
Design of Ensemble-Based Component Systems by 
Invariant Refinement 

 

Jaroslav Keznikl1,2 

keznikl@d3s.mff.cuni.cz 
Tomas Bures1,2 

bures@d3s.mff.cuni.cz 
Frantisek Plasil1  

plasil@d3s.mff.cuni.cz

Ilias Gerostathopoulos1 

iliasg@d3s.mff.cuni.cz  
Petr Hnetynka1 

hnetynka@d3s.mff.cuni.cz 
Nicklas Hoch3 

nicklas.hoch@volkswagen.de
1Charles University in Prague 

Faculty of Mathematics and Physics  
Prague, Czech Republic  

2Institute of Computer Science          
Academy of Sciences 
of the Czech Republic 

Prague, Czech Republic 

3Corporate Research Group 
Volkswagen AG 

Wolfsburg, Germany 
 

 
ABSTRACT 
The challenge of developing dynamically-evolving resilient 
distributed systems that are composed of autonomous components 
has been partially addressed by introducing the concept of 
component ensembles. Nevertheless, systematic design of 
complex ensemble-based systems is still a pressing issue. This 
stems from the fact that contemporary design methods do not 
scale in terms of the number and complexity of ensembles and 
components, and do not efficiently cope with the dynamism 
involved. To address this issue, we present a novel method – 
Invariant Refinement Method (IRM) – for designing ensemble-
based component systems by building on goal-based requirements 
elaboration, while integrating component architecture design and 
software control system design.  

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications; C.3 [Special-purpose and 
Application-based Systems]: real-time and embedded systems; 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
miscellaneous; D.2.11 [Software Engineering]: Software 
Architectures – patterns. 

Keywords 
Component; ensemble; refinement; requirements engineering; 
system design 

1. INTRODUCTION 
Addressing the challenge of developing large-scale distributed 
autonomic and adaptive systems [26], the EU FP-7 project 
ASCENS [15] strives for modeling and designing such systems of 
service components and service component ensembles. For large-
scale adaptive systems, the ASCENS case studies indicate the 
need to deal with large amounts of distributed information both 
highly dynamically and intelligently, while ensuring resilience to 
changes in the environment. This has been partially targeted by 

the work on resilient distributed systems (RDS) based on 
ensembles [15] of autonomous adaptive [16] components. In this 
context, an ensemble is seen as a dynamically formed group of 
autonomous components which encapsulates knowledge, 
interaction, and goals specific to the group. 

The ASCENS project employs three case studies from different 
domains, of which we target the e-mobility case study within the 
scope of this paper. This case study aims at resource optimization, 
such as travel time, energy consumption, and parking lot and 
charging station usage of electric-powered vehicles. Its objective 
is to coordinate planning of journeys in compliance with parking 
and charging strategies in the highly-dynamic, complex, and 
heterogeneous traffic environment, where information is 
distributed. 

Currently, widely accepted semantics of the ensemble concept is 
still an open issue. In [5][19], we have contributed to this by 
introducing the concept of Ensemble-Based Component Systems 
(EBCS) and specifically the DEECo component model 
(Dependable Emergent Ensembles of Components), our 
contribution to the EBCS family. Although the concept of 
ensemble in EBCS effectively addresses the distribution and 
dynamism of RDS at a middleware level, the design of complex, 
ensemble-based systems remains a significant challenge. Our 
early experiments indicate that traditional software engineering 
methods cannot be directly employed [13], since they cannot cope 
with the dynamism involved and do not cover all the required 
design steps. Specifically, it appears that the design of ensemble-
based systems requires a synergy of goal-oriented requirements 
refinement, architecture design, and (real-time) process 
scheduling. In response to this problem, this paper proposes a 
novel method – Invariant Refinement Method (IRM) – for 
systematical derivation of an EBCS-based RDS architecture from 
high-level requirements. In particular, IRM builds on gradual 
refinement of invariants that are employed as a concept for 
reflecting both requirements and architectural elements.  

The rest of this paper is structured as follows: Section 2 explains 
the specifics of EBCS in the context of the e-mobility case study 
in DEECo. Section 3 elaborates on the lessons learned from the 
case study and articulates the problem statement. Section 4 
presents an overall description of IRM, while Section 5 elaborates 
on guidelines for refinement by presenting invariant patterns. The 
evaluation and discussion is provided in Section 6  and related 
work in Section 7. Section 8 concludes the paper and identifies 
future research directions. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada. 
Copyright © ACM 978-1-4503-2122-8/13/06...$15.00. 



2. ENSEMBLE-BASED COMPONENT 
SYSTEMS: A CASE STUDY 

To illustrate the challenges in RDS development, we exploit the e-
mobility case study mentioned in Section 1. Electric vehicles (e-
vehicles) compete for e-mobility resources, such as parking lots 
and charging stations (infrastructure) in order to achieve optimal 
journeys with respect to the drivers’ daily activities (calendars). A 
calendar consists of a set of points of interest (POIs), together 
with timing constraints specifying the expected POI arrival and 
departure times. For brevity, we assume that each driver is bound 
to his/her own private vehicle and that parking lots are the only 
infrastructure entities. An e-vehicle uses a planner in order to 
create its individual journey plan, stemming from the driver’s 
calendar and including parking/charging periods when necessary. 
The system is fully decentralized – every e-vehicle plans and 
executes its route individually. 

Having outlined the application domain of EBCS, in the rest of 
this section we first elaborate on the context of EBCS and then 
illustrate the basic concepts on an example from the case study. 

2.1 From Agent and Control-based Systems 
to Ensemble-Based Component Systems 

In principle, EBCS [5] combine the advantages of component-
based software engineering [9][10], ensemble-oriented 
systems [14][15], agent-based computing [18][24], and (soft) real-
time embedded software control systems [7][25] in highly 
dynamic, open-ended environments that lack reliable 
communication channels (Figure 1).  
Exploitation of the concepts from agent-oriented computing 
allows for composing systems from a number of autonomous 
entities, so that the overall behavior of the system is an emergent 
result of behaviors of the entities. In particular, the autonomous 
entities are designed to operate only with a partial view of the 
whole system; i.e., BDI model [21] where agents maintain a belief 
about the rest of the system to guide their autonomous decisions.  

A disadvantage of the agent-oriented computing concepts at the 
software-engineering level is its strong dependence on reliable 
communication channels (as, e.g., in the case of JADE platform 
[3]), which is, however, not achievable in the target application 
domain due to the extreme dynamism. Instead, EBCS rely on the 
concept of attribute-based communication [12] (i.e., the target of 
communication is determined according to the values of attributes 
rather than by a direct identifier), which models the 
communication as best effort and localized to dynamically 
changing groups – ensembles – of components.  

The EBCS communication model however implies that the 
components’ belief is essentially always outdated. To efficiently 
cope with outdated belief, EBCS employ concepts of (soft) real-
time software control systems, which achieve robustness by 

adequate scheduling of periodic tasks recurrently maintaining the 
operational normalcy of the system. Here, operational normalcy 
expresses the property of being within certain limits that define 
the range of normal functioning of the system. The required level 
of robustness is achieved by adjusting the periods of the tasks. 

As extreme dynamism is involved, components should be also 
capable of continuous self-adaptation, following the concept of 
feedback loops [17]. An ensemble-based system can be thus 
understood as a dynamic system of conditionally interacting 
feedback loops. 
In this context, components in EBCS are perceived as software-
engineering means for implementing resilient agents that deal 
with ensemble-oriented, best-effort communication and outdated 
belief. 

2.2 Illustration of the Concepts on the Case 
Study 

The case study has been implemented in our DEECo component 
model – an instance of EBCS. Here, a component comprises 
knowledge (i.e., the data of the component), exposed via a set of 
interfaces, and processes, each of them being essentially a thread 
operating upon the knowledge of the component.  Figure 2 
illustrates several artifacts we have developed for the case study. 
In particular, it shows a specification of the Vehicle0123 
component, featuring the AvailabilityAggregator interface and the 
computePlan process. The latter is responsible for the computation 
of the vehicle’s plan, which is based on the vehicle’s calendar 
(calendar) and the availability information of the relevant parking 
lots (availabilityList) and is executed whenever one of these inputs 
changes.  

     
Figure 1: Context of Ensemble-Based Component Systems 

(EBCS). 

  interface	
  AvailabilityAggregator:  
   calendar,  availabilityList  
  

interface	
  AvailabilityAwareParkingLot:  
   position,  availability  
  

component	
  Vehicle0123  features	
  AvailabilityAggregator,  ...  :  
   knowledge:  
      calendar,  availabilityList,  plan,  planFeasibility,  ...  
   process	
  computePlan(in	
  calendar,  in	
  availabilityList,  out	
  plan):  
      function:  
         plan  ←  JourneyPlanner.computePlan(  

calendar,  availabilityList,  planFeasibility)  
        scheduling:  triggered(  changed(planFeasibility)  ∨  changed(availabilityList)  )  
   ...  
  
component	
  ParkingLot01    features	
  AvailabilityAwareParkingLot,  ...  :  
   knowledge:  
      position,  availability,  ...  
   process	
  observeAvailability(out	
  availability):  
      function:  
         availability←  Sensors.getCurrentAvailability()  
        scheduling:  periodic(  2000ms	
    )  
   …  
  
  ensemble	
  UpdateAvailabilityInformation:  
   coordinator:  AvailabilityAggregator  
   member:  AvailabilityAwareParkingLot  
   membership:  
      ∃  poi  ∈  coordinator.calendar:  
         distance(member.position,  poi.position)  ≤  TRESHOLD  
   knowledge	
  exchange:  
      coordinator.availabilityList  ←  members.reduce(member.availability)  
   scheduling:  periodic(  5000ms  )    

Figure 2: Example of a DEECo component and ensemble 
definition in a DSL. 

Agent-­‐oriented	
  
computing
autonomy

Ensemble-­‐oriented	
  
systems

attribute-­‐based  
communication

Control	
  system	
  
engineering

operational  normalcyEBCS
Component-­‐based	
  

engineering
software  engineering  



For the purpose of separation of concerns and effective handling 
of dynamism and communication errors, DEECo introduces 
ensemble, a first-class concept, encapsulating dynamic grouping 
of components and the interaction within the group. In an 
ensemble a component plays the role of the ensemble’s 
coordinator or one of the members. This is determined 
dynamically (the task of the runtime framework) according to the 
membership condition specified upon the interfaces expected for 
the coordinator and members. Specifically, the membership 
condition determines which components form the coordinator-
member pairs of an ensemble. The separation of concerns is 
brought to such extent, that individual components are not capable 
of explicit communication with other components. Instead, the 
interaction among the components forming an ensemble takes the 
form of knowledge exchange, carried out implicitly (by the 
runtime framework). For example, Figure 2 shows a specification 
of the UpdateAvailabilityInformation ensemble, an instance of 
which is to be created for every coordinator, i.e., every component 
that features the interface AvailabilityAggregator (such as the 
component Vehicle0123). The members of such an ensemble are 
all the components featuring AvailabilityAwareParkingLot that are 
in the proximity (TRESHOLD) to one of the POIs of the 
coordinating e-vehicle. This effectively includes all the parking 
lots that are relevant to journey planning of the coordinating e-
vehicle. The knowledge exchange, scheduled periodically every 
5000ms, ensures that the coordinating e-vehicle obtains the 
current availability information of all the member parking lots. 
This periodicity guarantees that the “belief” of the e-vehicle about 
the availability of parking lot components is current enough. 

In summary, a component operates only upon its own local 
knowledge, which is implicitly updated via knowledge exchange 
whenever the component is part of an ensemble (technically this is 
handled by the underlying runtime framework). 

3. PROBLEM STATEMENT 
The lesson from implementing the case study is that it is 
problematic to determine a proper EBCS architecture (i.e., 
components, component processes and ensembles) of the system 
from the overall goals and requirements. This gets more difficult 
when we take into account the extent to which knowledge can 
become outdated (due to delays in knowledge exchange and 
parallel execution of component processes) and its impact on the 
overall system behavior.  
This problem stems from the conceptual gap between the high-
level system goals and relatively low-level architectural concepts 
of EBCS. A broad, high-level view of the goals is critical when 
reasoning about global properties of a complex (distributed) 
system as a whole; e.g., stability-related properties including 
robustness, adaptability, non-functional properties such as tradeoff 
between communication overhead and outdated knowledge, etc. 
Focus on the low-level concepts is equally important for a detailed 
design and implementation of components and ensembles.  

Overall, the key objective of both the component process and 
ensemble concepts is to maintain a form of operational normalcy 
of the component/group of components. Therefore, they can be 
described declaratively in terms of the particular operational 
normalcy they maintain. In addition, we assume that the high-
level system goals can be also described declaratively. Thus, both 
high-level requirements and low-level architectural concepts can 
be reflected in the same declarative manner.  

Hence, the key challenge we address in this paper is to guide the 
EBCS design process transparently from high level goals to low-
level concepts of system architecture in such a way that the 

compliance of design decisions with the overall system goals and 
requirements is explicitly captured and (if possible) formally 
verified. As a result, tracing a low-level design decision back to 
its rationale in the system goals and requirements would allow for 
design validation and verification. 

4. DESIGNING ENSEMBLES VIA 
INVARIANT REFINEMENT  

To address this challenge, we propose IRM (Invariant Refinement 
Method) – a novel design method specifically focused on EBCS. 
Building on goal-based requirements elaboration [22], IRM is 
based on systematic, gradual refinement (i.e., elaboration) of 
invariants that reflect goals and requirements of the system-to-
be [1]. In this context, we are concerned with goals and 
requirements from the global perspective of the system, rather 
than the perspective of the individual components and ensembles. 

In principle, the invariants describe a desired state of the system-
to-be at every time instant; i.e., describe the operational normalcy 
of the system-to-be, essential for its continuous operation. For 
example, the main goal of the case study is expressed by the 
invariant (1): “All Vehicles meet their calendar” (Figure 3).  
The objective of IRM is to start the refinement with the overall 
system goal and end up by determining the invariants reflecting 
detailed design of the particular system constituents – 
components, component processes, and ensembles.  

4.1 Invariants and Assumptions 
A key concept of system design is component, i.e., a participant of 
the system-to-be (e.g., Vehicle and Parking lot in Figure 3). Each 
component comprises specific knowledge, i.e., its domain-specific 
data (in Figure 3 left out for brevity). The valuation of 
components’ knowledge evolves in time as a result of their 
autonomous behavior (i.e., execution of the associated component 
processes) and knowledge exchange. In principle, an invariant is a 
condition on the knowledge valuation of a set of components that 
captures the operational normalcy to be maintained by the system-
to-be (i.e., that should be preserved as knowledge valuation 
evolves in time). If a component’s knowledge is referenced by an 
invariant, we say the component takes a role in the invariant (e.g., 
in the invariant (1) from Figure 3 the component Vehicle takes the 
role V, while Parking lot takes the role P).  
As a special case, component knowledge may reflect information 
about the environment. Consequently, an invariant may represent 
an assumption about the environment, i.e., a condition that is 
expected to hold during knowledge evolution and thus is not 

  
Figure 3: Top-level design of the case study. 

(1)  All  Vehicles  meet  their  calendar

(2)  Up-­‐to-­‐date  V::plan,  w.r.t.  
information  from  P,  reflecting  

V::calendar  is  available

(4)  an  up-­‐to-­‐date  plan  can  always  
be  followed  by  the  vehicle  and  it  always  
schedules  reaching  the  destination  in  

time

(3)  V::position  is  in  
alignment  with  the  V::plan

Vehicle Parking  lot[V] [P]

1[V]

P A

1[V]

[V]

[P]

V::plan

invariantcomponent [R] role  R
knowledge  
dependency invariant  refinement

assumption
process
invariant

exchange
invariant

A P X



intended to be maintained explicitly by the system-to-be (in 
figures marked by A; e.g., (4) in Figure 3).  

4.2 Invariants vs. Computation Activities 
The underlying idea of IRM is that each invariant which is not an 
assumption is essentially associated with a computation activity – 
an abstract computation producing output knowledge given a 
particular input knowledge. In fact, the computation activity 
provides a dual view on the invariant – while the invariant reflects 
an operational normalcy, the computation activity represents 
means for maintaining it. For example, Figure 4 provides the dual 
view on the invariants in Figure 3. The invariants thus express the 
relation between the input and output knowledge of the 
computation activity. A component process, as well as ensemble 
knowledge exchange, is a specific form of computation activity. 

This dual view gives the convenient option to refer to invariants 
for the purpose of logic-based reasoning on system-to-be 
properties and to refer to computation activities when low-level 
implementation aspects are of concern.  

As an aside, we will refer to the relation between component 
knowledge and input/output knowledge of a computation activity 
as knowledge flow. For example, Figure 4 shows the knowledge 
flow between Vehicle and the computation activity associated with 
(3) from Figure 3 (with V::plan, resp., V::position as its input, resp., 
output knowledge). 

The activities associated with high-level system invariants (goals) 
are abstract, representing the system implementation at a high 
level of abstraction. For such an abstract computation activity, the 
input knowledge constitutes the part of the components’ 
knowledge that is out of control of the system-to-be, while the 
output knowledge is fully in its control. For example, as shown in 
Figure 4, the input knowledge of the computation activity 
associated with (1) from Figure 3 comprises V::calendar and 
potentially some knowledge of parking lots (since it is not yet 
clear at this level of abstraction, it is denoted by P::?), while its 
output knowledge comprises V::position.  

Thus, in the dual perspective of computation activities, the goal of 
IRM is to refine such abstract activities into the very concrete 
component processes and knowledge exchange. 

4.3 Invariant Refinement  
The core of IRM is a systematic, gradual refinement of a higher-
level invariant by means of its decomposition (i.e., structural 
elaboration) into a conjunction of lower-level sub-invariants. 
Formally, decomposition of a parent invariant 𝐼! into a 
conjunction of sub-invariants 𝐼!!,… , 𝐼!" is a refinement if the 

conjunction of the sub-invariants entails the parent invariant, i.e., 
if it holds that: 

1. 𝐼!! ∧ … ∧ 𝐼!" ⇒ 𝐼!   (entailment)  
2. 𝐼!! ∧ … ∧ 𝐼!" ⇏ 𝑓𝑎𝑙𝑠𝑒  (consistency) 

This definition complies with the traditional interpretation of 
refinement, where the composition of the children exhibits all the 
behavior expected from the parent and (potentially) some more. 
The refinement is applied recursively, starting with high-level 
invariants reflecting the overall system goals and involving a 
number of components and ending with low-level ones involving 
a single component or an ensemble of components. Note that 
since a decomposition step may involve a design decision, it is 
critical to ensure that this decision complies with the entailment 
and consistency conditions.   

During refinement, only the components that take a role in the 
parent invariant may also take a role in the sub-invariants. 
Nevertheless, as a part of the design decision, new knowledge can 
be added into the components taking a role in the sub-invariants 
(e.g., V::planFeasibility in Figure 5).  

In Figure 3, the design decision is to refine the invariant (1) into a 
conjunction of three sub-invariants: (2) – having an up-to-date 
plan, (3) – keeping the vehicle’s position in alignment with the 
plan, and (4) – an assumption that an up-to-date plan can always 
be followed by the vehicle (i.e., the environment dynamics – 
traffic, parking availability, etc. – will never prevent the car from 
following an up-to-date plan) and that it always schedules 
reaching the destination in time.  

The sub-invariants can exhibit knowledge dependency due to 
references to the same knowledge of a specific component. For 
example, in Figure 3 there is a knowledge dependency between 
(2) and (3) due to references to V::plan.  

From the dual (computation-activity-based) perspective of 
refinement, a simultaneous (i.e., parallel) execution of the 
computation activities associated with the sub-invariants forms 
the computation activity of the parent. In a refinement with 
knowledge dependencies, an adequate scheduling of these 
activities is to be determined in the refinement. 

4.4 Leaves of Refinement  
The rule of thumb is that refinement is finalized when each leaf 
invariant of the refinement tree is either an assumption or is 
associated with a “real” computation activity – a process or 
knowledge exchange.  

Specifically, an invariant that is referring to a single component 
captures only the operational normalcy to be maintained by a 
process of the component. Such an invariant is called a process 
invariant (in diagrams marked by P, e.g., (3) in Figure 3). 

In a general case when several components take a role in an 
invariant, e.g., (5) in Figure 5, the situation is more complex. To 
refine an invariant 𝐼!, referencing the components 𝐶!,… ,𝐶! into 
sub-invariants 𝐼!!,… , 𝐼!" that are eventually associated with “real” 
computation activities need to apply the concept belief of 𝐶! over 
the knowledge of 𝐶!,… ,𝐶!: the belief 𝐵!!

!!,…,!!(𝐾) is knowledge 
of 𝐶! that represents 𝐶!’s snapshot of a part 𝐾 of the knowledge of 
𝐶!,… ,𝐶!. For instance, in Figure 5, the belief V::availabilityList of 
Vehicle over the knowledge P::availability of Parking lots is an 
example of such a knowledge snapshot (denoted as  
V::availabilityList = 𝐵Vehicle

Parking lot P::availability ).  

  
Figure 4: Dual, computation-activity-based view on the top-

level design of the case study from Figure 3. 

(2)  Vehicle  keeps  its  V::plan  
reflecting  V::calendar  up-­‐to-­‐date  

w.r.t.  information  from  Parking  lots  

(3)  V  moves  according  to  the  
V::plan

Vehicle Parking  lot

V::plan

activity  refinement
computation  
activity

knowledge  
flow

knowledge  
dependency

V::posi tion

V::calendar

P::?(1)  The  system-­‐to-­‐be  drives  all  Vehicles  
by  using  information  from  Parking  lots  so  
that  the  Vehicles  meet  their  V::calendar

V::plan

V::posi tionV::plan

V::calendar P::?

component



Thus, 𝐼!! formulates the operational normalcy properties of 
𝐵!!
!!,…,!! , whereas 𝐼!!,… , 𝐼!" refine 𝐼! while substituting the 

references to the knowledge of 𝐶!,… ,𝐶! by references to 
𝐵!!
!!,…,!! . Note that 𝐵!!

!!,…,!!  is a new knowledge introduced into 
𝐶!. For example, in Figure 5, (7) formulates the condition on 
creating the belief V::availabilityList = 𝐵Vehicle

Parking lot P::availability , 
whereas (8) refines (5) while substituting the references to 
P::availability by references to V::availabilityList.  

As a result, 𝐼!! becomes an exchange invariant (in diagrams 
marked by X, such as (7) in Figure 5), since it corresponds to 
knowledge exchange as its “real” computation activity.  

Furthermore, 𝐼!!,… , 𝐼!" are potentially process/exchange 
invariants, since, in general, the number of components taking a 
role in 𝐼!!,… , 𝐼!" is, compared to 𝐼!, decreased at least by one due 
to references to the belief 𝐵!!

!!,…,!!  (such as when comparing (5) 
and (8) in Figure 5).  

4.5 From Invariants to Final Architecture 
After the set of components is identified and refinement tree of 
invariants is completed, the design continues by refining each 
process invariant into a component process and each exchange 
invariant into an ensemble. For example, as illustrated in Figure 2, 
Vehicle is reified by Vehicle0123, while (8) from Figure 5 is 
refined into its computePlan process and (7) from Figure 5 is 
refined into the UpdateAvailabilityInformation ensemble. Thus, 
determined by the invariant refinement, this step yields the final 
architecture of the system. The details are beyond the scope of this 
paper; we refer the interested reader to [4]. 

5. BRIDGING ABSTRACTION LEVELS 
VIA INVARIANT PATTERNS  

While high-level invariants capture general operational normalcy, 
low-level ones – reflecting architectural elements – capture the 
EBCS-specific aspects (e.g., periodic scheduling of component 

processes and knowledge exchange). In this section we elaborate 
on how to bridge this abstraction gap during refinement. In 
particular, we describe five patterns of invariants we have 
identified to reflect the way operational normalcy is captured at 
four adjacent abstraction levels that bridge this abstraction gap. 
The contribution lies in the fact that we are able to rigorously 
describe (and provide guidelines for) the refinement between 
invariants on the same/adjacent levels of abstraction by assuming 
that each invariant is an instantiation of a corresponding invariant 
pattern.  
Thus, we can (iteratively) exploit these patterns and guidelines 
during refinement to continuously lower the level of abstraction 
until we reach the level of architectural elements. Namely, these 
patterns are (from the most abstract to the least abstract): (i) 
general invariants, (ii) present-past invariants, (iii) activity 
invariants, (iv) process invariants, and (v) exchange invariants 
(as an exception, (iv) and (v) are at the same level of abstraction). 
Figure 6 illustrates the patterns on the case study. 

To give a more exact perspective of the patterns, we use 
a predicate formalization of invariants. Note that in this paper the 
goal of the formalization is to illustrate the conceptual differences 
between the patterns rather than to provide their rigorous 
description, which is beyond the scope of this paper. For formal 
pattern definition, we refer the interested reader to [6]. Recall that 
an invariant expresses the operational normalcy in terms of a 
condition to be maintained during knowledge evolution in time 
(Section 4.1). Thus, the formalization provides means for 
referring to timed sequences of knowledge values, which gives a 
complete view on the knowledge value evolution over time. 
Specifically, since EBCS-based systems are inherently 
asynchronous, we are interested in such a formalization that 
captures the evolution in terms of asynchrony and delays. For 
example, considering the knowledge evolution illustrated in 
Figure 7, we are interested in a formalization of the form “The 
value of V::pAvailable always equals the value of P::available 

  
Figure 5: Invariant refinement of “V has an up-to-date V::plan reflecting V::calendar”. 

invariantcomponent [R] role  R
knowledge  
dependency invariant  refinement

assumption
process
invariant

exchange
invariant

A P X

(2)  Up-­‐to-­‐date  V::plan,  w.r.t.  
information  from  P,  reflecting  

V::calendar  is  available

(6)  V::planFeasibility  w.r.t.  
V::energy  and  V::traffic  is  determined

(7)  V::availabilityList  -­‐  V’s  belief  
over  P::availability  of  trip-­‐relevant  

parking  lots  -­‐    is  up-­‐to-­‐date  

(5)  Up-­‐to-­‐date  V::plan,  w.r.t.  
P::availability  and  V::planFeasibility,  
reflecting  V::calendar  is  available

X

Parking  lot

1[V]

1[V]

*[P]

(8)  Up-­‐to-­‐date  V::plan,  w.r.t.  
V::availabilityList  and  V::planFeasibility,  

reflecting  V::calendar  is  available

P

[P]

[V]

[V]

[P]

[V]

Vehicle

V::availability

V::planFeasibility

(9)  V::energy  and  V::traffic  are  
monitored

(10)    V::planFeasibility  w.r.t.  the  monitored  
V::energy  and  V::traffic  is  determined

P

V::energy,  V::traffic

1[V]
[V]



that is not older than the period” rather than “V::pAvailable 
equals P::available” (which does not always hold).  

Thus, we formalize the invariants as follows. Time is represented 
by a non-negative real number, i.e., 𝕋 ≝ ℝ!!. Knowledge is a set 
𝒦 = {𝑘!,… , 𝑘!} of knowledge elements, where the domain of 𝑘! 
is denoted as 𝑉!. Knowledge valuation of an element 𝑘! is a 
function 𝕋 → 𝑉! which for a time 𝑡 yields a value of 𝑘! (denoted 
as 𝑘![𝑡]). An invariant is thus a predicate (in a higher-order 
predicate logic with arithmetic) over a knowledge valuations and 
time. 

Note that in general it is possible to use other forms of 
formalization; e.g., real-time LTL [2]. However, in this paper the 
choice of the formalization is driven by the aim of describing 
invariant refinement rather than model checking. Thus, we 
consider the proposed predicate formalization more practical (i.e., 
it is more suitable for formulating and proving relevant theorems).  

5.1 General Invariants 
General invariants at the top-level of abstraction capture the 
operational normalcy in terms of relating the past and current 
knowledge valuation to a future knowledge valuation.  

An example of this pattern is the invariant (1) from Figure 3: “All 
Vehicles meet their calendar”, which can be formalized as follows 
(assuming only a single POI in the calendar, which does not 
change in time for brevity):  

∃𝑡 ∈ 𝕋, 𝑡 ≤ 𝑉∷calendar.deadline[0]:    
𝑉∷position[𝑡] = 𝑉∷calendar.destination[0] 

Note that the invariant does not refer to current time; instead, it 
refers to a particular time instant in the future.  

5.2 Present-past Invariants 
Less-general are present-past invariants capturing the operational 
normalcy in terms of the current and/or past knowledge 
valuations. This reflects the fact (abstracted away at the level of 
general invariants) that software systems cannot cope with future 
data, but have to depend on current and/or past data instead. 
Further, to determine how much of past data is needed, we define 
the lag of a present-past invariant as the maximal distance in the 

past that is needed to formulate the operational normalcy of the 
invariant. Similar to real-time software control systems, we 
assume that the smaller the lag, the bigger precision and 
robustness; lag equal to 0 denotes an idealized case where the 
beliefs of all components are always up-to-date and their actions 
are instant.  
An example of this pattern is the invariant (2) from Figure 3: “Up-
to-date V::plan, w.r.t. information from P, reflecting V::calendar is 
available”, which can be for parking lots 𝑃!…𝑃! and a lag 𝐿 
formalized as follows: 

“At any time, for the current valuation of V::plan there is 
a valuation of knowledge of 𝑃!…𝑃! and V::calendar not older 
than the lag L such that they together meet the condition 
expressed by the UpToDatePlan predicate.” 
In the predicate logic, it can be captured as follows: 

∀𝑡!"# ∈ 𝕋,∃𝑡!,… , 𝑡! , 𝑡!"# ∈ 𝕋, 0 ≤ 𝑡!"# − 𝑡! ≤ 𝐿    𝑖 ∈ 1. .𝑛, 𝑐𝑎𝑙 : 

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛 𝑃! 𝑡! ,… ,𝑃! 𝑡! ,𝑉∷calendar 𝑡!"# ,𝑉∷plan 𝑡  

Here, 𝐿 equal to 0 reflects the case where the V::plan is at each 
time instant up-to-date with respect to the current knowledge of 
the parking lots. The bigger L the more outdated parking-lot 
knowledge valuation is considered.  

For all present-past invariants of this syntactic structure, we can 
use the following shortcut expressing the above-described 
formalization of (2) from Figure 3 (note, that the “p-p” subscript 
indicates that this shortcut pertains to the present-past invariant 
pattern): 

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!!!! 𝑃!,… ,𝑃! ,𝑉∷calendar 𝑉∷plan    

Such a shortcut can be also exploited during invariant refinement 
for introducing new present-past invariants; it would serve as 
a “macro” that transforms a time-oblivious predicate (e.g., 
𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛) into a formalized present-past invariant of the 
above-described structure.  

5.3 Activity Invariants 
Based on the dual concept of computation activities, an activity 
invariant captures the operational normalcy in terms of the current 
valuation of the output knowledge of the associated computation 
activity and the current/past valuation of the input knowledge. 
This follows the idea that a computation activity in EBCS 
maintains the operational normalcy periodically by reading the 
input knowledge, performing the computation and writing the 
output knowledge.  

Being relatively low-level, an activity invariant reflects detailed 
properties of a computation activity that corresponds to software 
computation. First, it captures the requirement that the output 
knowledge changes only as a result of the computation activity. 
Here, we assume that no activities have the same output 
knowledge. Moreover, an activity invariant captures read 
consistency of the input knowledge, i.e., that each output 

  
Figure 6: Patterns of invariants in the case study. 

  
Figure 7: Example of knowledge evolution in time when 

employing (periodic) knowledge exchange. 

(2)

(6)(5)

invariant invariant  refinement

(1)

(7)

X

(8)

P

(3)

P

(4)

A

Ge
ne
ra
l

In
va
ria
nt
s

Pr
es
en
t-­‐p

as
t

In
va
ria
nt
s  /

As
su
m
pt
io
ns

Ac
tiv
ity

In
va
ria
nt
s

Pr
oc
es
s/
En
se
m
bl
e

In
va
ria
nt
s

(9)

(10)

P

time

P::available

V::pAvailable

0

1

knowledge
valuation

0
1

Knowledge  exchange
V::pAvailable  :=  P::available  

≤  period ≤  period

knowledge  valuation
at  the  given  time  instant



knowledge valuation is based on the same or newer input 
knowledge valuation than the previous one. In an ideal case, the 
computation is instant, relating thus the current valuation of both 
the input and output knowledge. Similarly to present-past 
invariants, the maximal distance in the past needed to formulate 
the operational normalcy is expressed by the lag of the invariant. 
An example of this pattern is the invariant (5) from Figure 5: “Up-
to-date V::plan, w.r.t. P::availability and V::planFeasibility, reflecting 
V::calendar is available”, which can be for parking lots 𝑃!…𝑃! 
and lag 𝐿 formalized as follows: 
“There is an execution of the planning activity maintaining the 
condition UpToDatePlan such that at any time the valuation of 
V::plan corresponds to the outcome of the activity applied on the 
valuation of the input knowledge P::availability, V::planFeasibility, 
and V::calendar not older than lag L. Moreover, each valuation of 
V::plan is based on newer valuation of the input knowledge than 
the previous one.” 
In the predicate logic, it can be captured as follows: 

∃𝑎!,… , 𝑎! , 𝑎!" , 𝑎!"#:  𝕋 → 𝕋,  
0 < 𝑥 − 𝑎! 𝑥 ≤ 𝐿  ∀𝑖 ∈ 1. .𝑛, 𝑝𝐹, 𝑐𝑎𝑙 , 

𝑎! 𝑥 ≤ 𝑎! 𝑦   ∀𝑥, 𝑦:  𝑥 ≤ 𝑦  ∀𝑖 ∈ 1. .𝑛, 𝑝𝐹, 𝑐𝑎𝑙 , 
∀𝑡 ∈ 𝕋: 

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑃!∷availability 𝑎! 𝑡 ,
⋮

𝑃!∷availability 𝑎! 𝑡 ,
𝑉∷planFeasibility 𝑎!" 𝑡 ,

𝑉∷calendar 𝑎!"# 𝑡
𝑉∷plan 𝑡

 

Here, the usage of a non-decreasing function 𝑎!:  𝕋 → 𝕋 rather 
than a particular 𝑡! ∈ 𝕋 captures the read consistency and the fact 
that V::plan may change only as the result of an execution of 
a planning activity. 

Again, 𝐿 equal to 0 reflects the case where the valuation of V::plan 
is at each time instant up-to-date with respect to the current 
valuation of P::availability of the parking lots and V::planFeasibility 
of the vehicle. In other words, the associated computation activity 
computes infinitely fast and infinitely often. The bigger L the 
more outdated valuation of P::availability and V::planFeasibility is 
considered; i.e., the slower/less often is the computation activity 
expected to execute.  

Similar to present-past invariants, the shortcut for the above-
described formalization of (5) from Figure 5 is: 

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!"#!

𝑃!∷availability,
⋮

𝑃!∷availability,
𝑉∷planFeasibility,  

𝑉∷calendar

𝑉∷plan    

5.4 Process invariants 
Refining an activity invariant at the lowest level of abstraction, an 
invariant may take the form of a process invariant – referring to a 
single component, capturing the operational normalcy to be 
maintained by a (periodic) process of the component 
(Section 4.4).  

Such an invariant captures detailed properties of the periodic 
scheduling of the process. The difference to activity invariants lies 
in the fact that not only the output knowledge valuation may 
change as a result of performing the computation activity alone 
and must be based on current-enough input knowledge valuation, 
but also that the computation activity is performed exactly once in 
each period. In this context, the period is an elaboration of the 
activity-predicate lag. Specifically, since we assume a component 

process to be periodic and (soft) real-time, the output knowledge 
valuation is determined by the release time and finish time of the 
process in each period [7]. 

An example of this pattern is the invariant (8) from Figure 5: “Up-
to-date V::plan, w.r.t. V::availabilityList and V::planFeasibility, 
reflecting V::calendar is available”, which can be for period 𝐿 
formalized as follows: 

“If the current time is before the finish time of the process in the 
current period, then the V::plan valuation is the same as in the 
previous period; i.e., it corresponds to the outcome of the process 
w.r.t. the inputs V::availabilityList, V::planFeasibility, and 
V::calendar at the release time of the process in the previous 
period. Otherwise, V::plan corresponds to the outcome of the 
process w.r.t. the inputs at the release time in this period.” 
In the predicate logic, it can be captured as follows: 

∃𝑅,𝐹:  ℕ → 𝕋,𝑃 𝑥 − 1 ≤ 𝑅 𝑥 < 𝐹 𝑥 < 𝑃 𝑥 ,  
∀𝑝 ∈ ℕ,∀𝑡 ∈ 𝑃 𝑝 − 1 ,𝑃 𝑝 : 

𝑡 < 𝐹 𝑝 ⇒ 𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑉∷availabilityList 𝑅 𝑝 − 1 ,
𝑉∷planFeasibility 𝑅 𝑝 − 1 ,

𝑉∷calendar 𝑅 𝑝 − 1 ,
𝑉∷plan 𝑡

 

𝑡 ≥ 𝐹 𝑝 ⇒ 𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛

𝑉∷availabilityList 𝑅 𝑝 ,
𝑉∷planFeasibility 𝑅 𝑝 ,

𝑉∷calendar 𝑅 𝑝 ,
𝑉∷plan 𝑡

 

where 𝑃(𝑛):  ℕ! → 𝕋 = 𝑛 ∗ 𝐿; i.e., the end of the n-th 
period.  𝑅(𝑛) and 𝐹(𝑛) denote the release and finish time of the 
real-time process in the n-th period. 

Here, L approaching 0 reflects the case, where the V::plan is at 
each time instant infinitely close to the up-to-date plan with 
respect to the current V::availabilityList, V::planFeasibility, and 
V::calendar of the vehicle. 

Again, the shortcut for the above-described formalization of (8) 
from Figure 5 is: 

𝑈𝑝𝑇𝑜𝐷𝑎𝑡𝑒𝑃𝑙𝑎𝑛!"#$!
𝑉∷availabilityList,
𝑉∷planFeasibility,  

𝑉∷calendar
𝑉∷plan    

5.5 Ensemble invariants 
An activity invariant may at the lowest level of abstraction be 
refined also into an ensemble invariant – capturing the operational 
normalcy to be maintained by (periodic) knowledge exchange of 
an ensemble among the referred components (Section 4.4).  

Such an invariant captures detailed properties of the periodic 
scheduling of knowledge exchange. Compared to process 
invariants, an exchange invariant further accounts for the delay 
connected with potential transfer of the knowledge over the 
network (as required in distributed systems). The invariant thus 
describes a composite computation activity consisting of the 
knowledge transfer (with an upper time bound on its duration) 
followed by periodic evaluation of the membership condition and 
the knowledge exchange. Further, it is assumed that such 
composite activities may be partially overlapping (mostly in 
situations when the knowledge transfer takes longer than the 
period of the knowledge exchange). 

An example of this pattern is the invariant (7) from Figure 5: 
“V::availabilityList – V’s belief over P::availability of trip-relevant 
parking lots – is up-to-date”, which can be for parking lots 𝑃!…𝑃!, 
period 𝐿, and upper bound for knowledge transfer 𝑇 formalized as 
follows: 



“If the current time is before the finish time of the knowledge 
exchange for V in the current period, then the V::availabilityList 
valuation is the same as in the previous period. Otherwise, 
V::availabilityList equals the set of P::availability for all relevant 𝑃! 
as available at V at the release time in this period. It takes at most 
T for the knowledge of 𝑃! to become available at V. Further 
always the newest knowledge of 𝑃! is taken into account.” 
In the predicate logic, it can be captured as follows: 

  
∃𝑎!,… , 𝑎! , :  𝕋 → 𝕋,  

0 < 𝑥 − 𝑎! 𝑥 ≤ 𝑇  ∀𝑖 ∈ 1. .𝑛 , 
𝑎! 𝑥 ≤ 𝑎! 𝑦   ∀𝑥, 𝑦:  𝑥 ≤ 𝑦  ∀𝑖 ∈ 1. .𝑛 , 

∃𝑅,𝐹:  ℕ → 𝕋,𝑃 𝑥 − 1 ≤ 𝑅 𝑥 < 𝐹 𝑥 < 𝑃 𝑥 ,  
∀𝑝 ∈ ℕ,∀𝑡 ∈ 𝑃 𝑝 − 1 ,𝑃 𝑝 : 

𝑡 < 𝐹! 𝑝 ⇒ 𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1 ) ,
⋮

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1 ) ,
  𝑉∷availabilityList 𝑡

 

𝑡 ≥ 𝐹! 𝑝 ⇒ 𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1 ) ,
⋮

𝑃!∷availability 𝑎!(𝑅 𝑝 − 1 ) ,
  𝑉∷availabilityList 𝑡

 

where 𝑃(𝑛):  ℕ! → 𝕋 = 𝑛 ∗ 𝐿; i.e., the end of the n-th 
period.  𝑅(𝑛) and 𝐹(𝑛) denote the release and finish time of the 
real-time knowledge exchange in the n-th period. Finally, 𝑎!(𝑡) 
denotes the time at which the value of knowledge from 𝑃! that is 
available at V at time 𝑡 has been sent to V. 

Here, L approaching 0 reflects the case, where the 
V::availabilityList is at each time instant infinitely close to the set of 
the current P::availability of all the relevant parking lots. 

The shortcut for the above-described formalization of (7) from 
Figure 5 is: 

𝐸𝑞𝑢𝑎𝑙𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡!"#
!,!

𝑃!∷availability,
⋮

𝑃!∷availability
𝑉∷availabilityList    

  

5.6 Refinement among Invariant Patterns 
Having described the invariant patterns, we will now briefly 
elaborate on the refinement between invariants following the 
patterns on the same/adjacent levels of abstraction in order to 
provide guidelines for decomposition. In particular, we list the 
expected variants of decomposition and discuss when each of the 
variants is a refinement. This can serve as guidelines during 
decomposition at the corresponding levels of abstraction in order 
to guarantee refinement. Note that the claims below are articulated 
in an informal way, while formal proofs can be found in [6]. 

General→Present-past. At the top level of abstraction, during 
refinement of a general invariant into a conjunction of present-
past invariants, it is necessary to introduce assumption invariants 
(e.g., (4) in Figure 3). Technically, these assumptions are 
necessary to guarantee that maintaining the operational normalcy 
based on the current and/or past knowledge valuation will 
eventually result in reaching the operational normalcy based on a 
future knowledge valuation. The correctness of this step has to be 
proved for each case separately (e.g., via a theorem prover), which 
makes it the most demanding from the formal point of view.  

Present-past→Present-past. In a refinement of one present-past 
invariant by means of other present-past invariants, it holds that 
the combined lag of the sub-invariants is lesser or equal to the 

parent’s lag. The combination is determined by the knowledge 
dependencies among the sub-invariants. 

Present-past→Activity. It holds that the activity invariant pattern 
is a strict refinement of the present-past invariant pattern; i.e.,  
𝑃!"#! 𝐼 𝑂  ⇒ 𝑃!!!! 𝐼 𝑂  for each 𝑃, 𝐼, and 𝑂. 

Activity→Activity. The refinement of one activity invariant by 
means of other activity invariants is similar to the case present-
past→present-past. For our predicate formalization, it is possible 
to determine this form of refinement solely based on the time-
oblivious skeletons of the invariants and the structure of the 
decomposition (i.e., without interpreting the full invariants via a 
theorem prover).  

Activity→Process. It holds that the process invariant pattern is a 
refinement of the activity invariant pattern with lag equal twice 
the period of the process invariant pattern; i.e.,  
𝑃!"#$! 𝐼 𝑂  ⇒ 𝑃!"#!! 𝐼 𝑂  for each 𝑃, 𝐼, and 𝑂. This complies with 
the well-known fact in the area of real-time scheduling: in order to 
achieve a particular end-to-end response time with a real-time 
periodic process with relative deadline equal to period, the period 
needs to be at most half of the response time [7]. 

Activity→Exchange. Similarly, it holds that the exchange 
invariant pattern is a refinement of the activity invariant pattern 
with lag equal twice the period of the exchange invariant pattern 
plus the time for distributed transfer of the knowledge; i.e.,  
𝑃!"#
!,! 𝐼 𝑂  ⇒ 𝑃!"#!!!! 𝐼 𝑂  for each 𝑃, 𝐼, and 𝑂. 

6. EVALUATION AND DISCUSSION 
6.1 Case Study 
To evaluate IRM, we have employed it during design of the case 
study. As a final step, we have successfully validated the resulting 
EBCS/DEECo architecture by implementing it in the jDEECo 
component framework1. Since the detailed models created within 
the study are proprietary, we present only a summary and lessons 
learned. For a concise version of the case study, which includes 
detailed design, we refer the reader to [23]. 

While having a single top-level goal, the design included 2 
components and 20 invariants in total. In particular, 4 of them 
were exchange invariants, 8 process invariants, 2 present-past 
invariants, and the other 5 (excluding the top-level goal)  activity 
invariants.  

Eventually, the design led to an EBCS/DEECo architecture 
consisting of 4 ensembles among the 2 components, where one 
component constituted 3 processes maintaining 6 process 
invariants, while the other component constituted 1 process 
maintaining 2 process invariants. 

As a significant benefit, not only we were able to gradually design 
a desired architecture (which could be in fact potentially obtained 
using conventional design methods), but the invariant 
decomposition tree also constituted a “proof of correctness” of the 
design with respect to the top-level goal. 

Although IRM is in general a top-down process, the important 
lesson learned from the case study was that refinement is 
inherently too complex to be done correctly just this way. Thus, 
several iterations, series of top-down and bottom-up steps, had to 
be performed to get a satisfactory design.  

                                                                    
1 The current implementation of jDEECo is available at 

https://github.com/d3scomp/JDEECo  



6.2 Correctness by Construction 
So far, we have used the predicate formalization only to illustrate 
the individual invariant patterns. However, if applied consistently 
throughout the whole design, it would be possible to formally 
verify each of the refinement steps in support of achieving 
correctness by construction. 

An obvious obstacle of verification of such a complete predicate 
formalization is that the predicate logic we use is fairly complex 
(continuous time, quantifiers over function symbols, etc.). Thus, 
verification via a theorem prover is not a viable option due to lack 
of efficiency. 

Nevertheless, as already indicated in Section 5.6, correctness of 
particular kinds of refinement can be decided without interpreting 
full invariants via a theorem prover. To date, we have formulated 
and proved a theorem deciding correctness of activity→activity 
predicate refinement. In particular, we have been focusing on so 
called “flow decomposition” [6] where the sub-invariants 
constitute a simple pipe-and-filter architecture (i.e., the kind of 
decomposition used in the examples of Sections 4 and 5).  

6.3 Runtime Verification 
Unfortunately, not all forms of refinement can be verified via 
application of theorems (e.g., general→present-past refinement). 
The correctness of such refinement can, however, be addressed by 
runtime verification. Although this does not provide design-time 
assurances, it at least helps in detection and localization of design 
errors. 

An important feature of IRM with respect to runtime verification 
is that IRM refinement hierarchy actually over-specifies the 
system-to-be. This is because there is an implies relationship 
between the sub-invariants and the parent invariant in a 
refinement (recursively up to the top-level invariant). However, at 
runtime it is possible to evaluate not only the lower-level 
invariants but also the parent. This allows distinguishing different 
types of errors from unexpected behavior. In particular, given an 
invariant 𝐼 and its refinement into 𝐼!,… , 𝐼! (which means that by 
definition 𝐼!,… 𝐼! ⇒ 𝐼), we can distinguish 4 different cases: 

(1) All 𝐼!,… , 𝐼! hold and 𝐼 holds: Correct operation of the 
system. 

(2) All 𝐼!,… , 𝐼! hold and 𝐼 does not hold: Error in design – 
mostly because of neglecting a hidden assumption in 
refinement of 𝐼. 

(3) At least one 𝐼!,… , 𝐼! does not hold and 𝐼 holds: Potential 
for improvement of the design – refinement of 𝐼 is likely 
to have more strict assumptions than necessary.  

(4) At least one 𝐼!,… , 𝐼! does not hold and 𝐼 does not hold: 
Incompatible environment – this particular refinement of 𝐼 
cannot be used in the current environment. 

Obviously a modification of the design may be needed when any 
of cases (2) – (4) has been detected. However, the goals of the 
redesign are different. While in (2) it is for correcting an obvious 
error, in (3) it is to generalize the design and in (4) it is to either 
extend the design or provide another design alternative suitable 
for a given environment.  

6.4 Novelty and Benefits 
The strength of IRM lies in the fact that it directs reasoning along 
the lines of what needs to hold at every time instant (expressed via 
invariants) as opposed to what needs to be performed (actions) or 
what should hold in the future (goals). Thus, it allows expressing 
the relation of a component to its environment and itself, which is 
particularly valuable for the design of autonomous adaptive RDS 

that continuously interact with their environment to achieve the 
desired goals.  

Technically, IRM is novel in employing ensembles as a 
systematic foundation for capturing knowledge interdependence 
(logical and temporal) of otherwise autonomous components. This 
allows keeping an appropriate level of abstraction and separation 
of concerns when designing a component for an adaptive and 
autonomous operation. In particular, IRM benefits from recursive 
step-by-step top-down decomposition with precise refinement 
semantics. The refinement semantics is special in the sense that it 
reflects operational and communication delays (inherent to actual 
RDS implementations) by exploiting the concepts of belief and 
knowledge exchange. 

7. RELATED WORK 
The iterative refinement of invariants found in IRM is reminiscent 
of goal-oriented requirements analysis from the field of 
requirements engineering [22]. In particular, the Keep All Object 
Satisfied (KAOS) method [20] is a well-established method for 
capturing and analyzing system requirements in form of goals, 
assumptions, and domain properties. The idea is to decompose the 
abstract high-level goals into more concrete sub-goals up to the 
level where goals represent requirements that can be handled by 
individual system agents. Since goals can be formulated in first-
order linear temporal logic [2], the goal model can be formally 
checked for consistency and completeness [20]. Pre-defined, 
verified patterns can also be used to guide the goal decomposition 
process [11]. A similar approach is employed within Tropos 
method [8], where goals, soft-goals, tasks and dependencies are 
modeled and analyzed from the perspective of the autonomous 
agents. However, these models either do not map effectively to 
the later development phases (KAOS), or do not support mapping 
to emergent architectures (Tropos), which are typical in 
EBCS [13]. 
Recent work in requirements modeling specifically targeting the 
domain of EBCS has been carried out within the scope of the 
ASCENS project and has been integrated into the Statement of the 
Affairs (SOTA) [1] and POEM [15] models.  The key idea of 
SOTA is to abstract the behavior of a system with a single 
trajectory through a state space, which represents the set of all 
possible states of the system at a single point of time. The 
requirements of a system in SOTA are captured in terms of goals. 
A goal is an area of the SOTA space that a system should 
eventually reach, and it can be characterized by its pre-condition, 
post-condition, and utilities. Thus SOTA provides the means to 
capture the early requirements of different component cooperation 
schemes. IRM, on the other hand, stands as an intermediate 
method, which guides the transition from early (high-level) 
requirements to system architecture in terms of components and 
ensembles. 

8. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a novel Invariant Refinement 
Method (IRM), targeting architectural design of Resilient 
Distributed Systems (RDS) by building on the concepts of 
Ensemble-Based Component Systems (EBCS). IRM is 
a systematic design method which starts with the overall system 
goal and ends up by establishing a system architecture composed 
of components and ensembles. Building on goal-based 
requirements elaboration, IRM integrates additional aspects such 
as architecture refinement and (soft) real-time scheduling. 

IRM raises a number of interesting questions for further research. 
In particular, they include: (i) providing a formal framework (i.e., 



definitions and theorems) for deciding correctness of refinement 
within a suitable predicate formalization of invariants, (ii) 
focusing on RDS with respect to changes in the environment on 
efficient representation of the environment during the design; (iii) 
thoroughly exploring the application of IRM for runtime 
verification. Also, as a future work, we aim at obtaining 
automated tools for IRM that would help guide design decisions 
during refinement and check correctness of the resulting design. 
These include technical tools for checking (syntactic) consistency 
of the design, as well as tools exploiting a formal framework 
and/or employing formal reasoning for checking (semantic) 
correctness. 

9. ACKNOWLEDGMENTS 
This work was partially supported by the EU project ASCENS 
257414 and the Grant Agency of the Czech Republic project 
P103/11/1489. The work was also partially supported by Charles 
University institutional funding SVV-2013-267312.  

10. REFERENCES 
[1] D.B. Abeywickrama, N. Bicocchi, and F. Zambonelli. 

SOTA: Towards a General Model for Self-Adaptive 
Systems. In Proc. of WETICE ’12, 2012. 

[2] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-
time properties. In Proc. of FSTTCS ‘06, 2006. 

[3] F. Bellifemine, G. Caire, and D. Greenwood. Developing 
Multi-Agent Systems with JADE. John Wiley, 2007. 

[4] T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, J. 
Kofron, M. Loreti, and F. Plasil. Language Extensions for 
Implementation-Level Conformance Checking. ASCENS 
Deliverable 1.5. Available at: http://www.ascens-
ist.eu/deliverables, 2012. 

[5] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, 
M. Kit, and F. Plasil. DEECo – an Ensemble-Based 
Component System. In Proc. of CBSE 2013, ACM, 2013. 

[6] T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil. 
Formalization of Invariant Patterns for the Invariant 
Refinement Method. Technical Report no. D3S-TR-2013-04. 
D3S, Charles University in Prague. Available at: 
http://d3s.mff.cuni.cz/publications, 2013.  

[7] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-
Time Systems: Predictability vs. Efficiency, ser. Series in 
Computer Science, R. G. Melhem, Ed. Springer US, 2005. 

[8] J. Castro, M. Kolp, L. Liu, and A. Perini. Dealing with 
Complexity Using Conceptual Models Based on Tropos. In 
Conceptual Modeling: Foundations and Applications. Ser. 
LNCS, Springer Berlin, Heidelberg, vol. 5600,  2009. 

[9] I. Crnkovic. Building Reliable Component-Based Software 
Systems. Artech House, Inc., Norwood, MA, USA, 2002. 

[10] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based 
development process and component lifecycle. Software 
Engineering Advances, 44, 2006. 

[11] R. Darimont, and A. van Lamsweerde. Formal refinement 
patterns for goal-driven requirements elaboration. In Proc. of 
SIGSOFT ’96, 1996. 

[12] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A 
Language-based Approach to Autonomic Computing. In 
Proc. of FMCO ’11, 2012. 

[13] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position 
Paper: Towards a requirements-driven design of ensemble-
based component systems. In Proc. of International 
Workshop on Hot Topics in Cloud Services, ICPE ’13, 2013. 

[14] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of 
software-intensive systems: State of the art and research 
challenges. In Software-Intensive Systems and New 
Computing Paradigms. Ser. LNCS, Springer Berlin, 
Heidelberg, vol. 5380, 2008. 

[15] M. Holzl, et al. Engineering Ensembles: A White Paper of 
the ASCENS Project. ASCENS Deliverable JD1.1.  
Available at: http://www.ascens-ist.eu/whitepapers, 2011. 

[16] M. C. Huebscher and J. A. McCann. A survey of autonomic 
computing–degrees, models, and applications. ACM 
Computing Surveys, 40, 3, 2008. 

[17] IBM. An architectural blueprint for autonomic computing. 
IBM White Paper, 2003. 

[18] N. R. Jennings. On agent-based software engineering. 
Artificial intelligence. 117, 2000. 

[19] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards 
Dependable Emergent Ensembles of Components: The 
DEECo Component Model. In Proc. of WICSA/ECSA 2012, 
IEEE CS, 2012. 

[20] A. Lamsweerde. Requirements engineering: from craft to 
discipline. In Proc. of SIGSOFT ’08/FSE-16, 2008. 

[21] A. Rao, and M.P. Georgeff. BDI agents: From theory to 
practice. In Proc. of ICMAS ’95, 1995. 

[22]  N. U. Rehman, S. Bibi, S. Asghar, and S. Fong. Comparative 
Study of Goal-Oriented Requirements Engineering. In Proc. 
of NISS ’10, 2010. 

[23] N. Serbedzija, et al. Ensemble Model Syntheses with Robot, 
Cloud Computing and e-Mobility. ASCENS Deliverable 7.2. 
Available at: http://www.ascens-ist.eu/deliverables, 2012. 

[24] Y. Shoham, and K. Leyton-Brown. Multiagent Systems: 
Algorithmic, GameTheoretic, and Logical Foundations, 
Cambridge University Press, 2008. 

[25] J. A. Stankovic , T. He , T. Abdelzaher , M. Marley , G. Tao, 
S. Son , and C. Lu. Feedback control scheduling in 
distributed real-time systems. In Proc. of RTSS ‘01, 2002. 

[26] E. Vassev, and M. Hinchey. The Challenge of Developing 
Autonomic Systems. Computer, 43, 12, 2010. 

 


