
Towards Systematic Live Experimentation in Software-
Intensive Systems of Systems

Ilias Gerostathopoulos1, Tomas Bures2, Sanny Schmid1, Vojtech Horky2, Christian Prehofer1, 
and Petr Tuma2 

1Fakultät für Informatik 
Technische Universität München 

Munich, Germany 
{gerostat, schmidsa, prehofer}@in.tum.de 

2Charles University in Prague 
Faculty of Mathematics and Physics 

Prague, Czech Republic 
{bures, horky, tuma}@d3s.mff.cuni.cz 

Abstract 
As the size, variation, and sophistication of software-intensive 
systems-of-systems grows, so does the uncertainty inherent to 
their design and development. To deal with this issue, we propose 
a framework for systematic experimentation based on declarative 
specification connected with system architecture. The focus is on 
how to specify experiments that allow systematic exploration of 
the space of alternative configurations at runtime. Since such 
experiments should be launched on live systems, extra care needs 
to be taken in preventing damages when experimenting with the 
systems. Therefore, we also focus on how to quantify the direct 
and the indirect cost associated with each experiment execution 
(which needs to be included in a cost-benefit analysis for system 
adaptation) and on how to gradually roll out an experiment via a 
number of different stages. We use the development of a route 
planner system as an example to motivate and exemplify our 
approach. 

Keywords 
Systematic experimentation; uncertainty; system architecture 

1. INTRODUCTION 
There is a clear trend of devices getting more and more connected 
to the Internet. Connected systems such as cars, home appliances, 
and office buildings are also increasingly becoming smarter: they 
are more aware of user preferences and environment situations; 
able to adjust their operation to save power and money; serve 
users in personalized ways. As the size, variation, and 
sophistication of such software-intensive systems-of-systems 
(siSoS) grows, so does the uncertainty inherent to their design and 
development.   

Two broad sources of uncertainty can be distinguished [5]. 
Internal uncertainty refers to the uncertainty stemming from the 
complexity of the software system itself: large codebases, 
multiple development teams, diverse development practices and 
standards across teams, frameworks featuring multiple levels of 
abstraction are all factors that hinder the understanding of how a 
siSoS operates internally. It is not wrong to assume that in many 
real-life software-intensive systems, even their own developers 
and software architects may not be able to have a complete and 
accurate understanding of how the systems they build operate or 
will operate when brought to production (due to e.g. scale effects). 
This is exacerbated in the case of siSoS, which feature managerial 
independence, heterogeneity, and emergent behavior. 

External uncertainty stems from the complexity and 
unpredictability of the physical environment (natural disasters, 
etc.) and of the non-software-controlled parts (network, 
mechanical, chemical parts, etc.) of siSoS. This also includes the 
unpredictable behavior of human users and the unreliability of 

human operators. Again, maintaining a complete and accurate 
understanding of the interplay of the different physical and 
mechanical parts in a system, while taking into consideration a 
large number of possible user interactions, is a close-to-
impossible task even for the most skilled system architects.   

Despite their high internal and external uncertainty, siSoS still 
need to be developed, integrated, tested, and delivered to 
customers at an increasing pace. This is a direct effect of the 
speed-up of innovation cycles and the pursue of continuous 
deployment (i.e. every several minutes or hours) seen in many 
products delivered today [8]. Rapid development cycles make it 
hard for system architects and developers to manage the growing 
internal and external uncertainty of the systems they are building.  

In this paper, we focus on how to deal with the uncertainty 
inherent to the design and development of siSoS. We argue that 
we need methods and tools which  

(i) allow developers to test their understanding of the system 
they are building;  

(ii) enable the system under construction to adjust itself not only 
in response to the environment in general, but also to reflect 
the gradually maturing understanding of the developers.  

Such methods should transcend the traditional barrier of testing 
environments to be also applicable to production environments, 
where the effects of scale and emergent behavior [16] can be 
better studied. Furthermore, due to the large scale and complexity 
of the siSoS, monitoring has to be done from within the siSoS. 
Any self-observation naturally impacts system behavior and 
service quality due to probing overhead, increased communication 
overhead and because the siSoS may need to execute alternative 
behavior to assess whether it gives better results than the regular 
behavior. A careful assessment of the negative impact of self-
observation in system and service performance and output quality 
is therefore needed. 
In response to these needs, and inspired by ideas in evidence-
based engineering and data-driven evolution [3], we propose a 
framework for systematic experimentation with live systems 
based on declarative specification connected with system 
architecture. By “live” we mean systems deployed in production 
environments. We focus on how to specify experiments that allow 
systematic exploration of the space of alternative configurations, 
as well as on how to quantify the direct and the indirect cost 
associated with each experiment execution—which needs to be 
included in a cost-benefit analysis for system adaptation. We also 
provide a work-in-progress prototype of a tool implementing the 
framework in Python and some results of our initial experiments 
using the tool.  

Although our approach is applicable to any kind of software 
system one can experiment with, it is particularly beneficial for 



experimenting with siSoS. This is because (i) the full-scale 
emergent behavior of siSoS can only be observed and studied in 
production environments, and (ii) the managerial independence of 
the individual systems hinders the comprehensive experimentation 
of system-of-systems in testing environments. 

The rest of the paper is structured as follows. Section 2 introduces 
the example system used for motivating and exemplifying our 
approach. Section 3 describes the main ideas behind systematic 
stage-based experiment execution in live siSoS. We then describe 
our work-in-progress implementation of a tool that reifies these 
ideas in Section 4, together with indicative experimentation 
results. Section 5 overviews related work in experiment-driven 
development and performance-related issues, and Section 6 
concludes with a summary of contributions.   

2. RUNNING EXAMPLE 
To illustrate our approach for systematic live experimentation in 
siSoS, we describe here an example system from the mobility 
domain, which we will use throughout the paper.  

In our running example, a number of cars navigate in a city. Each 
car has an itinerary consisting of a number of destinations to reach 
within certain time constraints. For route planning, each car uses 
an external routing service accessible via the mobile network. The 
route planner takes as input the current position of the car (as 
monitored by on-board sensors, e.g. GPS) and its target 
destination (typed in by the driver) and provides the fastest route 
to the destination as output. To calculate the fastest route, it runs a 
Dijkstra algorithm on the graph representing the map of the city 
consisting of nodes/intersections and edges/streets. The cost of 
each edge is calculated based on static information, i.e. streets 
length and maximum permissible speed on every street, and on 
dynamic information, i.e., traffic level on each street. The latter is 
estimated based on travel information sent by the cars: upon 
reaching an intersection (end of a street), each car sends the time 
it took to navigate the street to the route planner. This serves as an 
indication of the traffic level in the street, with higher travel times 
in a street than normal (i.e. calculated with the static information) 
indicating high traffic in this street. To deal with the dynamic 
changes in the city traffic that might make certain routes more or 
less preferable, each car periodically polls the route planner for a 
route and re-routes itself if needed.  

Even though the above system is quite simple compared to real-
life route planners, which typically work with historical traffic 
data and even real-time predictions, it still features a number of 
challenges in its design, implementation, and testing that are 
related to both internal and external uncertainty factors: 

• How often should each car poll the route planner? Polling 
more often might provide faster routes but also increases the 
communication overhead and the computation load on the 
planner.  

• How can the route planner ensure that it has up-to-date 
information for the traffic level in all streets? Since the 
traffic information is estimated by the travel times of cars 
themselves, the planner might not have up-to-date 
information on the streets less traveled. A possibility for the 
planner is then to route certain cars through these streets to 
collect information, which can potentially cause annoyance 
to the drivers.  

• How much should the route planner rely on static 
information and how much on dynamic information in 
determining the routes? Relying more on the latter will 
make planning react quicker to traffic jams but may also 

result in creating new traffic jams by re-routing many cars 
through the same alternative routes. 

The above questions serve just to illustrate the different design 
decisions and tradeoffs, mainly between system quality and 
performance, that have to be accounted for when developing such 
a system. Apart from thoroughly testing the system in testing 
environments via experimenting with the different decisions and 
tradeoffs, we may also need to resolve some of them in 
production. In the following, we provide a framework aiming to 
support this.  

3. SYSTEMATIC EXPERIMENTATION 
Experimentation in siSoS requires a systematic approach in which 
the choice of system variants (at design time or at runtime) and 
optimization of system’s parameters needs to be based on rigorous 
and statistically justified experiments. In the basic case this means 
modifying a part of a system and collecting data to evaluate the 
effect of a particular choice.  

Given the large-scale nature and the close interaction with humans 
and the physical environment, siSoS cannot be easily replicated in 
testing environments, which means that the experimentation has 
to be typically performed on a live system. This however implies 
that the experimentation may negatively affect the system—first 
because a choice being experimented with can be suboptimal to 
the actual current version of the system, second because the 
process of collecting and evaluating the experimental data cannot 
be separated from the system and itself may be quite costly. For 
instance, in case of collecting performance data, the 
instrumentation of the system can yield a significant slowdown. 
(In one of our previous experiments, we showed that even a very 
efficient instrumentation of all methods in SPECjbb2015 yielded 
400% slowdown [7].) The cost of experimentation gets also 
projected in energy consumption, which is especially felt on 
battery powered devices. Finally, experiments that involve 
humans typically come with a high inherent cost which stems 
from the fact the system requires a human user to do some extra 
work (e.g. provide feedback on satisfaction) or may lower user 
appreciation (e.g. by navigating a vehicle through an unusual 
route or bringing the car to a traffic jam in an unexplored street). 

We thus propose the systematic experimentation as a closed-loop 
process which, in addition to executing experiments, continuously 
monitors the effect of the experimentation on the running system 
and controls (or even stops) the experimentation should the 
system be negatively impacted beyond a certain limit. 

To correctly capture and execute the systematic and statistically 
relevant experimentation, we conceptualize the experiment in this 
section. Then in Section 4, we propose a tool-supported 
framework for automatically performing systematic 
experimentation based on a set of well-defined experiments.  

3.1 Quantifying the cost of an experiment   
We view the experiment as a time-constrained process which 
changes the system in a defined way and observes and evaluates 
the effect of the changes. To account for the negative impact on 
the utility of a system, we define the experiment as a workflow of 
stages. Each stage is associated with a cost (i.e. the amount of the 
negative impact on the system’s utility). Splitting the experiment 
to smaller pieces makes it easier to measure and quantify their 
cost. Further, a subsequent stage would typically exploit evidence 
collected in some previous stage to estimate its cost. 

To illustrate this on the running example, assume that the routing 
algorithm lends itself to parameterization which has the potential 



to increase user satisfaction, but requires heavier computation 
(e.g. to re-evaluate routes more often, to consider more routes as 
potential alternatives or to extend the horizon of simulation to 
predict the traffic in the near future). In this respect, the 
experiment would have the following stages: 

1st stage: Evaluate the cost of instrumentation and performance 
data collection on the HW platform where the experiment is going 
to be executed. This can be done by instrumenting a dummy 
function and iterating its execution multiple times to obtain 
statistical confidence about the expected value of the 
instrumentation overhead in a single instance. Though this 
experiment will require some computation capacity, its impact on 
the system is rather minimal because the experiment is rather 
small-scale compared to the processing connected with the car 
navigation. 

2nd stage: Instrument the existing routing algorithm to get the 
baseline performance of its individual components. The estimated 
cost here takes into account the expected frequency of executions 
of the instrumented code and the cost of instrumentation 
determined in the 1st stage. 
3rd stage: Modify the parameters of the routing algorithm, 
instrument it and execute it in a limited scale (e.g. use the 
modified version for only 1% of cars). This provides an 
estimation of the cost of a larger scale deployment of the 
experiment in the 4th stage. The estimated cost of the 3rd stage 
takes into account the baseline performance of the individual 
components of the routing algorithm from the 2nd stage and an 
estimation of where the algorithmic complexity increases given 
the particular experiment.  

4th stage: Execute the experiment in a larger scale (e.g. use the 
modified version of the routing algorithm for 20% of cars) to get 
representative data that reflect potential resource contention due to 
unforeseen interactions at the larger scale.  
5th stage: Execute the experiment to a full extent, i.e. use the 
modified version of the routing algorithm for all cars. The 
experiment should only reach this stage if there is clear indication 
that the utility of the system (measured, e.g., a function of user 
satisfaction rate and degree of resource utilization) will not sink 
below a certain limit (termed utility threshold in the next Section). 

3.2 Structure of an experiment 
From a structural perspective, we see the experiment as consisting 
of the following: 

• Input parameters—parameters of the experiment (e.g. in 
case of exploring alternative routes, the experiment 
parameter can be the maximal time a driver can be delayed 
for the sake of exploring traffic in less-travelled streets of 
the city). 

• System utility—a measure of how well the system performs. 
An experiment is evaluated based on how much it improves 
the baseline utility (i.e. the utility before the experiment is 
executed).  

• System utility threshold—a limit on system utility below 
which the experiment is not allowed to continue in 
executing any of its stages. This serves to maintain system’s 
dependability in face of potential negative effects (i.e. the 
cost) of the experiment. The expected effect of a stage on 
the utility is captured by the cost of the stage as explained in 
the structure of the stage below. 

• Stages—different steps of the experiment as explained in 
Section 3.1. The stages are connected in an oriented graph, 
where edges in the graph are guarded by conditions over 

input parameters and outputs of previous stages (Figure 1). 
The structure of a single stage is described below. 

• Result—decision or quantification (backed by statistical 
evidence) whether and how much a particular parameter 
setting or a particular system variant increases/decreases 
system utility w.r.t the baseline utility. 

Structure of a stage: 

• Input parameters—come from the instantiation of the 
experiment or from previous stages. 

• Output values—values that are provided as a result of the 
stage. 

• Function to execute in the stage—this typically means 
modifying the system, collecting data from it and computing 
output values.  

• Cost dependencies—specify which input parameters the 
stage cost depends on. This allows skipping the stage if 
experiment results for the stage are already known in the 
particular or similar settings of the parameters. 

• Cost of the stage—this quantifies (based on input 
parameters) the expected impact on executing the stage on 
the system’s overall utility.  

3.3 Tackling uncertainty 
Structuring the experiments in a workflow of stages and 
quantifying the cost of individual stages allows decoupling the 
coordination and control of the experiment from the description of 
the experiment itself. This creates a closed loop control in which 
effects of a stage are first assumed and then continuously 
measured w.r.t. to the system utility. This allows the 
experimentation framework to guarantee the dependability of the 
system being experimented with. 

Evidence collected by experiments can be used both for off-line 
evolution and on-line adaptation. Contrary to the traditional view 
of experimentation, the inherent uncertainty in the design of the 
experiment itself (in particular the estimation of the stage cost) 
gives rises to parallel evolution/adaptation in two areas: (i) the 
system itself and (ii) the specification of experiments which come 
along with the system. In particular, in (ii), the data collected 
about the effects of an experiment stage can be further used 
retroactively to learn and fine-tune the cost estimation of a stage. 

Though we have not systematically explored and implemented 
this learning of costs, this potentially allows extending the 
structure presented in Section 3.2 by replacing the direct 
specification of stage’s cost with only indicators of what the 
actual stage cost depends on (formally, we assume that the stage 
cost is an unknown function of cost dependencies).  

To illustrate the concept, consider optimizing the traffic prediction 
service by routing certain cars via alternative (possibly worse) 
routes to explore the traffic levels and flow. Obviously, this is 
connected with the cost of reducing the satisfaction of selected 
drivers. As such, the system has to carefully scale the extent of the 
experiment—it should estimate the cost of each alternatively 
routed car (taking into account the driver profile) and keep the 
overall cost below the system utility threshold. Similarly, the 
experiment is connected with computation cost needed for 
simulations to select the alternative routes that would have the 
highest positive impact on the overall system utility if explored. 
As these costs cannot be quantified upfront, the experiment 
designer can only indicate what they depend on (e.g. number of 
unexplored routes where traffic is not available, driver’s profile, 
etc.). Specifically, this experiment would have a structure as 
outlined below: 



• Input parameters: percentage of cars with alternative routes.  
• System utility: function(average of trips overhead, user 

satisfaction rate, degree of resource utilization). Trip 
overhead is the actual duration of a trip versus the theoretical 
case where routing is performed based only on static map data 
(i.e. length and maximum speed of each street). User 
satisfaction is directly related to the number of complaints 
drivers issue when annoyed. Resource utilization is quantified 
via the CPU computation cost of the route planner.  

• System utility threshold: 90% 
• Result: system utility when experimenting / baseline system 

utility. The baseline system is the system where no cars have 
alternative routes.  

In all the stages of the experiment, the input parameters are the 
same: percentage of cars with alternative routes. The individual 
experiment’s stages are depicted in the graph of Figure 1 and 
detailed below (note that we have not included actual costs, as 
these are learned over time):  

• Stage #1: “assess computational cost” 
o Output values: assessed computation cost of simulations 

to find out which parts of the city would have positive 
impact on planning if explored 

o Function: Instrument the component of the route planner 
responsible for identifying “less traveled” routes and 
gather data to infer the overhead of its computation.  

o Cost dependencies: number of unexplored areas 
• Stage #2: “determine relevancy of alternative routes” 

o Output values: expected improvement of system utility if 
areas are explored 

o Function: Determine less traveled areas and calculate 
differences between current routes and routes that take 
into account information on less traveled areas. 

o Cost dependencies: computation cost assessed in phase #1 
• Stage #3: “explore less-traveled areas” 

o Output values: system utility, as specified in experiment 
definition 

o Function: Configure planner to route a certain percentage 
of cars through the less traveled areas. 

o Cost dependencies: expected improvement of system utility  

4. PROTOTYPE TOOL & EXPERIMENTS 
In this section, we first describe how we have reified the main 
concepts of our experimentation approach in a dedicated tool. We 
then give a brief overview of the testbed we set up to test our 
approach and on our initial experiments with using the tool.   

4.1 Work-in-progress Implementation 
To enable experimentation with live systems, we have been 
developing an open-source tool in Python, called Real-Time 
Experimentation1 (RTX) [14]. So far, RTX can be used for 
specifying and running a number of experiments on a base-level 
system. Following the structure of Section 3.2, an RTX 
experiment consists of (i) a number of input parameters, (ii) a 
function to measure system utility based on the data coming from 
the base-level system, and (iii) a specification of the amount of 
incoming data that need to be analyzed. To avoid hysteresis 
effects (due to that the effect of a change in the base-level system 
may not be directly observable), an RTX experiment also includes 
a specification of the amount of data that need to be first skipped 
                                                                    
1 Available at: https://github.com/Starofall/RTX  

 
Figure 1. Stages in execution of example experiment. 

1. experiments_seq = [ 
2.     {  
3.         "knobs": {  
4.             "reroute_frequency": 0  
5.         }, 
6.         "ignore_first_n_results": 5000, 
7.         "sample_size": 10000 
8.     },  
9.     { 
10.         "knobs": {  
11.              " reroute_frequency": 5   
12.         } 
13.         "ignore_first_n_results ": 5000 
14.         "sample_size": 10000  
15.     }, 
16.    …  # more experiments here 
17. ] 
18.   
19. primary_data_provider= { 
20.     "type": "kafka_consumer", 
21.     "kafka_uri": "http://kafka:9092", 
22.     "topic": "trip-overhead", 
23.     "serializer": "JSON", 
24.     "data_reducer": trip_overhead_data_reducer 
25. } 
26.   
27. secondary_data_provider= { 
28.     "type": "kafka_consumer", 
29.     "kafka_uri": "http://kafka:9092", 
30.     "topic": "router-load", 
31.     "serializer": "JSON", 
32.     "data_reducer": performance_data_reducer 
33. } 
34.  
35. def trip_overhead_data_reducer(state, newData): 
36.     cnt = state["trips_count"] 
37.     state["avg_overhead"] =  
38.         (state["avg_overhead"] * cnt +newData["overhead"]) / (cnt + 1) 
39.     state["trips_count"] = cnt + 1 
40.     return state 
41.  
42. def performance_data_reducer(state, newData): 
43.     cnt = state["load_count"] 
44.     state["avg_load"] =  
45.         (state["avg_load"] * cnt +newData["load"]) / (cnt + 1) 
46.     if state["avg_load"] > 20: 
47.         raise StopIteration("routing got too expensive") 
48.     state["load_count"] = cnt + 1 
49.     return state 
50.   
51. def evaluator(resultState): 
52.     return – (resultState["avg_overhead"] + resultState["avg_load"])  
53.  

Listing 1: Example of specifying a sequence of experiments in 
RTX. 



before the data analysis starts. An experiment’s system utility 
threshold and stages are currently not part of an RTX experiment 
definition; we detail on our plans to support both in Section 4.2. 
Finally, we have chosen not to include a “results” structure in the 
definition of an experiment, since we wanted to be agnostic w.r.t 
the baseline configuration (and corresponding utility) of the base-
level system. Such results can though be easily generated by 
running two different RTX experiments—one with the baseline 
configuration, one with the experimental one—and comparing 
their resulting utility values.  

Let us illustrate how RTX can be used in specifying and running 
experiments in the running example (our base-level system). 
Consider that we want to experiment with the frequency of re-
routing requests on the route planner. In this case, the user 
specifies a sequence of experiments (Listing 1, lines 2-15), each 
of which sets a value to the same input parameter (called knob in 
RTX) and executes until it has received data points equal to the 
“ignore_first_n_results” (line 6) plus “sample_size” (line 7).  

To evaluate the system utility that corresponds to an experiment, 
one or more data providers have to be specified, together with 
their corresponding reducer functions. The latter summarize the 
data as they come and store them to a “state” Python variable. 
This allows us to combine analysis results from different sources 
as inputs to a multivariate system utility function, the evaluator 
function in RTX. 

In our example, two data providers have been specified (Listing 1, 
lines 19-25 and 27-33). The first one provides trip overheads (see 
Section 3.3), the second provides data measuring the CPU load of 
the router. Although RTX currently supports Kafka [10] as the 
default data provider mechanism, we are working on supporting 
also other publish-subscribe platforms such as MQTT. Each data 
provider has a dedicated reducer function (lines 35-40 and 42-49). 
Both functions in our example simply return the moving average 
of their input values. Finally, the evaluator function (lines 51-52) 
returns the inverse sum of the two averages, as the ultimate 
measure of system utility.        

4.2 Planned Extension: Stages 
We have so far focused on creating a working prototype of an 
experimentation tool that is generic and extensible. We detail on 
our plan to include stage-based execution of experiments here.  

Essentially, an experiment stage can be seen as a regular RTX 
experiment, since a stage’s structure closely resembles that of an 
experiment (Section 3.2). We therefore plan to build on the 
existing abstractions offered by the tool to implement stage-based 
execution in the following way:   

• Each stage will be an RTX experiment.  
• The execution of stages will be controlled by a custom 

experiment strategy that essentially implements the control 
structure of Figure 1. We have already provided support for 
three concrete implementations of experiment strategies in 
RTX, namely sequential, step, and self-optimizer [14]. The 
implementation of the custom strategy will be the 
responsibility of the RTX user (developer or tester). 

• Each stage specification will contain a cost function, 
implemented as an evaluator. 

• At any point during the execution of a stage, the tool should 
be able to monitor the cost on the system and halt the stage 
execution (and, optionally the execution of the experiment as 
a whole) if a specified cost threshold is exceeded. We have 
already provided a way to do this in RTX by raising a 
StoptIteration exception (Listing 1, lines 46-47, highlighted). 

• When rolling out an experiment incrementally (as e.g. in the 
3rd stage of Section 3.1), it is important to be able to 
distinguish between data coming from the components being 
experimenting with and the rest of the components. For 
example, we should be able to distinguish between data 
coming from cars routed with the experimental router and data 
coming from cars routed with the baseline router. For this, we 
plan to set a JSON-based protocol to allow the base-level 
system to tag the data it submits to RTX. An example of how 
this can work is depicted in Listing 2 (line 55, highlighted).  

4.3 Indicative Experiments Using RTX  
To evaluate the feasibility of running experiments using RTX, we 
have implemented a testbed2 based on the running example. Our 
testbed uses SUMO, a state-of-the-art discrete-event mobility 
simulator and TraCi, a Python interface to SUMO. We have 
simulated 750 cars moving in a city with approx. 450 streets and 
1200 intersections. The cars continuously travel from one 
randomly picked destination to another. They are all controlled 
via TraCI. For routing, they use our own Python-based router, 
which takes into account both static information (street lengths 
and maximum speeds) and dynamic information (estimated traffic 
per street, based on data provided to the router by the cars). The 
router can also optionally route certain cars to less traveled streets 
to obtain more up-to-date information on the travel level in these 
streets. In our setting, the simulation runs forever, to emulate a 
real-life live system.  

We have equipped our testbed with several parameters that can be 
tuned at runtime, including re-routing frequency, measured as the 
number of SUMO ticks between re-routing: the smaller the 
number, the higher the frequency. We have also enabled the 
testbed to generate data that can be used in RTX: each car 
publishes its trip overhead upon reaching a destination (on the 
“trip-overhead” Kafka topic); the duration of router execution per 
SUMO tick is also monitored and sent to RTX (via publishing it 
on the “router-load” Kafka topic). We have used Kafka for both 
setting parameter values to the testbed at runtime and getting data 
emitted from the testbed.  

We have successfully run a number of different experiments and 
managed to optimize the testbed at runtime via observing the 
promising regions for each parameter value and running more 
focused experiments. We report here our results with 
experimenting with the re-routing frequency parameter.  

As depicted in Figure 2, we performed 50 experiments with 
different values of the re-routing frequency, starting from re-
routing every 100 SUMO ticks and ending at re-routing every 2 
ticks. Each experiment was specified with 10.000 ignore size and 
10.000 sample size. We measured both the average trip overhead 
                                                                    
2 Available at: https://github.com/Starofall/CrowdNav  

54. def trip_overhead_data_reducer(state, newData): 
55.     if newData["isExperiment"]: 
56.         cnt = state["trips_count "] 
57.         state["avg_overhead"] =  
58.            (state["avg_overhead"] * cnt +newData["overhead"]) / (cnt+1) 
59.         state["trips_count "] = cnt + 1 
60.         return state 
61.     else: 
62.         return state 

Listing 2: Illustration of using a Boolean JSON field for 
distinguishing between data coming from cars using the 

experimental router vs the baseline one.   

  



(left axis) and the average computational time of the router (right 
axis). The results show that if we re-route more often, the average 
trip overhead is reduced (there is a linear trend despite the high 
variance). The computational time is almost stable up to a point 
where it increases rapidly. Having a threshold on the maximum 
computational time and using the cut-off mechanism of the tool 
described in the previous sections we can stop an experiment 
before it causes any damage to the base-level system, by making it 
operate in the dangerous zone highlighted on the left part of 
Figure 2.  

5. RELATED WORK 
Our approach touches upon several software engineering areas, 
including runtime self-adaptation, experiment-driven 
development, and performance engineering. We focus on the 
closely related work on the last two areas here; for a comparison 
to self-adaptation approaches we refer the reader to [14]. 

Experiment-driven development is present as an idea in different 
conceptual frameworks proposed in literature, namely evidence-
based software engineering (SE) [3], data-driven SE [1], and 
value-based SE [2].  Evidence-based SE is a recently proposed 
vision of being able to validate any new development or change to 
a system from the perspective of the value it delivers. In this, new 
developments and changes are evaluated based on performing 
end-user experiments (e.g. A/B testing [9]). Data-driven SE is a 
practice that focuses on continuous collection of data to quantify 
metrics related to produce quality and make estimates of post-
release failures early in the development cycle. Finally, value-
based SE is a related practice that focuses on increasing a 
company’s business value by improving the economic efficiency 
of the software they develop. Our approach draws inspiration 
from all the above conceptual frameworks and strives to provide 
an open-source, tool-supported framework as a next step towards 
realizing experiment-driven development.  

As proposed in our work, systematic experimentation requires 
continuous monitoring of experimentation effects. Such 
monitoring is known to influence the system under observation, as 

explained for example in [11]. In some cases, such overhead can 
be separated from the useful measurement data—this has been 
done for example in the HPC context in [12]—however, the 
overhead then still impacts the overall system behavior. We 
therefore need to consider monitoring methods that reduce 
overhead by dynamically managing the instrumentation probes. 

Measurement frameworks can manage the instrumentation probes 
either by enabling and disabling data collection, or even by 
inserting and removing probe code as needed. Both methods 
reduce the monitoring overhead, as has been illustrated for 
example in the context of the Kieker monitoring framework [6, 
15], or with SPASS meter [4]. As we show in our work focused in 
particular on dynamic instrumentation management [7], probe 
insertion can introduce perturbations that persist even after 
complete probe removal, however, these perturbations are likely 
to be negligible in the class of systems we consider. 

Even without extensive overhead management, limited 
monitoring has been shown to achieve reasonable overhead for 
example in potentially complex enterprise systems [13]. This 
leads us to believe that on the monitoring side, our work has 
generally feasible objectives. 

6. CONCLUSION 
In this paper, we have argued for the need of a systematic 
experimentation approach to deal with the uncertainties inherent 
to the design and development of many relevant software-
intensive systems-of-systems. We proposed to specify 
experiments connected with system architecture, in particular 
tunable parameters of a system, which can enhance the 
understanding of system behavior. We argued for the need to 
launch such experiments in production environments, where the 
cost of experimenting has to be carefully evaluated. To do this, we 
have proposed a stage-based experiment execution that gradually 
rolls out an experiment to a system. We have described our initial 
prototype tool reifying these ideas. In the future, we intend to 
fully implement stage-based execution in our tool and evaluate it 
on a real-life case study.   

 
Figure 2. Indicative results when experimenting with the “re-route frequency” parameter. 
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