
Towards Systematic Live Experimentation in Software-
Intensive Systems of Systems

Ilias Gerostathopoulos1, Tomas Bures2, Sanny Schmid1, Vojtech Horky2, Christian Prehofer1,
and Petr Tuma2

1Fakultät für Informatik
Technische Universität München

Munich, Germany
{gerostat, schmidsa, prehofer}@in.tum.de

2Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic
{bures, horky, tuma}@d3s.mff.cuni.cz

Abstract
As the size, variation, and sophistication of software-intensive
systems-of-systems grows, so does the uncertainty inherent to
their design and development. To deal with this issue, we propose
a framework for systematic experimentation based on declarative
specification connected with system architecture. The focus is on
how to specify experiments that allow systematic exploration of
the space of alternative configurations at runtime. Since such
experiments should be launched on live systems, extra care needs
to be taken in preventing damages when experimenting with the
systems. Therefore, we also focus on how to quantify the direct
and the indirect cost associated with each experiment execution
(which needs to be included in a cost-benefit analysis for system
adaptation) and on how to gradually roll out an experiment via a
number of different stages. We use the development of a route
planner system as an example to motivate and exemplify our
approach.

Keywords
Systematic experimentation; uncertainty; system architecture

1. INTRODUCTION
There is a clear trend of devices getting more and more connected
to the Internet. Connected systems such as cars, home appliances,
and office buildings are also increasingly becoming smarter: they
are more aware of user preferences and environment situations;
able to adjust their operation to save power and money; serve
users in personalized ways. As the size, variation, and
sophistication of such software-intensive systems-of-systems
(siSoS) grows, so does the uncertainty inherent to their design and
development.

Two broad sources of uncertainty can be distinguished [5].
Internal uncertainty refers to the uncertainty stemming from the
complexity of the software system itself: large codebases,
multiple development teams, diverse development practices and
standards across teams, frameworks featuring multiple levels of
abstraction are all factors that hinder the understanding of how a
siSoS operates internally. It is not wrong to assume that in many
real-life software-intensive systems, even their own developers
and software architects may not be able to have a complete and
accurate understanding of how the systems they build operate or
will operate when brought to production (due to e.g. scale effects).
This is exacerbated in the case of siSoS, which feature managerial
independence, heterogeneity, and emergent behavior.

External uncertainty stems from the complexity and
unpredictability of the physical environment (natural disasters,
etc.) and of the non-software-controlled parts (network,
mechanical, chemical parts, etc.) of siSoS. This also includes the
unpredictable behavior of human users and the unreliability of

human operators. Again, maintaining a complete and accurate
understanding of the interplay of the different physical and
mechanical parts in a system, while taking into consideration a
large number of possible user interactions, is a close-to-
impossible task even for the most skilled system architects.

Despite their high internal and external uncertainty, siSoS still
need to be developed, integrated, tested, and delivered to
customers at an increasing pace. This is a direct effect of the
speed-up of innovation cycles and the pursue of continuous
deployment (i.e. every several minutes or hours) seen in many
products delivered today [8]. Rapid development cycles make it
hard for system architects and developers to manage the growing
internal and external uncertainty of the systems they are building.

In this paper, we focus on how to deal with the uncertainty
inherent to the design and development of siSoS. We argue that
we need methods and tools which

(i) allow developers to test their understanding of the system
they are building;

(ii) enable the system under construction to adjust itself not only
in response to the environment in general, but also to reflect
the gradually maturing understanding of the developers.

Such methods should transcend the traditional barrier of testing
environments to be also applicable to production environments,
where the effects of scale and emergent behavior [16] can be
better studied. Furthermore, due to the large scale and complexity
of the siSoS, monitoring has to be done from within the siSoS.
Any self-observation naturally impacts system behavior and
service quality due to probing overhead, increased communication
overhead and because the siSoS may need to execute alternative
behavior to assess whether it gives better results than the regular
behavior. A careful assessment of the negative impact of self-
observation in system and service performance and output quality
is therefore needed.
In response to these needs, and inspired by ideas in evidence-
based engineering and data-driven evolution [3], we propose a
framework for systematic experimentation with live systems
based on declarative specification connected with system
architecture. By “live” we mean systems deployed in production
environments. We focus on how to specify experiments that allow
systematic exploration of the space of alternative configurations,
as well as on how to quantify the direct and the indirect cost
associated with each experiment execution—which needs to be
included in a cost-benefit analysis for system adaptation. We also
provide a work-in-progress prototype of a tool implementing the
framework in Python and some results of our initial experiments
using the tool.

Although our approach is applicable to any kind of software
system one can experiment with, it is particularly beneficial for

experimenting with siSoS. This is because (i) the full-scale
emergent behavior of siSoS can only be observed and studied in
production environments, and (ii) the managerial independence of
the individual systems hinders the comprehensive experimentation
of system-of-systems in testing environments.

The rest of the paper is structured as follows. Section 2 introduces
the example system used for motivating and exemplifying our
approach. Section 3 describes the main ideas behind systematic
stage-based experiment execution in live siSoS. We then describe
our work-in-progress implementation of a tool that reifies these
ideas in Section 4, together with indicative experimentation
results. Section 5 overviews related work in experiment-driven
development and performance-related issues, and Section 6
concludes with a summary of contributions.

2. RUNNING EXAMPLE
To illustrate our approach for systematic live experimentation in
siSoS, we describe here an example system from the mobility
domain, which we will use throughout the paper.

In our running example, a number of cars navigate in a city. Each
car has an itinerary consisting of a number of destinations to reach
within certain time constraints. For route planning, each car uses
an external routing service accessible via the mobile network. The
route planner takes as input the current position of the car (as
monitored by on-board sensors, e.g. GPS) and its target
destination (typed in by the driver) and provides the fastest route
to the destination as output. To calculate the fastest route, it runs a
Dijkstra algorithm on the graph representing the map of the city
consisting of nodes/intersections and edges/streets. The cost of
each edge is calculated based on static information, i.e. streets
length and maximum permissible speed on every street, and on
dynamic information, i.e., traffic level on each street. The latter is
estimated based on travel information sent by the cars: upon
reaching an intersection (end of a street), each car sends the time
it took to navigate the street to the route planner. This serves as an
indication of the traffic level in the street, with higher travel times
in a street than normal (i.e. calculated with the static information)
indicating high traffic in this street. To deal with the dynamic
changes in the city traffic that might make certain routes more or
less preferable, each car periodically polls the route planner for a
route and re-routes itself if needed.

Even though the above system is quite simple compared to real-
life route planners, which typically work with historical traffic
data and even real-time predictions, it still features a number of
challenges in its design, implementation, and testing that are
related to both internal and external uncertainty factors:

• How often should each car poll the route planner? Polling
more often might provide faster routes but also increases the
communication overhead and the computation load on the
planner.

• How can the route planner ensure that it has up-to-date
information for the traffic level in all streets? Since the
traffic information is estimated by the travel times of cars
themselves, the planner might not have up-to-date
information on the streets less traveled. A possibility for the
planner is then to route certain cars through these streets to
collect information, which can potentially cause annoyance
to the drivers.

• How much should the route planner rely on static
information and how much on dynamic information in
determining the routes? Relying more on the latter will
make planning react quicker to traffic jams but may also

result in creating new traffic jams by re-routing many cars
through the same alternative routes.

The above questions serve just to illustrate the different design
decisions and tradeoffs, mainly between system quality and
performance, that have to be accounted for when developing such
a system. Apart from thoroughly testing the system in testing
environments via experimenting with the different decisions and
tradeoffs, we may also need to resolve some of them in
production. In the following, we provide a framework aiming to
support this.

3. SYSTEMATIC EXPERIMENTATION
Experimentation in siSoS requires a systematic approach in which
the choice of system variants (at design time or at runtime) and
optimization of system’s parameters needs to be based on rigorous
and statistically justified experiments. In the basic case this means
modifying a part of a system and collecting data to evaluate the
effect of a particular choice.

Given the large-scale nature and the close interaction with humans
and the physical environment, siSoS cannot be easily replicated in
testing environments, which means that the experimentation has
to be typically performed on a live system. This however implies
that the experimentation may negatively affect the system—first
because a choice being experimented with can be suboptimal to
the actual current version of the system, second because the
process of collecting and evaluating the experimental data cannot
be separated from the system and itself may be quite costly. For
instance, in case of collecting performance data, the
instrumentation of the system can yield a significant slowdown.
(In one of our previous experiments, we showed that even a very
efficient instrumentation of all methods in SPECjbb2015 yielded
400% slowdown [7].) The cost of experimentation gets also
projected in energy consumption, which is especially felt on
battery powered devices. Finally, experiments that involve
humans typically come with a high inherent cost which stems
from the fact the system requires a human user to do some extra
work (e.g. provide feedback on satisfaction) or may lower user
appreciation (e.g. by navigating a vehicle through an unusual
route or bringing the car to a traffic jam in an unexplored street).

We thus propose the systematic experimentation as a closed-loop
process which, in addition to executing experiments, continuously
monitors the effect of the experimentation on the running system
and controls (or even stops) the experimentation should the
system be negatively impacted beyond a certain limit.

To correctly capture and execute the systematic and statistically
relevant experimentation, we conceptualize the experiment in this
section. Then in Section 4, we propose a tool-supported
framework for automatically performing systematic
experimentation based on a set of well-defined experiments.

3.1 Quantifying the cost of an experiment
We view the experiment as a time-constrained process which
changes the system in a defined way and observes and evaluates
the effect of the changes. To account for the negative impact on
the utility of a system, we define the experiment as a workflow of
stages. Each stage is associated with a cost (i.e. the amount of the
negative impact on the system’s utility). Splitting the experiment
to smaller pieces makes it easier to measure and quantify their
cost. Further, a subsequent stage would typically exploit evidence
collected in some previous stage to estimate its cost.

To illustrate this on the running example, assume that the routing
algorithm lends itself to parameterization which has the potential

to increase user satisfaction, but requires heavier computation
(e.g. to re-evaluate routes more often, to consider more routes as
potential alternatives or to extend the horizon of simulation to
predict the traffic in the near future). In this respect, the
experiment would have the following stages:

1st stage: Evaluate the cost of instrumentation and performance
data collection on the HW platform where the experiment is going
to be executed. This can be done by instrumenting a dummy
function and iterating its execution multiple times to obtain
statistical confidence about the expected value of the
instrumentation overhead in a single instance. Though this
experiment will require some computation capacity, its impact on
the system is rather minimal because the experiment is rather
small-scale compared to the processing connected with the car
navigation.

2nd stage: Instrument the existing routing algorithm to get the
baseline performance of its individual components. The estimated
cost here takes into account the expected frequency of executions
of the instrumented code and the cost of instrumentation
determined in the 1st stage.
3rd stage: Modify the parameters of the routing algorithm,
instrument it and execute it in a limited scale (e.g. use the
modified version for only 1% of cars). This provides an
estimation of the cost of a larger scale deployment of the
experiment in the 4th stage. The estimated cost of the 3rd stage
takes into account the baseline performance of the individual
components of the routing algorithm from the 2nd stage and an
estimation of where the algorithmic complexity increases given
the particular experiment.

4th stage: Execute the experiment in a larger scale (e.g. use the
modified version of the routing algorithm for 20% of cars) to get
representative data that reflect potential resource contention due to
unforeseen interactions at the larger scale.
5th stage: Execute the experiment to a full extent, i.e. use the
modified version of the routing algorithm for all cars. The
experiment should only reach this stage if there is clear indication
that the utility of the system (measured, e.g., a function of user
satisfaction rate and degree of resource utilization) will not sink
below a certain limit (termed utility threshold in the next Section).

3.2 Structure of an experiment
From a structural perspective, we see the experiment as consisting
of the following:

• Input parameters—parameters of the experiment (e.g. in
case of exploring alternative routes, the experiment
parameter can be the maximal time a driver can be delayed
for the sake of exploring traffic in less-travelled streets of
the city).

• System utility—a measure of how well the system performs.
An experiment is evaluated based on how much it improves
the baseline utility (i.e. the utility before the experiment is
executed).

• System utility threshold—a limit on system utility below
which the experiment is not allowed to continue in
executing any of its stages. This serves to maintain system’s
dependability in face of potential negative effects (i.e. the
cost) of the experiment. The expected effect of a stage on
the utility is captured by the cost of the stage as explained in
the structure of the stage below.

• Stages—different steps of the experiment as explained in
Section 3.1. The stages are connected in an oriented graph,
where edges in the graph are guarded by conditions over

input parameters and outputs of previous stages (Figure 1).
The structure of a single stage is described below.

• Result—decision or quantification (backed by statistical
evidence) whether and how much a particular parameter
setting or a particular system variant increases/decreases
system utility w.r.t the baseline utility.

Structure of a stage:

• Input parameters—come from the instantiation of the
experiment or from previous stages.

• Output values—values that are provided as a result of the
stage.

• Function to execute in the stage—this typically means
modifying the system, collecting data from it and computing
output values.

• Cost dependencies—specify which input parameters the
stage cost depends on. This allows skipping the stage if
experiment results for the stage are already known in the
particular or similar settings of the parameters.

• Cost of the stage—this quantifies (based on input
parameters) the expected impact on executing the stage on
the system’s overall utility.

3.3 Tackling uncertainty
Structuring the experiments in a workflow of stages and
quantifying the cost of individual stages allows decoupling the
coordination and control of the experiment from the description of
the experiment itself. This creates a closed loop control in which
effects of a stage are first assumed and then continuously
measured w.r.t. to the system utility. This allows the
experimentation framework to guarantee the dependability of the
system being experimented with.

Evidence collected by experiments can be used both for off-line
evolution and on-line adaptation. Contrary to the traditional view
of experimentation, the inherent uncertainty in the design of the
experiment itself (in particular the estimation of the stage cost)
gives rises to parallel evolution/adaptation in two areas: (i) the
system itself and (ii) the specification of experiments which come
along with the system. In particular, in (ii), the data collected
about the effects of an experiment stage can be further used
retroactively to learn and fine-tune the cost estimation of a stage.

Though we have not systematically explored and implemented
this learning of costs, this potentially allows extending the
structure presented in Section 3.2 by replacing the direct
specification of stage’s cost with only indicators of what the
actual stage cost depends on (formally, we assume that the stage
cost is an unknown function of cost dependencies).

To illustrate the concept, consider optimizing the traffic prediction
service by routing certain cars via alternative (possibly worse)
routes to explore the traffic levels and flow. Obviously, this is
connected with the cost of reducing the satisfaction of selected
drivers. As such, the system has to carefully scale the extent of the
experiment—it should estimate the cost of each alternatively
routed car (taking into account the driver profile) and keep the
overall cost below the system utility threshold. Similarly, the
experiment is connected with computation cost needed for
simulations to select the alternative routes that would have the
highest positive impact on the overall system utility if explored.
As these costs cannot be quantified upfront, the experiment
designer can only indicate what they depend on (e.g. number of
unexplored routes where traffic is not available, driver’s profile,
etc.). Specifically, this experiment would have a structure as
outlined below:

• Input parameters: percentage of cars with alternative routes.
• System utility: function(average of trips overhead, user

satisfaction rate, degree of resource utilization). Trip
overhead is the actual duration of a trip versus the theoretical
case where routing is performed based only on static map data
(i.e. length and maximum speed of each street). User
satisfaction is directly related to the number of complaints
drivers issue when annoyed. Resource utilization is quantified
via the CPU computation cost of the route planner.

• System utility threshold: 90%
• Result: system utility when experimenting / baseline system

utility. The baseline system is the system where no cars have
alternative routes.

In all the stages of the experiment, the input parameters are the
same: percentage of cars with alternative routes. The individual
experiment’s stages are depicted in the graph of Figure 1 and
detailed below (note that we have not included actual costs, as
these are learned over time):

• Stage #1: “assess computational cost”
o Output values: assessed computation cost of simulations

to find out which parts of the city would have positive
impact on planning if explored

o Function: Instrument the component of the route planner
responsible for identifying “less traveled” routes and
gather data to infer the overhead of its computation.

o Cost dependencies: number of unexplored areas
• Stage #2: “determine relevancy of alternative routes”

o Output values: expected improvement of system utility if
areas are explored

o Function: Determine less traveled areas and calculate
differences between current routes and routes that take
into account information on less traveled areas.

o Cost dependencies: computation cost assessed in phase #1
• Stage #3: “explore less-traveled areas”

o Output values: system utility, as specified in experiment
definition

o Function: Configure planner to route a certain percentage
of cars through the less traveled areas.

o Cost dependencies: expected improvement of system utility

4. PROTOTYPE TOOL & EXPERIMENTS
In this section, we first describe how we have reified the main
concepts of our experimentation approach in a dedicated tool. We
then give a brief overview of the testbed we set up to test our
approach and on our initial experiments with using the tool.

4.1 Work-in-progress Implementation
To enable experimentation with live systems, we have been
developing an open-source tool in Python, called Real-Time
Experimentation1 (RTX) [14]. So far, RTX can be used for
specifying and running a number of experiments on a base-level
system. Following the structure of Section 3.2, an RTX
experiment consists of (i) a number of input parameters, (ii) a
function to measure system utility based on the data coming from
the base-level system, and (iii) a specification of the amount of
incoming data that need to be analyzed. To avoid hysteresis
effects (due to that the effect of a change in the base-level system
may not be directly observable), an RTX experiment also includes
a specification of the amount of data that need to be first skipped

1 Available at: https://github.com/Starofall/RTX

Figure 1. Stages in execution of example experiment.

1. experiments_seq = [
2. {
3. "knobs": {
4. "reroute_frequency": 0
5. },
6. "ignore_first_n_results": 5000,
7. "sample_size": 10000
8. },
9. {
10. "knobs": {
11. " reroute_frequency": 5
12. }
13. "ignore_first_n_results ": 5000
14. "sample_size": 10000
15. },
16. … # more experiments here
17.]
18.
19. primary_data_provider= {
20. "type": "kafka_consumer",
21. "kafka_uri": "http://kafka:9092",
22. "topic": "trip-overhead",
23. "serializer": "JSON",
24. "data_reducer": trip_overhead_data_reducer
25. }
26.
27. secondary_data_provider= {
28. "type": "kafka_consumer",
29. "kafka_uri": "http://kafka:9092",
30. "topic": "router-load",
31. "serializer": "JSON",
32. "data_reducer": performance_data_reducer
33. }
34.
35. def trip_overhead_data_reducer(state, newData):
36. cnt = state["trips_count"]
37. state["avg_overhead"] =
38. (state["avg_overhead"] * cnt +newData["overhead"]) / (cnt + 1)
39. state["trips_count"] = cnt + 1
40. return state
41.
42. def performance_data_reducer(state, newData):
43. cnt = state["load_count"]
44. state["avg_load"] =
45. (state["avg_load"] * cnt +newData["load"]) / (cnt + 1)
46. if state["avg_load"] > 20:
47. raise StopIteration("routing got too expensive")
48. state["load_count"] = cnt + 1
49. return state
50.
51. def evaluator(resultState):
52. return – (resultState["avg_overhead"] + resultState["avg_load"])
53.

Listing 1: Example of specifying a sequence of experiments in
RTX.

before the data analysis starts. An experiment’s system utility
threshold and stages are currently not part of an RTX experiment
definition; we detail on our plans to support both in Section 4.2.
Finally, we have chosen not to include a “results” structure in the
definition of an experiment, since we wanted to be agnostic w.r.t
the baseline configuration (and corresponding utility) of the base-
level system. Such results can though be easily generated by
running two different RTX experiments—one with the baseline
configuration, one with the experimental one—and comparing
their resulting utility values.

Let us illustrate how RTX can be used in specifying and running
experiments in the running example (our base-level system).
Consider that we want to experiment with the frequency of re-
routing requests on the route planner. In this case, the user
specifies a sequence of experiments (Listing 1, lines 2-15), each
of which sets a value to the same input parameter (called knob in
RTX) and executes until it has received data points equal to the
“ignore_first_n_results” (line 6) plus “sample_size” (line 7).

To evaluate the system utility that corresponds to an experiment,
one or more data providers have to be specified, together with
their corresponding reducer functions. The latter summarize the
data as they come and store them to a “state” Python variable.
This allows us to combine analysis results from different sources
as inputs to a multivariate system utility function, the evaluator
function in RTX.

In our example, two data providers have been specified (Listing 1,
lines 19-25 and 27-33). The first one provides trip overheads (see
Section 3.3), the second provides data measuring the CPU load of
the router. Although RTX currently supports Kafka [10] as the
default data provider mechanism, we are working on supporting
also other publish-subscribe platforms such as MQTT. Each data
provider has a dedicated reducer function (lines 35-40 and 42-49).
Both functions in our example simply return the moving average
of their input values. Finally, the evaluator function (lines 51-52)
returns the inverse sum of the two averages, as the ultimate
measure of system utility.

4.2 Planned Extension: Stages
We have so far focused on creating a working prototype of an
experimentation tool that is generic and extensible. We detail on
our plan to include stage-based execution of experiments here.

Essentially, an experiment stage can be seen as a regular RTX
experiment, since a stage’s structure closely resembles that of an
experiment (Section 3.2). We therefore plan to build on the
existing abstractions offered by the tool to implement stage-based
execution in the following way:

• Each stage will be an RTX experiment.
• The execution of stages will be controlled by a custom

experiment strategy that essentially implements the control
structure of Figure 1. We have already provided support for
three concrete implementations of experiment strategies in
RTX, namely sequential, step, and self-optimizer [14]. The
implementation of the custom strategy will be the
responsibility of the RTX user (developer or tester).

• Each stage specification will contain a cost function,
implemented as an evaluator.

• At any point during the execution of a stage, the tool should
be able to monitor the cost on the system and halt the stage
execution (and, optionally the execution of the experiment as
a whole) if a specified cost threshold is exceeded. We have
already provided a way to do this in RTX by raising a
StoptIteration exception (Listing 1, lines 46-47, highlighted).

• When rolling out an experiment incrementally (as e.g. in the
3rd stage of Section 3.1), it is important to be able to
distinguish between data coming from the components being
experimenting with and the rest of the components. For
example, we should be able to distinguish between data
coming from cars routed with the experimental router and data
coming from cars routed with the baseline router. For this, we
plan to set a JSON-based protocol to allow the base-level
system to tag the data it submits to RTX. An example of how
this can work is depicted in Listing 2 (line 55, highlighted).

4.3 Indicative Experiments Using RTX
To evaluate the feasibility of running experiments using RTX, we
have implemented a testbed2 based on the running example. Our
testbed uses SUMO, a state-of-the-art discrete-event mobility
simulator and TraCi, a Python interface to SUMO. We have
simulated 750 cars moving in a city with approx. 450 streets and
1200 intersections. The cars continuously travel from one
randomly picked destination to another. They are all controlled
via TraCI. For routing, they use our own Python-based router,
which takes into account both static information (street lengths
and maximum speeds) and dynamic information (estimated traffic
per street, based on data provided to the router by the cars). The
router can also optionally route certain cars to less traveled streets
to obtain more up-to-date information on the travel level in these
streets. In our setting, the simulation runs forever, to emulate a
real-life live system.

We have equipped our testbed with several parameters that can be
tuned at runtime, including re-routing frequency, measured as the
number of SUMO ticks between re-routing: the smaller the
number, the higher the frequency. We have also enabled the
testbed to generate data that can be used in RTX: each car
publishes its trip overhead upon reaching a destination (on the
“trip-overhead” Kafka topic); the duration of router execution per
SUMO tick is also monitored and sent to RTX (via publishing it
on the “router-load” Kafka topic). We have used Kafka for both
setting parameter values to the testbed at runtime and getting data
emitted from the testbed.

We have successfully run a number of different experiments and
managed to optimize the testbed at runtime via observing the
promising regions for each parameter value and running more
focused experiments. We report here our results with
experimenting with the re-routing frequency parameter.

As depicted in Figure 2, we performed 50 experiments with
different values of the re-routing frequency, starting from re-
routing every 100 SUMO ticks and ending at re-routing every 2
ticks. Each experiment was specified with 10.000 ignore size and
10.000 sample size. We measured both the average trip overhead

2 Available at: https://github.com/Starofall/CrowdNav

54. def trip_overhead_data_reducer(state, newData):
55. if newData["isExperiment"]:
56. cnt = state["trips_count "]
57. state["avg_overhead"] =
58. (state["avg_overhead"] * cnt +newData["overhead"]) / (cnt+1)
59. state["trips_count "] = cnt + 1
60. return state
61. else:
62. return state

Listing 2: Illustration of using a Boolean JSON field for
distinguishing between data coming from cars using the

experimental router vs the baseline one.

(left axis) and the average computational time of the router (right
axis). The results show that if we re-route more often, the average
trip overhead is reduced (there is a linear trend despite the high
variance). The computational time is almost stable up to a point
where it increases rapidly. Having a threshold on the maximum
computational time and using the cut-off mechanism of the tool
described in the previous sections we can stop an experiment
before it causes any damage to the base-level system, by making it
operate in the dangerous zone highlighted on the left part of
Figure 2.

5. RELATED WORK
Our approach touches upon several software engineering areas,
including runtime self-adaptation, experiment-driven
development, and performance engineering. We focus on the
closely related work on the last two areas here; for a comparison
to self-adaptation approaches we refer the reader to [14].

Experiment-driven development is present as an idea in different
conceptual frameworks proposed in literature, namely evidence-
based software engineering (SE) [3], data-driven SE [1], and
value-based SE [2]. Evidence-based SE is a recently proposed
vision of being able to validate any new development or change to
a system from the perspective of the value it delivers. In this, new
developments and changes are evaluated based on performing
end-user experiments (e.g. A/B testing [9]). Data-driven SE is a
practice that focuses on continuous collection of data to quantify
metrics related to produce quality and make estimates of post-
release failures early in the development cycle. Finally, value-
based SE is a related practice that focuses on increasing a
company’s business value by improving the economic efficiency
of the software they develop. Our approach draws inspiration
from all the above conceptual frameworks and strives to provide
an open-source, tool-supported framework as a next step towards
realizing experiment-driven development.

As proposed in our work, systematic experimentation requires
continuous monitoring of experimentation effects. Such
monitoring is known to influence the system under observation, as

explained for example in [11]. In some cases, such overhead can
be separated from the useful measurement data—this has been
done for example in the HPC context in [12]—however, the
overhead then still impacts the overall system behavior. We
therefore need to consider monitoring methods that reduce
overhead by dynamically managing the instrumentation probes.

Measurement frameworks can manage the instrumentation probes
either by enabling and disabling data collection, or even by
inserting and removing probe code as needed. Both methods
reduce the monitoring overhead, as has been illustrated for
example in the context of the Kieker monitoring framework [6,
15], or with SPASS meter [4]. As we show in our work focused in
particular on dynamic instrumentation management [7], probe
insertion can introduce perturbations that persist even after
complete probe removal, however, these perturbations are likely
to be negligible in the class of systems we consider.

Even without extensive overhead management, limited
monitoring has been shown to achieve reasonable overhead for
example in potentially complex enterprise systems [13]. This
leads us to believe that on the monitoring side, our work has
generally feasible objectives.

6. CONCLUSION
In this paper, we have argued for the need of a systematic
experimentation approach to deal with the uncertainties inherent
to the design and development of many relevant software-
intensive systems-of-systems. We proposed to specify
experiments connected with system architecture, in particular
tunable parameters of a system, which can enhance the
understanding of system behavior. We argued for the need to
launch such experiments in production environments, where the
cost of experimenting has to be carefully evaluated. To do this, we
have proposed a stage-based experiment execution that gradually
rolls out an experiment to a system. We have described our initial
prototype tool reifying these ideas. In the future, we intend to
fully implement stage-based execution in our tool and evaluate it
on a real-life case study.

Figure 2. Indicative results when experimenting with the “re-route frequency” parameter.

REFERENCES
[1] Bird, C. et al. 2011. Empirical Software Engineering at

Microsoft Research. Proceedings of the ACM 2011
Conference on Computer Supported Cooperative Work
(New York, NY, USA, 2011), 143–150.

[2] Boehm, B.W. 2006. Value-Based Software Engineering:
Overview and Agenda. Value-Based Software Engineering.
S. Biffl et al., eds. Springer Berlin Heidelberg. 3–14.

[3] Bosch, J. and Olsson, H.H. 2016. Data-driven Continuous
Evolution of Smart Systems. Proc. of SEAMS ’16 (2016),
28–34.

[4] Eichelberger, H. and Schmid, K. 2014. Flexible resource
monitoring of Java programs. Journal of Systems and
Software. 93, (Jul. 2014), 163–186.

[5] Esfahani, N. et al. 2011. Taming uncertainty in self-adaptive
software. Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on
Foundations of software engineering (2011), 234–244.

[6] van Hoorn, A. et al. 2009. Continuous Monitoring of
Software Services: Design and Application of the Kieker
Framework. Department of Computer Science, Kiel
University, Germany.

[7] Horký, V. et al. 2016. Analysis of Overhead in Dynamic
Java Performance Monitoring. Proceedings of the 7th
ACM/SPEC on International Conference on Performance
Engineering (New York, NY, USA, 2016), 275–286.

[8] Humble, J. and Farley, D. 2010. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley.

[9] Kohavi, R. et al. 2009. Online Experimentation at Microsoft.
Third Workshop on Data Mining Case Studies and Practice
(2009).

[10] Kreps, J. et al. 2011. Kafka: A distributed messaging system
for log processing. Proceedings of the 6th International
Workshop on Networking Meets Databases (NetDB’11)
(2011), 1–7.

[11] Malony, A.D. 1990. Performance Observability. University
of Illinois at Urbana-Champaign.

[12] Malony, A.D. and Shende, S.S. 2004. Overhead
Compensation in Performance Profiling. Euro-Par 2004
Parallel Processing. M. Danelutto et al., eds. Springer Berlin
Heidelberg. 119–132.

[13] Parsons, T. et al. 2006. Non-intrusive end-to-end runtime
path tracing for J2EE systems. Software, IEE Proceedings.
153, 4 (Aug. 2006), 149–161.

[14] Schmid, S. et al. 2017. Self-Adaptation Based on Big Data
Analytics: A Model Problem and Tool. Proc. of 12th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS’17) (Buenos
Aires, Argentina, May 2017), 102–108.

[15] Waller, J. et al. 2014. Application Performance Monitoring:
Trade-Off between Overhead Reduction and Maintainability.
Proceedings of the Symposium on Software Performance
2014 (Stuttgart, Germany, Nov. 2014), 1–24.

[16] Wolf, T.D. 2007. Analysing and Engineering Self-
Organising Emergent Applications. Katholieke Universiteit
Leuven.

