embedded and mobile devices, CPS are becoming large-
scale pervasive systems, which combine various data sources to
control real-world ecosystems (e.g., intelligent traffic control)
[2,3,4]. Modern CPS have to deal effectively with environment
dynamicity, control their emergent behavior, be scalable and toler-
ant to threats, hence CPS have to be smart (sCPS).

Compared to traditional embedded systems, i.e. hardware-
intensive systems with well-defined interfaces and boundaries de-
livering specific services to their end-users often under stringent
reliability and safety requirements, sCPS are more interconnected
and more dependent on software for their operation. Car infotain-
ment products, for instance, have reached the size of multiple mil-
lions lines of code. This complexity alone already calls for
systematic software engineering (SE) models, methods, and pro-

cesses for building such sCPS. At the same time, sCPS feature a
number of specifics that render traditional SE approaches (e.g.
component-based modularization, simulation-based validation) not
directly applicable. These specifics include the blurring boundaries
between hardware and software, large scale and complexity, the
role of end-users, inherent uncertainty, open-endedness, locality,
etc. What is needed are innovative approaches that jointly reflect
and address the specifics of such systems.

SEsCPS Workshop
The SEsCPS workshop series1, part of ICSE, aims at addressing
this gap in software engineering for sCPS by looking at the specif-
ics of sCPS, along with opportunities and challenges tied to them.
The workshop brings together academics, practitioners, and train-
ers from several disciplines with the overall objectives: (i) to in-
crease the understanding of problems of Software Engineering
(SE) for sCPS, (ii) to study the underlying foundational principles
for engineering sCPS, and (iii) to identify and define promising SE
solutions for engineering of sCPS.

In this report, we summarize the findings of the 2nd edition of the
workshop, held on May 16th, 2016 in Austin, Texas in conjunction
with ICSE 2016.

Workshop Structure
Based on the interests shown by participants at the previous edi-
tion of the workshop [5] and research interests shown at related
venues, the special themes of SEsCPS’16 were: (1) alignment of
disciplines for engineering sCPS, (2) uncertainty and human fac-
tors, and (3) reference problems. Around these themes, the work-
shop strived to build understanding of sCPS and provide a basis
for holistically addressing the SE challenges brought by sCPS.

The second edition of the workshop attracted 17 submissions, out
of which 7 were accepted as full papers and 2 as position and fu-
ture-trends papers. In total, around 25 participants attended the
workshop. The workshop started with a keynote. The rest of the
morning was devoted to presentations of accepted papers, grouped
in three themes as overviewed in the next section. The whole af-

1 http://d3s.mff.cuni.cz/conferences/sescps2016

ternoon of the workshop was devoted to discussion in breakout
groups, where participants discussed focused topics of SE for
smart CPS. A plenary report session concluded the workshop.

Keynote
The keynote was delivered by Eric Bodden (University of Pader-
born, Germany), who focused in his talk on the important subject
of security of sCPS. He highlighted that the high degree of connec-
tivity of sCPS renders them vulnerable to a whole range of new
security attacks. He argued throughout the talk that sCPS so far are
insecure for two main reasons. First, because of a lack of integrat-
ed perspective on the inherent complexity of security mechanisms
that take into account both software and hardware vulnerabilities.
Second, because the companies behind the inception and engineer-
ing of innovative sCPS currently lack competence in software en-
gineering, since they were never software companies, but car
makers, home and industrial electronics manufacturers, and tele-
com equipment and services providers.

Workshop Themes
The workshop presentations provided a cross-cutting view of the
software engineering challenges related to sCPS and potential ap-
proaches to address the challenges. The presentations were orga-
nized into the three themes overviewed below.

Formal Modeling and Planning
The first theme of the workshop was concerned with formal mod-
elling and planning of sCPS. sCPS are typically at least partly in-
cluding critical infrastructures (e.g. smart mobility, smart grids,
etc.). As such, formal modeling techniques are crucial to derive
guarantees pertaining to sCPS and provide abstractions needed to
investigate the potential behavior of sCPS. Being subject to a large
degree of uncertainty, sCPS typically combine guarantees with
graceful degradation and planning to control guarantees and opti-
mality of their behavior. This brings important research questions
related to how to model sCPS (including abstractions and seman-
tics) and how to tie these models to guarantees and planning.

These topics were targeted by three presentations. Christos
Tsigkanos argued that Building Information Models, the de facto
standard for specifying complex information about building infra-
structures, can also be extended for the specification of cyber-
physical aspects. By providing formal static and dynamic seman-
tics of the cyber-physical spaces they induce in terms of topologi-
cal concepts it is possible to support many forms of advanced
analyses typically performed in software engineering. Pragya Kirti
Gupta presented a formal approach for calculating guarantees for
the objective of maximizing availability and survivability using
graceful degradation. The model represented formal specification
of the physical entities and the constraints under which these phys-
ical entities must operate. The case study of a microgrid operating
in an island mode was analyzed. The work showcased the use of
model-based development approach in controlling and managing
CPS at large. Roykrong Sukkerd proposed a multi-scale temporal
planning approach for state-based planning to control the complex-
ity of employing both the required fidelity of time discretization of
a problem domain, as well as a long planning horizon that enables
planning to yield closer-to-optimal solutions. We use a discretiza-
tion scheme such that the size of time lattice increases with time,
leveraging the fact that prediction uncertainty of the environment
increases with time and thus there is less precision of time of oc-

currences of far-future events.

Safety and Security
The second theme discussed at the workshop was safety and secu-
rity. As sCPS will be more and more immersed into everyday life,
the requirements on their safe operation, one that does not jeopard-
ize lives, will only increase. At the same time, solving the security
challenges imposed by sCPS, related to both old and new attacks,
will be a major issue in wide-spread adoption of such systems.

These topics were targeted by four presentations. Eunsuk Kang
presented a design-time approach for automatically generating
security attacks on a CPS using the Alloy formal modeling and
analysis tool. He described an application of this approach to dis-
cover real attacks on a fully functional water treatment testbed at
the Singapore University of Technology and Design (SUTD).
Charles Walter presented a wearable adaptation management ap-
plication to prevent attackers from stealing private information by
eavesdropping on Bluetooth communication. Since the targeted
wearables connect with a phone as the base station, a phone app
was created that intelligently adapts the level of security based on
data from every connected device and the phone. This approach
opens the possibility for learning user needs for security and
providing a mechanism to update policies as the user interacts with
the security awareness application. Alessia Knauss presented first
results from their investigation on the state-of-the-art and future
trends in testing critical CPS on the example of active safety sys-
tems. The results were based on four focus groups with 11 practi-
tioners from Sweden and differentiate between the original
equipment manufacturer (OEM) and supplier point of view. The
results underline the current support of major testing processes,
however, there is a clear need to develop support for the testing of
more complex scenarios in realistic settings. Furthermore, the de-
gree of automation of testing needs to be increased to support re-
peatability and more effective test resource usage. Awais Rashid
asked if the human-in-the-loop is indeed the weak link regarding
security incidents, highlighting the role of latent design conditions
in impacting operators’ perceptions of adversarial behavior in
cyber-physical systems. He then discussed the characteristics of
smart CPSs—namely, their dynamically aggregated nature, emer-
gent behavior and multi-stakeholder environments—that make it
particularly challenging to address the impact of their inherently
emergent design on operators’ perceptions of security events.

Frameworks
Since sCPS are large complex systems with large codebases, ad-
hering to certain rules or following certain guidelines can facilitate
their software development. Such rules or guidelines typically
constrain the software developers in their creative process; howev-
er, the conventions that are followed produce understandable,
maintainable, modular, and extensible software. Software devel-
opment rules and guidelines are typically grouped together into
component models, patterns, architectural styles and frameworks.

This topic was targeted by the last two presentations. Pankesh Pa-
tel proposed a development framework that segregates CPS devel-
opment concerns, provides a set of modelling languages to specify
them, and integrates automation techniques to parse these model-
ling languages. Thomas Gabor presented a taxonomy of challenges
to be faced when integrating autonomous decision making into the
development cycle of future sCPS, allowing to analyze changes to
be made to current development processes.

Open Research Topics
The whole afternoon of the workshop was allocated to breakout
groups that focused on selected topics from the morning presenta-
tions. In total, there were four groups, each focusing on one of the
topics selected for discussion: “Software Engineering Process for
sCPS”, “Emergent Designs”, “Consequences of Smartness and
Security”, “Should Software Provide Security to Control?” In the
rest of the section, we report on the findings of each breakout
group in turn.

Emergent Designs
The first breakout group focused on the research trends in sCPS.
sCPS points to complex systems that not only control the physical
entities, but also coordinate various business processes [7]. Archi-
tectural design strategies have been suggested to create platforms
for sCPS [8]. This has given a new impetus for research in ma-
chine learning, architectural design, smart user interface, recom-
mender systems etc. According to the report by Gartner, emerging
technologies in 2016 such as machine learning, software-defined
security, IoT platforms, micro data centers etc. are at the peak of
the hype cycle [9].

The group discussion was around the clarification of the terms
“cyber-physical” and “smartness”. In order to define these terms,
key topics that emerged were uncertainty and the representation of
the environment.

Uncertainty or dealing with what is unknown largely depends on
the representation of all the factors, which affect the functioning of
the system. Therefore, it is important to know the functionalities,
structure and the workflow of the system internal to it. In other
words, when using a model-based approach, the model must cap-
ture the data flows, functionalities etc. Requirements must be ex-
plicitly defined. It was agreed upon that even if the objectives and
the functionalities were clearly defined, the environment in which
the system is running is equally important. The changes within the
system in turn affect the environment. Challenges of capturing the
unknowns of the environment that affect the system largely remain
open research. Therefore, it totally justifies that the research trend
we see in emerging technologies that focuses on maximizing the
data provisioning and knowledge extraction algorithms.

It was also discussed that the clarification of “smartness” could
only be possible when the expectations from complex system such
as energy system, autonomous vehicle, and smart industry are
clearly defined. In other words, the requirements and specification
of the complex system must be defined properly and completely.
The detection of conflicts amongst the requirements of complex
systems that operate simultaneously remains a research challenge.
For example, charging the autonomous vehicle using Electric Ve-
hicle (EV) charging stations in a smart city requires clarity of the
requirements related to EV charging stations, autonomous vehicles
energy requirement, layout and design of the city that provides
energy to the charging stations.

Software engineering practices can help in analyzing requirements,
defining architectures that allow interoperability and checking for
conflicts between complex systems.

In this context, challenges can be categorized as following;

• Adaptation and evolution in sCPS.

• “Uncertainty” and representation of environment.

sCPS are expected to adapt in certain situations. These adaptations
might involve changes in the structure or just fine-tuning certain
parameters. The major challenges and open research areas pertain-
ing to adaptation are:

1. How to identify the missing functionalities in the contin-
uously evolving system?

2. How the workflow will evolve if adaptation is introduced
by making structural changes?

3. How to design the evaluation platforms that analyze and
compare the initial and adapted design?

4. What are the metrics required to compare the initial de-
sign with the evolved design?

5. How to recognize if a change is an opportunity to adapt
or is loss of functionality?

Consequences of Smartness and Security
The second breakout group focused on the interplay of smartness
and security, based on the observation that smartness typically
involves more complex functionality and more complex interac-
tions, which, in turn, increases the potential attack surface and thus
has a negative effect on security.

Connecting to the keynote by Eric Bodden, the group started by
clarifying the terms and scope of smartness and sCPS. The group
identified smartness as: “being connected and able to act with par-
tial autonomy based on own decision making while cooperating
and coordinating with others.” sCPS were then seen as CPS exhib-
iting a significant degree of smartness, which implies that sCPS
(as the collection of multiple distributed and partially autonomous
cooperating nodes) take decisions on their own and exhibit self-*
properties.

The ability to take own decisions is not binary. It rather makes a
continuous scale where some class of decisions can be taken au-
tonomously, whereas another class of decisions may require ap-
proval or incentive by a human stakeholder. Consequently, even
the “smartness” of sCPS is to be seen as a continuum (as opposed
to classifying some CPS as “smart” and some others as “dumb”).

Having established the common understanding, the group focused
on security related issues connected with smartness. Apart from
the problem of increasing the potential attack surface, an important
security problem stems from the sCPS’s ability to make autono-
mous decisions. This makes it possible to forge attacks that impact
a system’s sensing and self-awareness, thus forcing it into making
a wrong decision. This makes it possible to impact the system even
without breaching into its control functions. Similar problems
happen even in systems controlled by human operators (as dis-
cussed during the presentation of Awais Rashid), however sCPS
are more vulnerable due to their inability to reflect on potential
decisions from the perspective of the “common sense.”

The smartness does not introduce only problems for security, but
can be seen also as an opportunity to implement mechanisms
strengthening the security. As smartness allows the system to in-
trospect and reason about its environment (including potential se-
curity threats), the system can protect itself. An existing example
of this is the moving target defense strategy. Also, thanks to its
high degree of autonomy, the system requires fewer inputs from
human operators. The system can essentially control its behavior

and system boundary from inside. This reduces the possibility of
attacks compromising the channel and the credentials via which
the operator accesses the system.

Generalizing these observations, it is expected that sCPS may ena-
ble new types of attack patterns that we do not currently know.
Nevertheless, they may be somehow latent in existing attacks, thus
forming a kind of “unknown knowns” [6]. The smartness, howev-
er, may make the system more resilient. Here, the pertinent ques-
tion is how we could exploit the smartness in strengthening the
security. The role of software engineering in this is critical, as it
should make it possible to reason about security and smartness in a
systematic way. Disciplined software engineering methods needs
to propel the ability to reason about the system as a whole and
seamlessly incorporate defense strategies specifically tailored to-
wards the vulnerabilities of sCPS.

An interesting example was drawn from the keynote. In 2011,
there was a hack attempt targeting Lockheed Martin. Instrumental
in the attack was the ability of the attacker to compute access
codes generated by SecurID tokens used in two-factor authentica-
tion. In order to compute the codes, the attackers previously com-
promised the servers of RSA Security (the manufacturer of the
SecurID tokens) and obtained seeds used by the tokens to generate
the access codes. Among others, this story shows that under cer-
tain circumstances the security-related system boundary of CPS
can be effectively larger than originally assumed. In this case, due
to the chain of trust, the security-related system boundary of
Lockheed Martin in some sense also included the servers of RSA
Security. This pattern can be found in many other systems in now-
adays interconnected world. Here, the smartness featured by sCPS
could actually make it possible to shrink the system boundary back
to units of manageable size, which would be able to autonomously
reason about actions performed with them and protect themselves
against an attack.

In addition to the topics discussed above, the group further identi-
fied a number of important research questions / challenges listed
(in no intentional order) below:

• How does one measure and quantify the security?

• How to figure out that the system has been compromised
and how to react to it? Especially by reactions that cannot
be easily guessed by an attacker.

• How do we know what the realistic settings are if those
systems do not exist yet? Here, a big problem is the cur-
rent lack of large sCPS testbeds.

• How to coordinate security behavior of multiple sCPS
and how to cope with the potential lack of the global per-
spective? Obviously, the smarter the sCPS are, the more
difficult this is. The security should be a joint effort of
multiple systems, but adaptation of one system may easi-
ly compromise guarantees and assumptions of other sys-
tems. This leads to an important issue of compositionality
of security guarantees.

Should Software Provide Security to Control?
The third breakout group focused on a question phrased in perhaps
an unusual way, “should software provide security to control?”

The goal of the phrasing was to challenge the assumption that se-

curity is a passive quality designed up-front for the whole system
(which includes control algorithms and other software). As the
question suggests, some parts of the system (namely, software) can
play an active role in providing intelligent security, particularly in
systems built upon control mechanisms.

Taken to the security context of sCPS, the dichotomy between
“software” and “control” becomes unsuitable for two reasons:

1. There is no clear separation between “control” and “software”.
If we understand control narrowly (in a control theoreti-
cal/engineering sense), it has been increasingly implemented in
software over the last decade. If we understand control broadly, a
lot of software has some control function in it.

2. Security is a system-wide quality—not a particular functional
requirement. We cannot say that any specific component provides
security for the system. Instead, security depends on how parts of
the system come together and interact with a particular environ-
ment. Even when some components have active security functions
(e.g., moving target defense), security reasoning and evaluation
needs to take the whole system into account.

Let us then understand the interplay between control, security, and
software in sCPS better. Consider a system that uses classic con-
trol as a functional skeleton that interacts with multiple physical
processes. On top of that, coordination software weaves together
these control loops to ensure the satisfaction of system qualities,
including security. This group’s discussion focused on how to im-
prove engineering of such secure sCPS. In contrast, the last sub-
section discusses engineering for sCPS in general, and the
previous subsection addresses the topic of smart decision-making
for security. In the remainder of this subsection, we explore how
security engineering of sCPS needs to differ from security engi-
neering of “pure software” systems and classic control systems.

Our starting question hints that classic control is often not prepared
to deal with security challenges in diverse and rapidly changing
environments. In part, this deficiency is due to control’s focus on
overcoming random failures (caused by noise and natural process-
es). Security engineering, in contrast, needs to deal with intention-
al intrusions. Such intrusions can upset classic control that does
not expect input errors to deviate from the normal distributions.
This weakness gives rise to difficult-to-prevent sensor spoofing
attacks, such as the one carried out on Jeep’s GPS [7].

Another challenge in sCPS, both for classic control and cybersecu-
rity, is the increased scope and scale of systems. Now systems
include not only software and individual physical processes, but
also groups of interrelated physical processes, humans, and other
smart systems. This diverse context creates ample opportunities
for lateral movement of the attacker, who can create attack chains
switching between compromising software (e.g., with an exploit),
compromising a physical process (e.g., with sensor spoofing), to
compromising a human (e.g., with phishing).

Another difference for security in sCPS is smartness – the sys-
tem’s ability to learn and respond intelligently in new contexts.
We distinguished two degrees of smartness. The first-degree
smartness is existence of intelligent end-user devices that coordi-
nate with each other. This smartness creates many new attack sur-
faces, and is a great security challenge. The second-degree
smartness means that the system deliberately learns and acts on its
smart end-user devices. Often, this smartness is considered benefi-

cial to security since it makes intelligent decisions to maintain
security at run time (as discussed in the previous section). Howev-
er, second-degree smartness comes with challenges of its own.
Automated learning can be misled by attackers into overfitting to a
specific solution, or disrupted to prevent learning. In some way, it
seems that no matter how much smartness is added, security engi-
neers will always be one step behind attackers: smartness of de-
gree n-1 introduces vulnerabilities that are patched up by
smartness of degree n, but that smartness comes with its own vul-
nerabilities, requiring yet another level, and so on.

The group discussed two examples of learning attacks. The first
attack is an attack on modes in learning. Suppose a system has
several behavioral models, pertaining to criticality or safety. Each
mode requires separate learning of acceptable behaviors. Such a
system can be disrupted if an attacker finds a way to trigger mode
switches, thus preventing each mode’s learning to be reset and
never accumulate enough continuous data to behave appropriately.
The second attack is an attack on historical records. In this attack,
the attacker would compromise the historical record of the sys-
tem’s operation, or the component that creates that record. After
that, no further escalation of privilege may be needed: the attacker
can lead the system into a desired behavior by tweaking the histor-
ical records, which make up the training set for the system’s learn-
ing algorithms.

To respond to the above challenges, the group discussed avenues
for future research on security engineering for sCPS. Clearly, the
existing cybersecurity approaches are reliant on relative isolation
of software from physical processes and humans. To bridge this
gap in sCPS, one suggestion was to increase the set of existing
security tactics by drawing inspiration from other fields. For in-
stance, one can use tactics from reliability engineering such as
redundancy and aggregation of diverse signals. From physical se-
curity, we can borrow separation of system’s elements and harden-
ing. Tactics from classic cybersecurity (such as diversity and
encryption) can be upgraded to the sCPS context by considering
their effects in a broader system context.

Another way to address the discussed challenges is to change the
security mindset for sCPS. Instead of trying to prevent any attack,
security engineers can focus on how to best respond to attacks via
adaptation. The adaptive defenses can continuously stratify the
system into critical, controllable, and uncontrollable parts. With
this information, the system can guide its responses appropriately
without spending resources on trying to recover a part where the
control has been lost.

Finally, the group discussed implications for practical engineering:

• Plugging in well-tested solutions might not work due to
rapid change in context.

• Supply chains, often providing low-level devices and
functions, need a systematic way to be scrutinized for the
broadened notion of security.

• Security analysis for sCPS needs to become consistent –
more repeatable with more predictable results, even by
diverse groups of experts. Attack modeling and simula-
tion may become one such consistent approach.

• Instead of security reviews by experts, hacking competi-
tions have been suggested as a method of evaluating and

improving a system’s security. The system’s builder
would announce a prize for compromising a system, and
a number of teams would try to break the system’s secu-
rity.

To summarize this section, sCPS brings several challenges to se-
cure engineering of control software: intentional deviations in in-
put errors, increased scope of systems, and attacks on learning.
The discussion indicates that security for sCPS is a broad and un-
certain quality, requiring analysis and intelligent response at run
time. The group suggested borrowing tactics from other fields and
giving adaptive security a richer way to stratify the system’s con-
text. This discussion has certainly not been exhaustive, and more
engineering challenges for secure sCPS will shape the landscape
of future research.

Software Engineering Process for sCPS
The fourth breakout group focused on software engineering pro-
cesses for the development of sCPS. One common theme in the
contributions of the workshop as well as the respective research
field includes the application of well-established principles from
software engineering to enhance the non-trivial research field of
cyber-physical systems. Furthermore, as the theme of this work-
shop focused on smart cyber-physical systems, the group discus-
sion raised the question, if and why smartness of CPS even affects
the engineering process: Many models used in software develop-
ment are general enough and do not require any assumptions about
the software systems they are used to build. In order to recognize
the ways in which sCPS may differ from more traditional CPS,
this group concluded that a precise definition of smartness is det-
rimental to further analysis.

As an impromptu solution, the group defined smart systems as
systems that: (1) can adapt to a variety of situations instead of be-
ing built for a fixed scenario, (2) gathers data about its environ-
ment and its own state throughout its operation, and (3) uses that
data to improve its behavior at some future point in its life-cycle,
which may be a future version of the system deployed by the sys-
tem developer or even be an adapted version of the system gener-
ated at runtime via some form of artificial intelligence. The group
noted that many such systems (autonomous vehicles, smart cities,
personalized healthcare appliances, e.g.) are currently gaining at-
tention and increasingly created. These systems would greatly
benefit from insights regarding systematic development approach-
es for smartness.

From this rather simple definition, the group managed to derive a
few ways in which smartness poses a challenge to current software
development processes. In one way, smart behavior relies on the
interaction of the system with its surroundings, enabling the smart
system to not only perceive and react on the environmental infor-
mation but also deliberately plan changes in the environment. The
need to interleave the development of hardware and software,
which is already felt in all CPS, is thus aggravated in sCPS. It thus
shows that smartness introduces a whole range of new cross-
cutting concerns into the development process, out of which the
breakout group identified three major groups of development as-
pects that seem to be the most essential missing links at the mo-
ment:

• First, even though systems are getting ever smarter, they
are going to make mistakes as well, which needs to be de-
tected. As smart systems are deployed for tasks that are

too complicated or too work-intensive to be performed by
humans, their errors may not be easily detectable for a
human supervisor. It is necessary to employ special tech-
niques to ensure the predictability and liability of a smart
system’s behavior. An important factor to generate trust
in an autonomous machine’s actions is transparency: The
system needs to find the right decision and be able to ex-
plain that decision to humans.

• Second, as a sCPS will adapt and change its behavior at
runtime, such systems should be debug-able. If a human
supervisor detects a problem with the system’s behavior,
techniques are needed that would allow to fix the prob-
lem, even with all the difficulty of tracing it back to its
origin.

• And third, this whole process of error detection and cor-
rection itself needs to be reliable enough so that the safety
of the sCPS can be certified. Certification of autonomous
systems, however, appears to be an area still largely un-
touched.

Having discussed concerns that cross-cut over several components
of the software architecture, adding smartness to CPS also affects
different phases of traditional development processes:

• Requirements need to be defined in a more general man-
ner allowing to accommodate for openness of the system
and the uncertainty it is dealing with during operation.
More abstract requirement specification, however, can
yield many different instances of problems within the
space of parameters spanned by the requirements.

• The system design should accommodate for a variety of
configurations targeting the different situations that the
system will encounter during its life time—possibly even
unforeseen situations.

• Testing of sCPS during design time can only provide very
limited guarantees towards actual run time behavior when
the system is allowed to reconfigure itself during run
time.

In general, many of the engineering steps can be performed during
system design for non-autonomous systems. However, these activ-
ities are going to be shifted to the operations phase and thus must
be executed (at least in parts) during run time. Engineering such
systems becomes a “perpetual process” that unifies tool-supported
development and evolution with automatic runtime adaptation [8].
Realising this shift will require new models on how to distribute
tasks along the development cycle and new tools to enable tasks
like reconfiguration, configuration testing, and quality assurance to
be split between design time and run time. Tools that help the sys-
tem to handle complexity, deal with uncertainty, and take ad-
vantage of runtime data are needed. When developing new tools
for sCPS, their integration into the life-cycle must adhere to a
plug-and-play paradigm, i.e., for every reconfiguration performed
on the system, there must be a clear (and ideally quick) way to
apply the tool to new parts of the system to ensure that the results
of the tool can be preserved for the system as a whole.

Finally, the discussion concluded with a few questions that have
been considered most urgent to answer by the group members and

may provide fruitful directions for future research of sCPS:

• How can “smartness” be defined and how exactly does it
relate to concepts like “self-adaptation” or “artificial in-
telligence”?

• Traditional software engineering represents rigid process-
es: Is it helpful to consider this rigidness a goal for soft-
ware engineering even for smart systems that might be
achieved after gaining more experience on how to build
these? Or would it be more helpful to abandon the view
of system building as an exact discipline of engineering
when it comes to smart systems?

• Adding “smartness” is a very general approach to in-
crease the system performance for a variety of systems:
Should solutions for different domains be sought of on
the same level of generality? Or does the controllability
of smart system design only arise when considering more
specific domains?

Acknowledgements
The SEsCPS 2016 workshop is a collective endeavor, as such, the
authors would like to express their gratitude to those who have
participated in the organization of this workshop. This comprises
in particular the ICSE 2016 Workshops Co-Chairs, in particular
Marija Mikic and Mauro Pezzè, and the SEsCPS 2016 Program
Committee comprised of Paris Avgeriou, Steffen Becker, Nelly
Bencomo, Johann Bourcier, Radu Calinescu, Jan Carlson, Sagar
Chaki, Ivica Crnkovic, Nicolas D'Ippolito, Rogério de Lemos,
Dionisio De Niz, Antonio Filieri, Ilias Gerostathopoulos, Carlo
Ghezzi, Holger Giese, Rodolfo Haber, Gabor Karsai, Mark Klein,
Filip Krikava, Martina Maggio, Henry Muccini, Maurizio Murro-
ni, Geoffrey Nelissen, Gurulingesh Raravi, Wolfgang Renz, Bern-
hard Schaetz, Ina Schieferdecker, Lionel Seinturier, Vitor E. Silva
Souza, Bedir Tekinerdogan, Petr Tuma, and Steffen Zschaler.

References
[1] NSF, Cyber Physical Systems, NSF 15-541

http://www.nsf.gov/pubs/2015/nsf15541/nsf15541.pdf
[2] B. K. Kim and P. R. Kumar, “Cyber–Physical Systems: A Perspective at the

Centennial”, Proceedings of the IEEE, vol. 100, no. Special Centennial, 2012.
[3] E. A. Lee, “Cyber Physical Systems: Design Challenges”, 11th IEEE

International Symposium on Object Oriented Real-Time Distributed
Computing, 2008.

[4] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-Physical Systems: A
New Frontier,” IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, 2008.

[5] T. Bures, D. Weyns, S. Biffl, M. Daun, T. Gabor, D. Garlan, I.
Gerostathopoulos, C. Julien, F. Krikava, R. Mordinyi, “Software Engineering
for Smart Cyber-Physical Systems – Towards a Research Agenda,” Software
Engineering Notes, November 2015.

[6] A. Rashid, S. Asad A. Naqvi, R. Ramdhany, M. Edwards, R. Chitchyan, and
M. A. Babar. Discovering \unknown known" security requirements. In
Proceedings of the 38th International Conference on Software Engineering,
2016.

[7] Andy Greenberg. “Hackers Remotely Kill a Jeep on the Highway—With Me
in It.” In WIRED, July 21, 2015.

[8] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi, L.
Grunske, P. Inverardi, J. Jezequel, S. Malek, R. Mirandola, M. Mori, and G.
Tamburrelli. “Perpetual Assurances in Self-adaptive Systems.” In Software
Engineering for Self-Adaptive Systems III. Lecture Notes in Computer
Science, Springer, 2017.

