
Stream Analytics in IoT Mashup Tools
Tanmaya Mahapatra∗, Christian Prehofer, Ilias Gerostathopoulos and Ioannis Varsamidakis

Lehrstuhl für Software und Systems Engineering, Fakultät für Informatik
Technische Universität München

Email: ∗mahapatr@in.tum.de, prehofer@in.tum.de, gerostat@in.tum.de, ioannis.varsamidakis@tum.de

Abstract—Consumption of data streams generated from IoT
devices during IoT application development is gaining promi-
nence as the data insights are paramount for building high-
impact applications. IoT mashup tools, i.e. tools that aim to
reduce the development effort in the context of IoT via graphical
flow-based programming, suffer from various architectural lim-
itations which prevent the usage of data analytics as part of the
application logic. Moreover, the approach of flow-based program-
ming is not conducive for stream processing. We introduce our
new mashup tool aFlux based on actor system with concurrent
and asynchronous execution semantics to overcome the prevalent
architectural limitations and support in-built user-configurable
stream processing capabilities. Furthermore, parametrizing the
control points of stream processing in the tool enables non-
experts to use various stream processing styles and deal with
the subtle nuances of stream processing effortlessly. We validate
the effectiveness of parametrization in a real-time traffic use case.

Index Terms—Internet of Things, IoT mashup tools, graphical
flows, end-users, stream analytics

I. Introduction

With the proliferation of ubiquitous connected physical
objects commonly known as the Internet of Things (IoT) there
has been a steady increase in the amount of data generated.
Data analysis can help us e.g. understand the mobility pattern
of users in a city or monitor the city continuously for potential
traffic congestion. Despite this great potential, deriving insights
from data has been typically a separate process of using
Big Data analytics tools while the application development
is concerned mainly with the creation of user application for
relevant business use cases [1].

For IoT applications, mashups have been proposed as a way
to simplify the application development. Mashup tools [2], [3]
are graphical tools designed for quick software development.
They typically offer graphical interfaces for specifying the data
flow between sensors, actuators, and services. They offer a
data flow-based programming paradigm where programs form
a directed graph with “black-box” nodes which exchange data
along connected arcs.

The overall problem we address here is the lack of integrated
tools for both IoT development and stream analytics [1], [4].
For instance, Node-RED [5], [6] is a visual programming
environment developed by IBM which supports the creation
of mashups. It is however not designed for developing stream
analytics applications, and, for instance, the IBM cloud solu-

tion (https://www.ibm.com/cloud/) features separate graphical
tools for modelling data processing and analysis.

The main contribution of this paper is to propose a novel
tool concept to integrate IoT mashups and scalable stream
processing, based on the actor model. We show that several
new concepts to control synchronous versus asynchronous
communication and parallelism are important for this. Further-
more, we show that several parameters, such as the window
type and size, impact the effectiveness of stream analytics.
Importantly, such parameters impact not only the performance
of stream processing (e.g. whether data of certain size can be
processed within a specific time bound), but also determine
the functional behaviour of the system (e.g. whether the logic
that is based on stream analytics is effective or not).

To evaluate our proposal, we have implemented a new
Java-based tool called aFlux. aFlux supports concurrent and
asynchronous execution of components in mashup flows, over-
coming many limitations of current mashup tools such as
Node-RED. It also has built-in support for stream analytics
and allows users to tune the important parameters of stream
processing in the tool front-end. This simplifies the task of
devising and comparing different configurations of stream
processing for the application at hand. We have evaluated
the practicality of the built-in parametric stream processing
in aFlux via realistic use cases in real-time traffic control of
highways.

II. aFlux Concepts and Design

In this section, we present the main concepts of our new tool
approach. Despite promised benefits in having data analytics in
graphical mashup tool, there are several limitations of current
approaches [1], [4]. First, existing tools allow users to design
data flows which have synchronous execution semantics. This
can be a major obstacle since a data analytics job defined
within a mashup flow may consume great amount of time
causing other components to starve or get executed after a
long waiting time. Hence, asynchronous execution patterns are
important in order for a mashup logic to invoke an analytics
job (encapsulated in a mashup component) and continue to
execute the next components in the flow. In this case, the
result of the analytics job, potentially computed on a third
party system, should be communicated back to the mashup
logic asynchronously. Second, mashup tools restrict users in
creating single-threaded applications which are generally not
sufficient to model complex repetitive jobs. Third, mashup978-1-5386-4235-1/18/$31.00 ©2018 European Union

tools use visual notations for the program logic which is not
very expressive to model logic of complex analytics jobs.

To summarize, we designed our mashup tool, called aFlux,
to support the following requirements:

1) asynchronous execution of components in flows;
2) concurrent, multi-threaded execution of components in

flows;
3) support for modelling complex flows via flow hierarchies

(sub-flows).

In designing aFlux, we decided to go with the actor
model [7], [8], a paradigm well suited for building massively
parallel [9], [10], distributed and concurrent systems [11],
[12]. In the actor model, an actor is an agent, analogous to a
process or thread, which does the actual work. Actors respond
to messages, which is the only way of interaction between
actors. In response to a message, an actor may change its
internal state, perform some computation, fork new actors or
send messages to other actors. This makes it a unit of static
encapsulation as well as concurrency [13]. Message passing
between actors happens asynchronously. Every actor has a
mailbox where the received messages are queued. An actor
processes a single message from the mailbox at any given time
i.e. synchronously. During the processing of a message, other
messages may queue up in the mailbox. A collection of actors,
together with their mailboxes and configuration parameters, is
often termed an actor system.

aFlux is a web-based tool. Its front-end, implemented using
the React JavaScript framework, allows users to create mashup
flows via a graphical editor. The main intuition is that when
a user designs a flow, we model this flow in the back-end
in terms of actors making an actor the basic execution unit
of our mashup tool. In the implementation of aFlux back-end
we have used Akka [14], a popular library for building actor
systems in Java and Scala.

A mashup flow in aFlux is called flux. Every time a flux is
saved in the front-end, its specification is sent to the back-
end where it is parsed in order to create a corresponding
graph model—the Flux Execution Model. The parser scans
for special start nodes in the specification of a flux. Start
nodes correspond to specialized actors which can be triggered
without receiving any message. All other nodes correspond
to normal actors which react to messages. On detection of a
start node, the graph model is built by simply traversing the
connection links between the nodes as designed by the user
on the front-end. On deployment of a flux, a runner fetches
the flux execution model and proceeds to:

1) Identify the relevant actors present in the graph.
2) Instantiate an actor system with the identified actors.
3) Trigger the start nodes by sending a signal.

After this, the execution follows the edges of the graph
model i.e. the start actors upon completion send messages to
the next actors in the graph, which execute and send messages
to the next actors and so on.

A. Asynchronous Execution of Components

Components within aFlux are of two types: synchronous
components and asynchronous-capable components. Syn-
chronous components block the execution flow, i.e. when they
receive a message on their input port they start execution and
pass the message through their output ports upon completion.
On the other hand, asynchronous-capable components have
two different types of output ports, blocking and non-blocking
(Figure 1). When these components receive a message on their
input port, they immediately send a message via the non-
blocking port (at most one per component) so that components
connected to it (i.e. components that do not require the compu-
tation result of the active component) can start their execution.
When the component finishes its execution, it sends messages
via its blocking ports; components connected to these ports
can then start their execution. This non-blocking execution
paradigm helps asynchronously execute time-consuming parts
of the mashup flow while ensuring other components do not
get starved from execution for a longer time period.

Fig. 1. Executable Components in aFlux

B. Concurrent Execution of Components

Every component in aFlux has a special configurable con-
currency parameter. If a component has concurrency level of n,
the actor system can spawn up to n instances of that component
to process the messages concurrently. Beyond that, messages
are queued as usual and processed whenever any instance
finishes its current execution.

C. Sub-flows in aFlux

To encapsulate independent and reusable logic within an
application flow, aFlux supports logical structuring units called
sub-flows. A sub-flow encompasses a complete business logic
and is independent from other parts of the mashup. A good
candidate for a sub-flow is for example a reusable data
analytics logic which involves specifying how the data should
be loaded and processed and what results should be extracted.
Sub-flows are modelled as asynchronous-capable components,
i.e. they have input ports and two sets of output ports (i.e.
blocking and non-blocking).

Fig. 2. Specification of buffer size, overflow strategy & window parameters.

III. Stream Processing in aFlux

The flow based structure of mashup tools i.e. passage
of control to the succeeding component after completion of
execution of the current component is very different from
the requirements of stream processing where the component
fetching real-time data (aka the listener component) cannot
finish its execution. It must listen continuously to the arrival
of new datasets and pass them to the succeeding component for
analysis. Also, the listener component has many behavioural
configurations which decide when and how to send datasets
to the succeeding component for analysis.

In aFlux, we have introduced an abstraction called stream-
ing component to model components which need to process
streaming data. The implementation of streaming components
relies on the Akka Streams library.

Each streaming component in aFlux offers a different stream
analytics functionality (e.g. filter, merge) and can be connected
to other stream analytics components or to any common aFlux
component. Streaming components are categorized into fan-in,
fan-out and processing components. Fan-in operations allow
joining multiple streams into a single output stream. They
accept two or more inputs and give one output. Fan-out
operations allow splitting the stream into sub-streams. They
accept one stream and can give multiple outputs. Processing
operations accept one stream as an input and transform it
accordingly. They then output the modified stream which may
be processed further by another processing component.

Every stream analytics component offers a number of con-
figurable attributes (Figure 2). The internal source of every
stream analytics component has a queue (buffer), the size of
which can be defined by the user (default is 1000 messages).
The queue is used to temporarily store the messages (elements)
that the components receives from its previous component in
the aFlux flow while they are waiting to get processed. Along
with the queue size, the user may also define an overflow
strategy that is applied when the queue size exceeds the
specified limit. It can be configured as: (i) drop buffer: drops
all buffered elements to make space for the new element, (ii)
drop head: drops the oldest element from the buffer, (iii) drop
tail: drops the newest element from the buffer, (iv) drop new:
drops the new incoming element.

TABLE I
Stream analytics method characteristics

Method Responsiveness Settling Time Stability

Tumbling window 50 very fast very long very low

Tumbling window 300 slow very short high

Tumbling window 500 slow none very high

Sliding window 500 slow none very high

The user can also specify different windowing properties.
Our implementation currently supports content-based and
time-based windows. For both of these types of windows,
the user can also specify a windowing method (tumbling or
sliding) and also define a window size (in elements or seconds)
and a sliding step (in elements or seconds) (this attribute only
applies to sliding windows).

IV. Evaluation

In order to evaluate the built-in stream processing capabil-
ities of aFlux, we implemented an aFlux flow which involves
stream processing to derive actionable insights. In our tested,
the parameters of stream processing influence the end result.
By selecting different values for such parameters and running
different micro-benchmarks, we showcase the ease with which
stream processing can be customized in aFlux and compare the
different versions of the application.

Our test-bed is a traffic simulation of a highway1 imple-
mented in Python on top of traCI, a Python interface for
SUMO microscopic traffic simulator [15]. In the scenario, a
number of cars run on the highway which consists of three
lanes. The cars pass over loop detectors placed next to each
other at a particular mile of the highway. A loop detector mea-
sures the occupancy rate of the lane in the range of 0 to 100. A
high occupancy rate signals a more busy lane and therefore the
possibility of a traffic congestion. The highway operators have
implemented a simple logic for reacting to traffic congestions
in our simulation: if the average of the occupancy rates of the
three lanes exceeds an empirical threshold of 30, a fourth lane
(shoulder-lane) opens to reduce congestion. On the contrary,
when the average of the occupancy rates falls below 30, the
shoulder-lane closes again. We have implemented the above
logic in aFlux (Figure 3), using Kafka to get the loop detector
data from the simulation and communicate back the action of
opening/closing the shoulder lane.

We have run different micro-benchmarks to compare the
average speed of cars when changing the processing param-
eters of the stream of loop detector data. In particular, we
have used the four methods depicted in Table I. In all micro-
benchmarks, we artificially induce traffic congestion by an
“accident” happening on the 500th tick of the simulation
which closes one of the three normal lanes for the rest of
the experiment (each experiment took 5000 ticks).

1https://github.com/iliasger/Traffic-Simulation-A9

Fig. 3. aFlux flow used in the experiment - Subscribes to a Kafka topic that publishes the occupancy rates of loop detectors and calculates their moving
average in real-time.

0

10

20

30

40

50

a

M
e

a
n

 S
p

e
e

d
 (

m
/s

)

Average Mean Speeds
Open Gate
Close Gate

Accident

bAverage Mean Speeds
Open Gate
Close Gate

Accident

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

c

M
e

a
n

 S
p

e
e

d
 (

m
/s

)

Tick

Average Mean Speeds
Open Gate
Close Gate

Accident

0 1000 2000 3000 4000 5000

d

Tick

Average Mean Speeds
Open Gate
Close Gate

Accident

Fig. 4. Data analysis with content-based tumbling window of size (a) 50, (b)
300, (c) 500, and (d) content-based sliding window of size 500 and step 250.

The results are plotted in Figure 4 and summarized in
Table I. We can observe that different methods change the
time at which the extra lane is opened (responsiveness of the
system), but they also have implications on the time when
fluctuations in the shoulder-lane state end, after a change is
initiated (settling time) and the number of fluctuations in the
shoulder-lane state (stability). We omit the data that show the
settling time and stability measurements for length constraints.

Discussion. Overall, we can make the following observa-
tions. Firstly, when data needs to be processed in real-time
and the result of such analysis impacts the final outcome,
i.e. performance of the application, there is no easy way to
know the right stream processing method with the correct
parameters. Hence, it becomes very tedious to manually write
the relevant code and re-compile every time a user wants to
try something new. By parametrizing the controlling aspects
of stream processing it becomes easy for non-experts to test
various stream processing methods to suit their application
needs. Secondly, having stream processing components within
aFlux allows users to quickly prototype their stream processing
applications without relying on external stream processing
suites. It becomes easier to prototype streaming applications,
test them and finally port them to stream analytics platforms.

V. RelatedWork
We have discussed some of the most popular mashup tools

in Section I. Although these tools are good for modelling
control-flow, nevertheless their in-flow data analytics capabil-
ities are very limited [16], as discussed above. Additionally,
the architecture of flow-based programming languages does
not accommodate the requirements of stream processing as
discussed earlier in Section II. IBM Watson Studio does
not offer an integrated solution to develop IoT applications

containing in-flow data analytics [17]. One of the closest
solution is Apache NiFi which is an easy to use, powerful
and a reliable system to process and distribute data. It offers
a highly intuitive web-based graphical user interface which
allows the user to design data flows and transform data [18].
However, it does the processing via other stream processing
engines (via connectors) and does not provide options to
experiment with different kinds of stream processing. Kafka
Streams [19], Apache Spark [20] and Apache Flink [21] are
geared for developing stream processing applications however
the user has to write the code using their built-in APIs and
they do not have any simplified graphical user-interface for
users. In addition to this, setting up and deploying clusters to
try out basic stream processing increases the learning curve
substantially for non-experts.

VI. Conclusion

In this paper, we have argued the needs for stream pro-
cessing in mashup tools for IoT application development. We
have demonstrated how aFlux enables rapid development of
applications with stream processing integrated in the appli-
cation logic which makes it unique among all the current
available solutions. In this direction, the goal of the paper
was to (i) integrate stream processing capabilities within aFlux
(ii) parametrize the controlling factors of stream processing to
the tool front-end so that it becomes easy for non-experts to
try out various methods of stream processing, find the impact,
tweak and re-tweak to easily arrive at the optimal configuration
options for their scenario. Every stream processing component
in aFlux has its own adjustable settings. This parametrization
based approach makes it easy for non-experts to run adjustable
stream analytics jobs. Additionally, the concurrent execution
and asynchronous execution semantics of the tool facilitates
non-experts to develop complex real-world applications by
easy abstraction. Currently, we are working towards mapping
the stream processing semantics of aFlux to popular streaming
frameworks like Apache Spark and Apache Flink. This would
enable non-experts to prototype streaming application using
the built-in stream processing of aFlux and finally deploy the
flux as a full-scale Spark or Flink application.

Acknowledgement

This work is part of the TUM Living Lab Connected
Mobility (TUM LLCM) project and has been funded by the
Bavarian Ministry of Economic Affairs, Energy and Tech-
nology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government.

References
[1] T. Mahapatra, I. Gerostathopoulos, and C. Prehofer, “Towards

integration of big data analytics in internet of things mashup tools,”
in Proceedings of the Seventh International Workshop on the Web of
Things, ser. WoT ’16. New York, NY, USA: ACM, 2016, pp. 11–16.
[Online]. Available: http://doi.acm.org/10.1145/3017995.3017998

[2] F. Daniel and M. Matera, Mashups: Concepts, Models and Architectures.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, dOI: 10.1007/978-
3-642-55049-2. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-55049-2

[3] M. Ogrinz, Mashup patterns: designs and examples for the modern
enterprise. Addison-Wesley, 2009, oCLC: ocn262433525.

[4] “Project consortium tum living lab connected mobility: Digital
mobility platforms and ecosystems,” Software Engineering for Business
Information Systems (sebis), München, Tech. Rep., Jul 2016. [Online].
Available: https://mediatum.ub.tum.de/node?id=1324021;

[5] N. Health, “How ibm’s node-red is hacking together the in-
ternet of things,” March 2014, http://www.techrepublic.com/article/
node-red/TechRepublic.com [Online; posted 13-March-2014].

[6] “IBM Node-RED, A visual tool for wiring the Internet of things.”
[Online]. Available: http://nodered.org/

[7] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[8] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Artif. Intell., vol. 8, no. 3, pp. 323–364, Jun. 1977. [Online]. Available:
http://dx.doi.org/10.1016/0004-3702(77)90033-9

[9] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A
foundation for actor computation,” J. Funct. Program., vol. 7, no. 1,
pp. 1–72, Jan. 1997. [Online]. Available: http://dx.doi.org/10.1017/
S095679689700261X

[10] C. L. Talcott, “Composable semantic models for actor theories,” Higher-
Order and Symbolic Computation, vol. 11, no. 3, pp. 281–343, Sep
1998. [Online]. Available: https://doi.org/10.1023/A:1010042915896

[11] R. Virding, C. Wikström, and M. Williams, Concurrent Programming in
ERLANG (2Nd Ed.). Hertfordshire, UK, UK: Prentice Hall International
(UK) Ltd., 1996.

[12] C. Varela and G. Agha, “Programming dynamically reconfigurable open
systems with salsa,” SIGPLAN Not., vol. 36, no. 12, pp. 20–34, Dec.
2001. [Online]. Available: http://doi.acm.org/10.1145/583960.583964

[13] T. Desell, K. E. Maghraoui, and C. A. Varela, “Malleable applications
for scalable high performance computing,” Cluster Computing,
vol. 10, no. 3, pp. 323–337, Sep 2007. [Online]. Available:
https://doi.org/10.1007/s10586-007-0032-9

[14] “Akka: Implementation of the actor model,” https://akka.io/, accessed:
2017-12-25.

[15] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[16] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis
of internet-of-things platforms,” CoRR, vol. abs/1502.01181, 2015.
[Online]. Available: http://arxiv.org/abs/1502.01181

[17] “Put the power of AI and data to work for your business,”
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=
97014197USEN, accessed: 2018-04-20.

[18] “Apahce nifi,” https://nifi.apache.org/, accessed: 2017-12-25.
[19] J. Kreps, “Introducing kafka streams: Stream processing made simple,”

Confluent Blog, March, 2016.
[20] P. Zecevic and M. Bonaci, Spark in Action. Manning Publications Co.,

2016.
[21] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee

on Data Engineering, vol. 36, no. 4, 2015.

