Theta Architecture: Preserving the Quality of
Analytics in Data-Driven Systems

Vasileios Theodorou!, Ilias Gerostathopoulos?, Sasan Amini?, Riccardo
Scandariato®, Christian Prehofer?, and Miroslaw Staron®

! Intracom SA Telecom Solutions, Greece
theovas@intracom-telecom.com
2 Technische Universitiat Miinchen, Germany
{gerostat,sasan.amini}@in.tum.de
3 University of Gothenburg, Sweden
{riccardo.scandariato,Miroslaw.Staron}@cse.gu.se
4 Fortiss GmbH, Germany
prehofer@fortiss.org

Abstract. With the recent advances in Big Data storage and process-
ing, there is a real potential of data-driven software systems, i.e., systems
that employ analysis of large amounts of data to inform their runtime de-
cisions. However, for these decisions to be trustworthy and dependable,
one needs to deal with the well-known challenges on the data analysis
domain: data scarcity, low-quality of data available for analysis, low ve-
racity of data and subsequent analysis results, data privacy constraints
that hinder the analysis. A promising solution is to introduce flexibility
in the data analytics part of the system enabling optimization at runtime
of the algorithms and data streams based on the combination of veracity,
privacy and scarcity in order to preserve the target level of quality of the
data-driven decisions. In this paper, we investigate this solution by pro-
viding an adaptive reference architecture and illustrate its applicability
with an example from the traffic management domain.

Keywords: Big Data; reference architecture; data veracity

1 Introduction

Modern systems collect raw data from the users and their personal devices (like
health trackers), raw data from the environment and its smart objects (smart
thermostats, home automation devices), as well as higher-level data coming
from information providers like social platforms, open-data sites (e.g., Open-
StreetMap), and other silos of information. Beyond functionality, the success of
such systems is tied to the availability of the information that is processed as
well as its quality. Functionality is often centered around the analysis of data to
extract useful information (e.g. make user-specific recommendations, adapt to
user habits to make an application more ergonomic, etc.).

We believe that we are moving from traditional software systems, which are
functionality- and software-centric, towards systems that are data-centric and



where the functionality is driven by the availability of data and the decisions
drawn from them. This is true not only for systems that perform offline analysis
(e.g. business intelligence systems), but also, and even more so, for systems that
employ real-time analysis of data to inform their runtime decisions (personalized
advertising, traffic control).

In this paper, we focus on systems that make decisions at runtime based
on Big Data analytics. For these decisions to be trustworthy and dependable,
one needs to deal though with the well-known challenges on the data analysis
domain: data scarcity, low-quality of data available for analysis, low veracity of
data and subsequent analysis results, data privacy constraints that hinder the
analysis. Indeed, we argue that unless a data-centric system deals with the above
issues effectively at runtime, it will not matter whether it can process terabytes
or petabytes at very high rates (which, in itself, is a noteworthy achievement
of current Big Data systems)—as the resulting decision recommendation cannot
be trusted.

Promising solutions already exist in the data analysis domain, where several
data cleaning and data preparation methods have been proposed [7]. While these
are certainly relevant and important, this paper takes a different (yet comple-
mentary) approach and proposes to introduce flexibility to change data streams
in runtime. This will allow the system architects to depart from the current,
more rigid model where the data analytics schema is planned ahead of deploy-
ment (which data sources to use, which information to mine, which algorithms
to use) and kept fixed afterwards, at run time. The main drawbacks of such
systems are that (i) the quality of the decisions will decay over time in case the
quality of the analyzed data drops, and (ii) the system cannot opportunistically
adapt or even improve in light of new operating conditions (e.g., when a new,
richer, better data source becomes available).

In this work we introduce a novel reference architecture for adaptive data-
driven systems (called Theta architecture) that can change used data sources and
data analysis algorithms at runtime to preserve the target quality of its outcome.
To achieve our ambitious goal we have set up an agenda consisting of three items:
(i) identify the need for adaptive Big Data analytics in the context of data-driven
systems via concrete examples, (ii) propose a high level architecture for adaptive
Big Data analytics in data-driven systems, (iii) evaluate our architecture via
applying it in concrete systems identified in (i). In this paper, we present our
first steps towards fulfilling (i) and (ii) from above. In particular, we identify and
describe an example of a data-driven system where adaptive Big Data analytics
are of high value. The example comes from the vehicular traffic management
domain and is presented in Section 2. We present the Theta architecture in
Section 3 and illustrate its use on the running example. Finally, after presenting
an overview of the related work in Section 4, we provide the concluding remarks
in Section 5.



Operating loop
detectors

‘ Floating Car Data

Roadside data ,,,,L,
accumulation and S
transmission =
Malfunctioning
y
: b r loop detector
E Freeway Traffic ‘ - ‘
y « Control System

Variable Hard Shoulder
Message Sign

Fig. 1. Data sources in Real-time freeway control system.

2 Real-time Freeway Traffic Control System

In this section, we present an example of a data-driven system to showcase that
adapting the data analytics processes at runtime is beneficial. This is used for
both motivating and exemplifying our approach.

The main objective of traffic management on freeways is to increase the
freeway capacity, i.e. to maximize the vehicular flow per time unit:

flow(veh/h) = speed(km/h) * density(veh/km)

In order to increase the capacity of a freeway, existing control measures involve a
combination of dynamically changing the speed limit, opening or closing freeway
lanes and recommending alternative routes through in-car navigation devices and
Variable Message Signs (VMS).

To know when to make the decision of applying the control measures, a
freeway traffic control system (FTCS) can rely on data coming from differ-
ent sources (Figure 1). Data sources include inductive loop detectors installed
on the pavement, surveillance cameras, cars transmitting their position, speed,
etc. (referred to as floating car data in the Intelligent Transport System do-
main), Doppler radars, and ultrasonic and passive infrared sensing devices. In
addition, environmental detectors are commonly used for freeway traffic control
such as scatter measurements—measuring visibility range— and precipitation
detectors—measuring thickness of water film on the road. Data from these dif-
ferent sources are transmitted to a central traffic control center where they are
analyzed (this typically involves also visualizing the data).

We envision a fully automated real-time FTCS. In this case, a human oper-
ator simply configures the FTCS upon startup, e.g. by setting the thresholds on
calculated flow for opening and closing the hard shoulder. The FTCS performs
the calculation of traffic flow in predefined time windows (e.g. every 30s) and,
based on these calculations, makes autonomous decisions to apply (a combina-
tion of) the available control measures. Applying the opening of a hard shoulder,



for instance, results in changing the signs on the VMS gantries and disseminating
the information about the opening/closing of a lane or a different speed limit to
the in-vehicle navigation devices.

A challenge in order to achieve a fully automated FTCS is to be able to
deal with non-veracious (untrue) data that may creep in the analysis and ulti-
mately influence the control logic, which resides in the control center. Data can
have low veracity (i.e., little correspondence to reality) due to several reasons,
e.g., sensor inaccuracy, sensor faults, sensor tampering, communication errors,
to name a few. For example, dirt could block the view of a camera or water
spray from the passing vehicles may influence the visibility range at the location
of the scatter measurements. A loop detector may start malfunctioning due to
pavement cracking or moving, inadequate sealant application, electronics unit
failure, breakdown of wire insulation, electrical surges, etc.

Ideally, FTCS should be able to detect that it is using non-veracious data
and adapt its analytics logic by choosing different data sources or a different
analytics algorithm (e.g., one that makes weaker assumptions on the veracity of
incoming data).

3 Theta architecture

We have already pointed out the need for introducing flexibility in the data
analytics as part of our running example in Section 2. We believe this need ex-
tends to other systems that need to make correct and reliable real-time decisions
based on large numbers of collected data. In this section, we propose a high level
architecture to support this.

Our proposed architecture, termed Theta architecture, is depicted in Fig-
ure 2. It consists of three main sub-systems: Business subsystem, Analytics sub-
system and Adaptation subsystem. We describe each one in turn and exemplify
them by applying them to our running example (Figure 3).

Business subsystem. This part represents any software-intensive cyber-physical
system that needs to be controlled at runtime based on analysis of data collected
from its execution, optionally enriched with external data.

Interfaces. Business communicates with the other two subsystems through two
interfaces, the Data € metadata and the Adaptation interface. The first is used by
the Analytics to collect data in a pull (e.g., polling a RESTfull APT [26]) or a push
(e.g., publishing Kafka [15] messages) fashion. Together with the actual data
values (e.g., speed, precipitation, etc.), data points may also contain metadata
such as reported accuracy of sensors, ownership, etc.

The second interface is used by the Adaptation for requesting the Business
to adapt. It is the task of the system designer to define how adaptation requests
from Adaptation are translated into actual changes in Business. We note that
a change can affect the cyber part of the system (e.g., setting a parameter of
a route planner software to a new value) or the physical one (e.g., switching a
traffic light).



Analytics subsystem
Data-intense computations
Machine learning (classification, clustering)
Statistical hypotheses testing .
Data mining (e.g. data correlations) analytics

Adaptation

Adaptation subsystem

A

Business loop Analytics loop

Adaptation

Business subsystem

Fig. 2. Theta architecture.

Example. In our running example (Figure 3), Business is the traffic control sys-
tem deployed in the freeway, consisting of a number of different types of sensors,
e.g., inductive loop detectors, cars, cameras, radars, etc. Each sensor provides
different data according to its type. For instance, a loop detector provides data
on the number of vehicles that passed in a time interval, together with its av-
erage occupancy in the interval. A car provides its position and speed, while
a camera provides either live feed or how many cars have been detected at a
time interval. Business includes also two actuators, in-vehicle navigation sys-
tems and variable message signs, which are used to implement the “open/close
hard shoulder” directive from Adaptation.

Analytics subsystem. It is responsible for generating actionable information by
large-scale data analysis. It should be able to provide different types of data
analysis, from simple but data-intense computations to statistical hypothesis
testing and machine learning and data mining.

In terms of the analytics processes that are run in Analytics, we distinguish
between processes that support the data-driven functionality of the business
system (business analytics) and processes that support the reasoning of the
quality of input sources (metadata analytics). Metadata analytics not only use
and summarize the metadata on provided accuracies of sensed data (e.g., from
confidence interval values accompanying GPS measurements or weather data-
based quality estimations on camera feeds), but also generate inferred metadata
about the data sources based on the actual data values. Flexible formalisms can
be employed for maintaining metadata about quality measurements, such as the
Data Quality Vocabulary (DQV?®).

® https://www.w3.org/TR/vocab-dqv/



Traffic flow computation based on loop detector data
Traffic flow computation based on Floating Car Data
Calculation of data source veracity measures

Switching business
analytics flows

Continuously check Continuously check

traffic flow to keep itat data source veracity

optimal (maximal) level to preserve the
quality of analytics

Opening/closing
hard shoulder

Loop detectors In-vehicle navigation systems
Variable Message Signs

Fig. 3. Application of Theta architecture to the running example.

Technically, Analytics can be implemented as a Big Data processing system

following one of the existing lambda or kappa architectures or forks of them
and the corresponding Big Data stacks (e.g., HDFS and Hive/Pig, Kafka and
Spark/Flink).
Interfaces. Analytics exposes two interfaces for its interaction with the other
two subsystems, the Results € data source quality and the Adaptation interface.
The first interface is used by Adaptation in order to access the results of the
business analytics processes, as well as to retrieve quality information about the
available and utilized data sources. An interesting approach would be for the
Adaptation to receive provided and inferred metadata about the data sources in
an event-driven fashion, e.g., with notifications being triggered when veracity of
some source is estimated to fall behind a predefined threshold.

The Adaptation interface is used by Adaptation for imposing adaptations on
Analytics. The adaptations we currently consider take the form of switching the
running business analytics processes and/or their input data sources. We also
envision more fine-grained adaptations such as parameter configuration of the
analytics algorithms embodied in the running processes.

Example. In our running example, Analytics comprises (a minimum of) three
analytics processes. Two of them are business analytics; they compute the traffic
flow based on different data sources and computations algorithms. The compu-
tation may involve also near-future prediction of the traffic flow (e.g., based on
regression using historical data). A third one is metadata analytics; it provides
an estimation of the veracity of data sources such as loop detectors or cars. In
case of loop detectors, the veracity calculation process can involve performing



some well-known plausibility checks about loop detector data from the traffic
domain [13].

Adaptation subsystem. It is the subsystem responsible for decision making. This
is performed in two independent adaptation loops, the business and the analytics
loop. The first is responsible for planning and executing adaptations on Business
based on the business analytics results of Analytics. The second is responsible
for planning and executing adaptations on Analytics based on the metadata
analytics results of Analytics. To this end, data profiling [2] and metadata ex-
traction [27] play a crucial role. A notable adaptation in the latter loop is the
substitution of running business analytics processes with others that have either
the same input data or different ones (a sensible option when the veracity of
previously used input data gets high).

By making these two loops explicit in Theta architecture, we achieve separa-
tion between the concern of performing reliable and robust business analytics—
by adapting Analytics—and using them to inform business decisions—by adapt-
ing Business).

Interfaces. Adaptation communicates with the other two subsystems with three
interfaces (not depicted in Figures 2 and 3). Via the first one, it receives the
results of both the business and metadata analytics. The second and third ones
are used to propagate the adaptation directives to both Analytics and Business.

Example. In our running example, the two loops in Adaptation take the follow-
ing form. The business loop continuously checks the computed values of traffic
flow (current values or near-future predictions) and issues the adaptation re-
quests of opening or closing the hard shoulder in order to maximize the flow. In
this case, decision making is based on well-known, empirically-validated rules on
when to open/close a hard shoulder in a freeway based on the flow [11].

The analytics loop continuously checks the data source veracity measures cal-
culated in Analytics. If the measures for the active business analytics processes
indicate low veracity of input data, the analytics loop looks for alternative pro-
cesses that can calculate the same result with different inputs to substitute the
running processes. For example, the analytics loop switches the process that cal-
culates the traffic flow based on loop detector data to an equivalent one that
uses Floating Car Data, when a number of loop detectors start malfunctioning.

4 Overview of Related Work

Our approach builds upon existing works in Big Data analytics (relevant for the
Analytics subsystem), self-adaptive systems (relevant for the Adaptation sub-
system), and data veracity definition and management (relevant for the Meta-
data Analytics inside the Analytics subsystem and the Analytics loop inside the
Adaptation subsystem), which we overview below.



4.1 Big Data analytics

Analytics on Big Data refer to data analysis approaches able to scale to large
amounts of data (e.g. petabytes or exabytes) which are typically unstructured
or semi-structured [30], i.e. they do not follow a particular schema. Big Data are
considered to encompass the “5-V” properties: volume, velocity, variety, verac-
ity, and value [21]. Here, the value is of particular importance, since Big Data
analytics is ideally concerned with deriving insightful information, or even ac-
tionable results, from raw data by applying techniques from statistics, machine
learning, and data mining. Big Data analytics has been used in a diverse set of
applications, from analyzing user clicks on websites to analyzing the results of
high-energy physics experiments. It has also been used in the analysis of soft-
ware artifacts such as source code, execution traces, and runtime logs (software
analytics [23]).

On the tooling side, Hadoop [1] is an open-source ecosystem that has become
the de facto standard. A distinction is typically made between analyzing histor-
ical data in batch mode (full-data analytics) and analyzing data as they come
in stream mode (”tuple-at-at-time” analytics) [22]. Important tools in the first
category are Hadoops MapReduce, Hive, and Pig; Flink and Kafka Streams are
representative of the second category. Spark is a hybrid system that combines
batch and stream processing. Stream processing in Spark relies on analysis of
micro-batches, rather than on analyzing one tuple at a time. Spark comes also
with extensive support in machine learning algorithms (its MLIib library).

When architecting a Big Data analytics system, two main approaches exist,
namely lambda and kappa architecture. Lambda architecture [22] combines both
batch and stream analytics in two layers called batch and speed layer, respec-
tively. The results of the two layers are combined at a third layer, the serving
layer (a NoSQL database). Essentially, stream processing complements batch
processing by analyzing the data that comes in the system since the start of
batch processing (which typically has high latency). An alternative to lambda
is kappa architecture, where stream processing is used for both the batch and
stream processing. This builds on the idea that stream processing, when applied
for large windows that can fit in all the historical data, essentially corresponds
to batch processing. We note here that both lambda and kappa architectures
focus on solving performance issues (e.g. by balancing throughput and latency),
and not on quality issues of data and data analysis results—which is our focus.

4.2 Self-Adaptive Systems

Self-adaptation refers to the ability of a system to change its structure and/or
behavior at runtime in response to external stimuli and changes in internal state.
Self-adaptation is typically achieved in three fundamental ways: (i) by relying on
a detailed application model, e.g., Markov Decision Processes [12], and employing
simulations or other means of state-space traversal to infer the best response of
the system, (ii) by identifying control parameters and employing feedback-based
control techniques from control theory [8], and (iii) by reconfiguring architecture
models, typically with the help of Event-Condition-Action rules [10].



Self-adaptation techniques typically follow the MAPE-K loop [14], which di-
vides self-adaptation into four phases: Monitoring activities, Analyzing runtime
metrics, Planning strategies, and Fzecute planall based on a shared Knowledge
base. Self-adaptation strategies are expressed as actions involving particular ar-
chitecture reconfigurations; they are applicable under certain conditions in the
presence of certain events or situations [4]. Actions can be associated with the
satisfaction of one or more system goals, typically quantified via fitness or utility
functions [28].

Although adapting a system based on analysis of data collected from its
execution is a well-researched idea, there is a vacuum of approaches that use
Big Data analytics in self-adaptation. In our recent work, we have proposed
an approach to do so [29], since we believe that as the amount of data collected
from a running system and its environment increases, Big Data analytics become
relevant for self-adaptation.

In our approach, we employ two self-adaptation loops: one that controls the
data-driven system itself (by employing Big Data techniques in its Analysis
phase), and one that controls the analytics subsystem (by switching data sources
and analysis algorithms).

4.3 Data Veracity

Historically, the notion of veracity is derived from the area of sociology and its
major popularity lies in the area of criminology—the ability to detect whether a
witness is veracious or not [17, 20]. In that particular context, the term veracity
is used both in relation to actors (e.g. witnesses) and their statements [3]. The
latter refers to judging the truthfulness of a statement and is in scope for our
purposes as well.

In our context, we consider the definition of veracity as quoted by Krotofil
[16] who defines the veracity as the property that an assertion truthfully reects
the aspect it makes a statement about. We can see a direct relation to the field of
criminology and also see the challenges related to automated assessment of the
veracity in the context of software systems.

For instance, the veracity of the data can be violated by: i) non-adequate
measurement of a physical property by a sensor because of the inappropriate
design of the sensor ii) non-adequate measurement caused by a faulty sensor
during the operation iii) non-adequate measurement caused by an obstructed
sensor iv) faulty data caused by a malicious agents tempering with the sensor
data.

Lukainova and Rubin recognize data veracity as the sum of a number of
quality attributes such as correctness, accuracy, free from biases and free from
errors [19]. Based on this work and our previous work [31], we can see that
veracity can be modelled as a composition of elements. To be able to perform
such modelling, we need to first decide upon which elements are relevant (e.g.
correctness, free or errors) and how they relate to each other.

In our approach, we first need to model and assess the veracity of the data
that is being used in Big Data analytics In our running example, a rudimentary
way to do is to apply existing plausibility checks on the sensor readings (such



checks are e.g. well-known for inductive loop detector readings). We then pro-
pose to switch between different data sources and corresponding data analysis
algorithms (i.e. Big Data jobs) at runtime when the veracity of the used data
drops below a threshold. In other words, we intend to use simple threshold-based
adaptation rules to adapt the analytics subsystem in order to increase the quality
of its results.

4.4 Data Source Evaluation

Data source selection has received interest since the advent of the Internet.
Florescu et al. [9] use probabilistic knowledge on a mediation schema that quan-
titatively determines the probability of information being covered by specific
data source and provide corresponding data source ranking in cases of overlap-
ping data sources (i.e., sources containing same documents). Naumann et al. [25]
additionally put into play data source quality and propose a methodology that
weights different data sources with regards to their information quality, consider-
ing quantified quality criteria (e.g., relevance to specific query) and cost and thus
formulating linear programs. Mihaila et al. [24] introduce the use of metadata
to maintain in XML format content and data quality information about data
sources and by relaxing accuracy requirements, they propose a methodology for
efficient source selection and ranking.

More recently, Dong et al. [6] have dealt with the problem of selecting the
subset of data sources that maximize quality gain and minimize cost. In their
work, they showcase the peculiar behavior of information gain as a result of
utilizing multiple data sources of varying information coverage and accuracy.
This work poses a pragmatic view on data source selection and can provide a
stepping stone for conducting analysis on integrating data sources in presence
of errors and false values.

Examining the quality of web sources, Dong et al. [5] use an information
extraction system to employ aside from exogenous signals, inference about prob-
ability of correctness of facts which they define as accuracy of a web source.
They introduce a novel methodology for assessing source and extracted data
correctness, which can pave the way for veracity inference in case of multiple
available data sources. Finally, data source quality assessment approaches have
been proposed [32, 18] that can deal with high variety and variability of available
sources.

In our approach, we combine explicit metadata derived from the Business
subsystem with statistical methods, to determine the veracity of data sources and
to detect anomalies. This analysis provides feedback for decisions on data source
selection and switching, which aim at maximizing veracity while minimizing cost.

5 Discussion

In this section, we conclude by providing a discussion that reflects on our pro-
posed architecture:



. Essentially, if we disregard Analytics from Theta architecture, the result-

ing architecture degenerates into the classic MAPE-K loop, comprised of a
controlled subsystem (Business) and a controller (Adaptation).

Both the business and the analytics loops in Adaptation can be arbitrar-
ily complex. In our first attempts based on Apache Kafka and Python for
traffic management of a simulated freeway, we have successfully considered
only simple adaptation logics (e.g. based on a short number of rules); how-
ever, Theta architecture imposes no restrictions to the complexity of the
adaptation logics.

Cluster-based approaches at the Analytics subsystem are only necessary if
data size is large enough to render single-node approaches impractical.

We note here that although data veracity is the primary concern in our
running example, our architecture can be used for adapting between data
sources based on other concerns such as data privacy and confidentiality.

References

[1]
2]

Apache Hadoop (2017), http://hadoop.apache.org/

Abedjan, Z., Golab, L., Naumann, F.: Data profiling: A tutorial. In: Pro-
ceedings of the 2017 ACM International Conference on Management of
Data. pp. 1747-1751. SIGMOD ’17 (2017)

Carey, P.W., Mehler, J., Bever, T.G.: Judging the veracity of ambiguous
sentences. Journal of Verbal Learning and Verbal Behavior 9(2), 243-254
(apr 1970)

Cheng, S.W., Garlan, D., Schmerl, B.: Stitch: A language for architecture-
based self-adaptation. Journal of Systems and Software 85(12), 1-38 (2012)
Dong, X.L., Gabrilovich, E., Murphy, K., Dang, V., Horn, W., Lugaresi, C.,
Sun, S., Zhang, W.: Knowledge-based trust: Estimating the trustworthiness
of web sources. Proc. VLDB Endow. 8(9), 938-949 (May 2015)

Dong, X.L., Saha, B., Srivastava, D.: Less is more: selecting sources wisely
for integration. In: Proc. of the 39th Int. conference on Very Large Data
Bases. pp. 37-48. PVLDB’13, VLDB Endowment (2013)

Dustdar, S., Pichler, R., Savenkov, V., Truong, H.L.: Quality-aware service-
oriented data integration: Requirements, state of the art and open chal-
lenges. SIGMOD Rec. 41(1), 11-19 (Apr 2012)

Filieri, A., et al.: Software Engineering Meets Control Theory. In: Proc. of
SEAMS ’'15. pp. 71-82. IEEE (May 2015)

Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data
integration. In: VLDB’97, Proc. of 23rd Int. Conf on Very Large Data Bases,
August 25-29, 1997, Athens, Greece. pp. 216-225 (1997)

Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rain-
bow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer 37(10), 46-54 (2004)

Geistefeldt, J.: Operational Experience with Temporary Hard Shoulder
Running in Germany. Transportation Research Record: Journal of the
Transportation Research Board 2278(6) (2012)



[12]

[17]

[18]

[22]

[23]

[24]

Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing Non-
functional Uncertainty via Model-driven Adaptivity. In: Proc. of ICSE’13.
pp. 33—42. ICSE 13, IEEE (2013)

Gladbach, B.: Bundesanstalt fr Straenwesen: Merkblatt fr die Ausstattung
von Verkehrsrechnerzentralen und Unterzentralen (MARZ), Ausgabe 1999.
Tech. rep. (1999)

Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer
36(1), 41-50 (2003)

Kreps, J., Narkhede, N., Rao, J., others: Kafka: A distributed messaging
system for log processing. In: Proc. of the 6th Int. Workshop on Networking
Meets Databases (NetDB’11). pp. 1-7 (2011)

Krotofil, M., Larsen, J., Gollmann, D.: The Process Matters. In: Proc. of
the 10th ACM Symposium on Information Computer and Communications
Security. Association for Computing Machinery (ACM) (2015)

Levine, T.R., Park, H.S., McCornack, S.A.: Accuracy in detecting truths
and lies: Documenting the “veracity effect”. Communication Monographs
66(2), 125-144 (jun 1999)

Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving conflicts in
heterogeneous data by truth discovery and source reliability estimation. In:
Proc. of the 2014 ACM SIGMOD Int. Conf on Management of Data. pp.
1187-1198. ACM (2014)

Lukoianova, T., Rubin, V.L.: Veracity roadmap: Is big data objective, truth-
ful and credible? (2014)

Mann, S., Vrij, A.: Police officers’ judgements of veracity tenseness, cogni-
tive load and attempted behavioural control in real-life police interviews.
Psychology, Crime & Law 12(3), 307-319 (jun 2006)

Marr, B.: Big Data: The 5 Vs Everyone Must Know (Mar 2014),
https://www.linkedin.com/pulse/20140306073407-64875646-big-
data-the-5-vs-everyone-must-know

Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable
Realtime Data Systems. Manning Publications Co., Greenwich, CT, USA,
1st edn. (2015)

Menzies, T., Zimmermann, T.: Software Analytics: So What? IEEE Softw.
30(4), 31-37 (Jul 2013)

Mihaila, G.A., Raschid, L., Vidal, M.: Using quality of data metadata for
source selection and ranking. In: Proc. of the Third Int. Workshop on the
Web and Databases. pp. 93-98 (2000)

Naumann, F., Freytag, J.C., Spiliopoulou, M.: Quality driven source selec-
tion using data envelope analysis. In: Third Conf on Information Quality
(IQ 1998). pp. 137-152 (1998)

Pautasso, C., Zimmermann, O., Leymann, F.: Restful Web Services vs.
"Big”’ Web Services: Making the Right Architectural Decision. In: Proc.
of the 17th Int. Conf on World Wide Web. pp. 805-814. WWW ’08, ACM,
New York, NY, USA (2008)

Quix, C., Hai, R., Vatov, I.: Metadata extraction and management in data
lakes with GEMMS. CSIMQ 9, 67-83 (2016)



[28]

[29]

[30]

[31]

Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research
Challenges. ACM Transactions on Autonomous and Adaptive Systems 4(2,
May), 1-40 (2009)

Schmid, S., Gerostathopoulos, 1., Prehofer, C., Bures, T.: Self-Adaptation
Based on Big Data Analytics: A Model Problem and Tool. In: Proc. of 12th
Int. Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’17) (to appear) (2017)

Srinivasa, S., Bhatnagar, V. (eds.): Big Data Analytics - First Int. Conf,
LNCS, vol. 7678. Springer Berlin Heidelberg (2012)

Staron, M., Scandariato, R.: Data veracity in intelligent transportation sys-
tems: The slippery road warning scenario. In: Intelligent Vehicles Sympo-
sium (IV), 2016 IEEE. pp. 821-826. IEEE (2016)

Zhang, Y., Wang, H., Gao, H., Li, J.: Efficient accuracy evaluation for multi-
modal sensed data. J. Comb. Optim. 32(4), 1068-1088 (Nov 2016)



