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Abstract—In this paper, we focus on self-adaptation in large-
scale software-intensive distributed systems. The main problem 
in making such systems self-adaptive is that their adaptation 
needs to consider the current situation in the whole system. 
However, developing a complete and accurate model of such 
systems at design time is very challenging.  To address this, we 
present a novel approach where the system model consists only 
of the essential input and output parameters. Furthermore, Big 
Data analytics is used to guide self-adaptation based on a 
continuous stream of operational data.  We provide a concrete 
model problem and a reference implementation of it that can be 
used as a case study for evaluating different self-adaptation 
techniques pertinent to complex large-scale distributed systems. 
We also provide an extensible tool for endorsing an arbitrary 
system with self-adaptation based on analysis of operational 
data coming from the system. To illustrate the tool, we apply it 
on the model problem.  

Keywords-self-adaptation; Big Data analytics; model problem 

  INTRODUCTION  
 
In this paper, we focus on self-adaptation in large-scale 

software-intensive distributed systems. As an example, 
consider a city traffic management system, which collects data 
from many sources like cars or traffic lights and then 
optimizes the traffic guidance. The main problem in making 
such systems self-adaptive is that their adaptation needs to 
consider the current situation (and possibly predictions on 
future situations) in the whole system. Due to the complexity 
of such systems, it is very difficult to explicitly plan for all 
eventual situations and model them accurately upfront. This 
means that most current approaches for adaptive systems 
which build an explicit model of the system [1]–[4] are not 
very suitable in our case. 

The main, novel approach in this paper is to use the data 
generated by the system at runtime (operational data) for 
adaptation. Recent advances in Big Data technology permit 
the efficient storage and analysis of large amount of data both 
as they come (stream mode) and in batch mode [5]. In our 
approach, the stream of data coming from the distributed 
system is processed and used for adaptation.  

Instead of creating an explicit system model, which is 
typically an abstraction to capture all essential states, we only 
use a simple model with the essential input and output 

parameters which is easy to construct at design time. Based on 
the operational data, we aim to optimize the system by 
different adaptation steps. For this purpose, we use evaluation 
functions to analyze the data and extract the suitable actions.   

We provide the following two artifacts to substantiate our 
approach: 
1. A model problem for adaptation in large-scale complex 

distributed systems, relying on Big Data analytics. 
2. A tool for performing adaptation of a system based on 

analysis of large scale operational data at run time. The 
tool is based on established Big Data tools like Kafka and 
Spark. We employ a simple model based on input and 
output parameters and focus mainly on system 
optimizations based on optimization functions. 

The main novelty of our artifacts is the seamless 
integration of self-adaptation with latest Big Data technology. 
This permits to evaluate large scale data sets at run time to 
effectively optimize systems based on adaptation. 

As a sample application area for our model problem, we 
focus on a traffic application. We consider a smart navigation 
system that is deployed in a number of cars in a city, collects 
data from the cars’ sensors (e.g. position, speed), and 
navigates the cars based on the current estimation of traffic in 
the streets. In the context of this running example, the main 
challenges connected with adaptation are as follows: How to 
design the system to minimize data collection from the cars so 
that the traffic predictions are still useful? How to design the 
system to use a different routing algorithm that scales better 
but has a bigger setup cost, based on the number of drivers 
that are present?  

In this context, we provide a Big Data-based tool that 
makes it possible to specify how to experiment with different 
settings in the system and based on this specification, it drives 
the experiments and adapts the system.  

The paper is structured as follows. Section II provides a 
brief overview of the Big Data tools relevant to our work. 
Section III describes the model problem, while Section IV 
provides the tool for performing Big Data-enabled adaptation. 
Section V describes challenges we faced and possible 
extensions of our work. Section VI briefly details on the 
structure of the provided artifacts (detailed instructions are 
packaged together with the software artifacts). Section VII 
discusses related work while Section VIII provides an 
overview of contributions.   



 BACKGROUND ON BIG DATA TOOLS 

A. Kafka 
Kafka is a distributed messaging system originally 

developed by LinkedIn, now an open-source project of the 
Apache foundation [6], [7]. It is intended for building real-
time data pipelines with high throughout and low latencies.  

In Kafka, a stream of messages of a particular type is 
defined by a topic. Producers publish messages to topics; the 
published messages are stored at a set of servers called 
brokers. Consumers subscribe to topics and pull messages 
from the brokers. Kafka supports both point-to-point delivery, 
where multiple consumers consume a single copy of all 
messages in a topic, and publish-subscribe, where each 
consumer receives its own copy of messages in a topic. Topics 
in Kafka are divided into multiple partitions; each broker 
(server in the cluster) stores one or more partitions, 
represented by a logical log (set of typically 1-GB-long files). 
Each message is addressed by its logical offset in the log. As 
a design decision for simplicity and low overhead, Kafka 
brokers are stateless: it is the consumers that need to keep 
track of the offset and send it to the broker when pulling new 
data. This has the interesting feature of a consumer being able 
to rewind to an old offset and re-consume data.   

Kafka can scale horizontally by adding more brokers to a 
cluster. There is no central master broker; instead, consumers 
coordinate in a decentralized way using a distributed 
consensus service called Zookeeper [8]. 

B. Spark  
Spark is a fault-tolerant computing framework for large 

clusters [9]. It was originally developed to support (i) 
interactive data exploration and analytics (a shortcoming of 
traditional map-reduce-based computations due to their high 
latency), and (ii) iterative jobs, where a function is repeatedly 
applied to a dataset—a common case in many multi-pass 
machine learning computations. Spark deals with both issues 
by keeping data in memory at each cluster node and avoiding 
the reloading of data from disk as much as possible. 

To use Spark, developers write a driver program that 
connects to a cluster of workers. Driver programs can be 
written in Scala, Java, Python, or R. Spark comes with a 
number of libraries to support real-time SQL querying (Spark 
SQL), graph processing (GraphX), machine learning (MLlib) 
and stream analytics based on micro-batches (Spark 
Streaming [10]). In a Spark Streaming engine, data is typically 
injected from sources like Kafka or TCP sockets, processed 
using high-level functions over a pre-defined window (e.g. 1 
sec) and outputted to filesystems, databases, or brokers.   

 MODEL PROBLEM: CROWDSOURCED NAVIGATION 
SYSTEM  

The reference problem embodied in the Crowdsourced 
Navigation system (CrowdNav), a hypothetical system 
inspired by the Waze app (https://www.waze.com). 
CrowdNav consists of a number of cars traveling in a city 
following the itineraries of their drivers and of a centralized 
navigation service. The city consists of a number of streets and 
intersections. Each car relies on the navigation service to 

receive a route, i.e. a series of streets to travel through, from 
its position to a destination. The navigation service employs a 
Dijkstra algorithm to calculate the shortest path to a 
destination in the map. The cost of the streets (edges) in the 
algorithm are calculated based on static information, i.e. the 
length and maximum speed of each street, and on dynamic 
information, i.e. the traffic on each street. The latter is 
estimated based on data being transmitted to the service by the 
cars via cellular technologies. Each car transmits the time it 
takes to navigate a street upon reaching its end (an 
intersection).  

The efficacy of navigation based on real-time information 
in CrowdNav highly depends on the freshness of traffic 
information available to the navigation service. For example, 
in case of a traffic jam in certain streets, the service may be 
able to navigate some cars through longer but faster streets, if 
it has up-to-date information indicating low traffic in these 
streets. To obtain fresh data about some streets, the service 
may choose to route certain cars via different—possibly 
worse—routes than the ones calculated by the regular version 
of the Dijkstra algorithm in order to explore the traffic level 
and flow in these streets. We call the cars that are routed via 
exploration routes to collect up-to-date traffic information 
“explorers”. Employing explorers may increase the efficacy 
of navigation (and therefore overall improve the system) at the 
expense of some potentially dissatisfied drivers. 

As with any complex, real-life system with intricate 
dependencies and trade-offs, there is a need to tune the 
parameters of CrowdNav to maximize its value. Doing so at 
design time (e.g. via extensive simulations) is not a viable 
option, since there is high complexity and uncertainty 
regarding the operating conditions of the system, including the 
behavior of humans in the loop. What if some of the streets 
are blocked (due to an accident or traffic jam), making routing 
based on static data irrelevant? What if drivers do not follow 
the routes calculated by the navigation service? What if 
explorers get dissatisfied and stop using the service if they get 
highly suboptimal routes?  

Ideally, the system should be aware of its goals (Section 
III.A), monitor its environment, and tune its parameters/knobs 
(Section III.B) at runtime, making CrowdNav an excellent 
case for self-adaptation.   

A. Self-Adaptation Goals   
The main goal of self-adaptation in CrowdNav relates to 

the non-functional requirement of optimizing user 
satisfaction. We provide here a number of metrics that can be 
used to quantify this abstract requirement.  

Average of trip durations. A trip is defined as traveling along 
a set of streets from a start position to a destination. Each car 
makes several trips and measures their durations. Although 
different statistic measures can be evaluated on the set of 
durations we consider the average of trip durations as a 
representative quantity to be minimized in the system.  

Average of trip overheads. A trip overhead is defined as the 
actual duration of a trip versus the theoretical case where 
routing is performed based only on static map data—length 
and maximum speed of each street. Ideally, this should be 1. 



In practice, it is always higher, as vehicles slow down to stop 
and accelerate again before reaching their maximum speed, 
which they might not be able to do in case of high traffic. 
Similar to average durations, we consider the average of trip 
overheads as representative metric; we have also used it in our 
experiments (Section IV). The advantage of using overheads 
over durations is that the first do not depend directly on street 
lengths, thus are directly comparable and can be better 
summarized by a single value (here, average).  

Driver complaints rate. When a driver gets dissatisfied by 
distorted routes (the effect of being an explorer) they can file 
a complaint. The rate of complaints has to be minimized.  

Driver drop-out events rate. Some drivers might never 
provide direct feedback in the form of a complaint in case they 
are dissatisfied, but may instead choose not to use 
CrowdNav’s routing service anymore. Similar to driver 
complaints, the rate of such events should be minimized. 
Contrary to driver complaints, however, such events cannot 
be traced back to a system action, e.g. treating a car as 
explorer, in a straightforward way: a driver’s impatience may 
grow over time or a driver may drop-out for completely 
different reasons. 

Acceptance rate for recommended routes. Having drivers not 
following the routes provided by the navigation service is an 
indication they are dissatisfied. The acceptance rate should of 
course be maximized.   

B. Self-Adaptation Knobs 
In CrowdNav, the main component that can be configured 

to optimize the system is the navigation service and 
specifically its routing algorithm, which is based on the 
following per-edge cost function:  
 

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡&'(')* + 𝑐𝑜𝑠𝑡,-.(/)* − 𝑏𝑒𝑛𝑒𝑓𝑖𝑡, where 
 

𝑐𝑜𝑠𝑡&'(')* = 𝑤&'(')* ∗ 1 − 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ ;<.='>
/(?@A<<,

  
 

𝑐𝑜𝑠𝑡,-.(/)* = 𝑤,-.(/)* ∗ 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ 𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛          

 
𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑤G<.<H)' ∗ 1 − 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 

 
In the above equations, 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 denotes the time since 

the street was last visited by any car; 𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛  is 
average duration to traverse the street calculated from the 
durations transmitted by each car to the service. The 𝑙𝑒𝑛𝑔𝑡ℎ 
and 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑 are static information of the map.  

In essence, when the service has up-to-date-enough 
information, routing relies more on the dynamic information 
on a street (𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛), otherwise it relies more on static 
information (𝑙𝑒𝑛𝑔𝑡ℎ and 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑). If a car is an explorer, 
routing through streets not recently visited is prioritized.  

The algorithm employs several tunable parameters or 
adaptation knobs (Table 1): 

• 𝑤&'(')*  and 𝑤,-.(/)*  can be tuned to make the 
routing rely more on the static or the dynamic 
information, respectively.  

• 𝑤G<.<H)' can be used to tune the degree of distorting 
the route of an explorer.  

• exploration percentage can be used to control the 
number of routes which will be distorted for 
exploration reasons (when calculating these routes, 
the 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 is set to 1 in the above equation). 

C. Relevance to Big Data  
CrowdNav can involve thousands of cars and drivers, each 

of them feeding the adaptation layer with data of their trip 
durations, overheads, complaints, and drop-out events at a 
potentially high rate. The adaptation layer should be able to 
cope with the high volume and velocity of incoming data in 
order to evaluate the metrics pertaining to adaptation goals in 
real-time and adapt the system according to the evaluation 
results. As such, CrowdNav lends itself as a self-adaptive 
system where Big Data analytics tools can be conveniently 
used in performing real-time goal evaluation at scale. 

D. Reference Implementaiton  
We have implemented CrowdNav using SUMO [11], the 

most comprehensive open-source solution for simulating 
urban mobility, and TraCI, a Python library that acts as 
interface to SUMO and allows for high-level control of traffic 
simulations.  

In our experimental setup, shipped in this artifact, we are 
using a map of the medium-size German city of Eichstädt with 

TABLE 1. ADAPTATION KNOBS IN CROWDNAV. 

Name Range Description 

𝒘𝒔𝒕𝒂𝒕𝒊𝒄 1..5 Importance of the static 
information is for routing  

𝒘𝒅𝒚𝒏𝒂𝒎𝒊𝒄 1..5 Importance of the dynamic 
information is for routing  

𝒘𝒃𝒆𝒏𝒆𝒇𝒊𝒕 10..20 Importance of the exploration 
benefit is for routing 

exploration 
percentage 0..30% Importance of alternative 

(exploration) routes  
 

 
Figure 1. A snapshot of SUMO visualization. SUMO-

controlled cars are depicted in yellow; CrowdNav-
controlled cars in red. 



approx. 450 streets and 1200 intersections. We are simulating 
600 cars that continuously travel from a randomly selected 
destination to another. Out of them, 60 cars (10% of all cars) 
belong to CrowdNav and receive routes from our custom 
router, implemented in Python, following the Dijkstra 
algorithm described in Section III.B. The rest of the cars 
represent the environment in our setting and are routed by the 
default SUMO router. Based on the exploration percentage, 
our custom router probabilistically treats a car as an explorer. 
Figure 1 shows a snapshot of the SUMO GUI that can used to 
observe and debug a simulation.  

There is a single place in the code (“knobs.json” file) 
where the values of the knobs can be set. A user can simply 
change the value of a knob and run the simulation for an 
amount of time, observing the results in the visualization pane.  

In addition, a user can use our tool, described in the next 
section, and let the system self-optimize by picking the best 
values for the knobs in a fully automatic way.  

 TOOL: REAL-TIME EXPERIMENTATION  
The Real-Time Experimentation (RTX) tool provided as 

part of this artifact allows for endorsing an arbitrary system 
with self-adaptation based on analysis of operational data 
coming from the system. The strength of this approach to self-
adaptation is that it requires a very simple input-output model 
of the system to be provided at design time.  

RTX is particularly useful in analyzing operational data 
that have the properties to be regarded as Big Data, i.e. high 
volume and velocity, although not restricted to this domain. 
Its strength lies in automatically and continuously adapting a 
system based on high level specifications. RTX also takes care 
of the tedious, time-consuming, and error-prone process of 
setting up Kafka and Spark and connecting them together. The 
user can then focus on the inputs and outputs of the analysis 
and on the adaptation logic. 

Although we have been using CrowdNav as a testbed for 
our tool, RTX can be used with any other system that offers 
interfaces to collect data and enact changes to the system.  

A. RTX Concepts and Architecture 
A main concept in RTX is the experiment. An experiment 

involves (i) enacting a change to a running system, (ii) 
gathering a large enough amount of operational data from the 
system by observing the system for some time, and (iii) 
evaluating the result of the change based on the gathered data. 

More concretely, RTX assumes the architecture depicted 
in Figure 2 for enacting changes and gathering data from the 
running system (base-level subsystem in the Figure). In it, a 
single Kafka broker acts both as data provider and change 
provider, mediating communication between the base-level 
subsystem and the adaptation subsystem and in particular the 
RTX engine, which includes all the RTX libraries and 
experiment definitions. The base-level subsystem 
continuously publishes a part of its operational data to a data 
provider topic. It also subscribes to a change provider topic to 
receive change directives (requests to change the values of one 
or more knobs). For illustration, when using RTX to adapt 
CrowdNav, a data provider topic can be “crowd_nav_trips”, 
on which RTX receives trip overheads. A change provider 
topic can be “crowd_nav_commands”, where RTX publishes 
changes in values of CrowdNav’s knobs (Table 1).  

To evaluate the result of a change in the system, four 
functions must be provided: a state initializer, a data reducer, 
a change event creator and an evaluator. State initializer 
initializes a local dictionary variable representing the state of 
the analysis. Data reducer calculates a summary of the 
incoming data stream and saves it to the local state. Change 
event creator is used to transform knob values into change 
directives. Evaluator receives the local state and calculates a 
number quantifying the satisfaction of the base-level 
subsystem’s goals. For illustration, for CrowdNav, four 
possible functions, written in Python, are depicted in Listing 
1. The data reducer calculates the cumulative moving average 
of trip overheads (second self-adaptation goal in Section 
III.A), and the evaluator simply returns it.  

To reduce the amount of the incoming data on the data 
reducer, a preprocessor can be used. In RTX architecture, this 
is realized by a Spark Streaming engine. The preprocessor 
subscribes to the data provider Kafka topic, calculates a 
summary of the input data stream on a predefined sliding 
window, and periodically publishes it back to a summary 
Kafka topic. If a preprocessor is used, the incoming data on 
the data reducer comes from the summary topic, instead of the 
data provider one. When applied to CrowdNav, the Spark 
Streaming driver may pre-calculate the cumulative moving 
average of trip overheads (essentially replicating the data 
reducer of Listing 1).  

 
Figure 2. Overview of complete system architecture, 

including the RTX engine. 

1. def state_initializer(state): 
2.     state["count"] = 0 
3.     state["avg_overhead"] = 0 
4.     return state 
5.   
6. def data_reducer(state, newData): 
7.     cnt = state["count"] 
8.     state["avg_overhead "] = (state["avg_overhead "] * cnt +     
9.                                                  newData["overhead "]) / (cnt + 1)    
10.     state["count"] = cnt + 1 
11.     return state 
12.   
13. def change_event_creator(knobs): 
14.     return knobs  
15.  
16. def evaluator(state): 
17.     return state["avg_overhead "]  

Listing 1: Example of state initializer, data reducer, change 
event creator and evaluator functions for CrowdNav. 

  



Having the setting described above, different experiments 
can be run. Each experiment starts by initializing the local 
analysis state and requesting a change on the base-level 
subsystem via publishing the appropriate message to the 
change provider. It then applies the data reducer function to 
the summary topic to update the local state according to the 
incoming data. To avoid hysteresis effects (i.e. allow the 
effects of the change to take place), each experiment 
disregards a predefined number of Kafka messages on the 
summary topic. An experiment runs until a target number of 
Kafka messages has been successfully processed.  

B. User’s perspective 
A user of RTX should provide a folder containing a 

Python file called “definition.py”, and, in case a preprocessor 
is needed, a jar file with the Spark driver. The Python file has 
to include the following:  

• The four essential Python functions: state initializer, 
data reducer, change event creator and evaluator 
(Listing 1). 

• A configuration of Kafka producer, Kafka consumer, 
and Spark, corresponding to the change provider, data 
provider, and preprocessor, respectively (Listing 2). 

• An execution strategy, which specifies how multiple 
experiments are to be performed. We are supporting 
three strategies: sequential, step and self-optimizer. 

If the sequential strategy is used, a sequence of 
experiments has to be provided (Listing 3). In this case, each 
experiment is specified by (i) the changes it assumes to the 
knobs of the base-level subsystem (lines 2, 5) (ii) the number 
of Kafka messages that will be ignored in the beginning (lines 
3, 6), and (iii) the number of Kafka messages to be processed 
until the end of the experiment (lines 4, 7). 

 The step strategy is essentially a succinct way of 
specifying sequential experiments (Listing 4). In this case, 
only the permissible bounds of the values of the knobs have to 
be provided, together with a step value (line 2). A sequence of 
experiments is generated by starting from the lower bound and 
increasing every time the value by the step until the value 
exceeds the upper bound. Each generated experiment inherits 
the number of Kafka messages to be ignored and the target 
number of messages to be processed from the step explorer 
specification (lines 3-4). 

The self-optimizer strategy is also generating experiments 
(Listing 5). This time, only the permissible bounds of the 
values of the knobs have to be provided (line 2). The exact 
values of the knobs are set by the optimization process in the 
generation of experiments. Similar to the step strategy, each 
generated experiment inherits the number of Kafka messages 
to be ignored and the target number of messages to be 
processed from the self-optimizer specification (lines 4-5). 
For the optimization process, we are providing the option of 
Bayesian optimization using Gaussian processes 1 (line 3), 
which attempts to find the minimum value of an unknown 
function in as few iterations as possible [12].  

                                                             
1 https://scikit-optimize.github.io/#skopt.gp_minimize 

Note that all strategies support specification of multiple 
knobs, allowing for multivariable optimization. Examples of 
such specifications are provided in the artifact.  

To run RTX, a command-line utility is provided which 
reads the definition.py, executes a series of experiments, and 
creates a CSV file with knob values of the experiments that 
were performed and their results. It also plots the results into 
a scatter plot (one knob) or heat map (two knobs). The knob 
values that produced the best effect are not automatically 
applied on the base-level subsystem; this is the task of the 
user, who reviews the results and chooses whether to fix 
certain knobs and/or continue experimenting. 

 DISCUSSION 

A. Experience and Lessons Learned 
Building the artifacts led us to interesting observations, 

which we believe are of general interest. We share them here.  

1. self-optimizer = { 
2.     "knobs": { "exploration_percentage": [0.0, 0.3] } 
3.     "method”: "gauss_process”, 
4.     "first_samples_to_ignore": 1000, 
5.     "sample_size": 5000, 
6. }  

Listing 5: Example of self-optimizer strategy.  

1. experiments_seq = [ 
2.     { "knobs": { "exploration_percentage": 0.05 }, 
3.       "ignore_first_n_results": 1000, 
4.       "sample_size": 5000 },  
5.     { "knobs": { "exploration_percentage": 0.1 } 
6.       "ignore_first_n_results ": 1000 
7.       "sample_size": 5000 }, 
8.    …  # more experiments here 
9. ] 

Listing 3: Example of sequential strategy. 

1. configuration = { 
2.     "kafka_producer": { 
3.         "kafka_uri": "kafka:9092", 
4.         "topic": "crowd-nav-commands", 
5.         "serializer": "JSON"  # alternatives: raw, CSV, … 
6.     }, 
7.     "kafka_consumer": { 
8.         "kafka_uri": "kafka:9092", 
9.         "topic": "crowd-nav-summary", 
10.         "serializer": "JSON"  # alternatives: raw, CSV, … 
11.     }, 
12.     "spark": { 
13.         "submit_mode": "client_jar",  # alternatives: python, R, … 
14.         "job_file": "CrowdNavSpark-assembly-1.0.jar", 
15.         "job_class": "crowdnav.Main " 
16.     } 
17. } 

Listing 2: Kafka and Spark configuration in RTX.  

1. step_explorer = { 
2.     "knobs": { "exploration_percentage": ([0.0, 0.3], 0.1) } 
3.     "first_samples_to_ignore": 1000, 
4.     "sample_size": 5000, 
5. }  

Listing 4: Example of step strategy.  



Controlling a SUMO simulation (C++) through TraCI 
Python interface is quite flexible and robust. Nevertheless, we 
had to make a number of workarounds to allow for custom 
routing and for having cars that move continuously in the map. 
In the current implementation, we are representing the entire 
SUMO map in Python and re-creating a car when it reaches 
its destination into a new car with the same ID, the reached 
destination as starting point and a route to a new randomly 
selected destination. To minimize the amount of interaction 
between SUMO and Python, we used event register functions.  

Setting up Kafka via a pre-existing Docker image was a 
smooth experience. However, the existence of consumer-
specific offsets in Kafka, enabling a consumer to “catch up” 
with missed messages, did not fit well to our setting. We 
actually needed to consume only fresh data upon starting an 
experiment. To do this, we chose to assign a new groupID to 
each experiment (effectively resetting the Kafka queue).    

Finally, although we had originally planned to use Python 
for the Spark driver we decided to switch to Scala as it is 
generally better supported: using Python to process streams in 
parallel works only when setting up Spark on top of Hadoop 
YARN, whereas Scala works also with the standalone cluster 
deployment mode of Spark.  

B. Possible Extensions 
RTX is a project under active development. We plan to 

extend its functionalities in several directions, namely: 

Support for dynamically calculated sample size. Instead of 
having the user specify a minimum number of messages to be 
processed for each experiment, the tool itself could infer this 
number from the minimum sample size for rejecting a null 
hypothesis in a statistical test. In that case, the user would need 
to specify their hypothesis on the result (e.g. avg_overhead < 
2), the target confidence level (e.g. 95%) and the maximum 
number of messages. The tool would stop processing data 
once it has enough evidence to reject the null hypothesis or if 
the maximum number of messages is reached (thus not 
rejecting the hypothesis).  

Support for specification of multiple data sources. In many 
cases, evaluation functions are composed of different metrics 
that need to be separately quantified by incoming data. For 
example, in CrowdNav, we would ideally like to calculate the 
overall utility as a function of both the average overhead in 
trip durations and average (or close to worst case, e.g. 90% 
percentile) of drivers’ complains and drop-out event rates. 
This calls for (i) extending RTX to support multiple data 
sources, i.e. data provider Kafka topics, and multiple data 
reducer functions, (ii) extending CrowdNav with probes (in 
Python) that emit data other than trip overheads, to support the 
rest of the self-adaptation goals described in Section III.A. 

Support for other domains apart from Big Data. We would 
like to test the generality of the RTX concepts by considering 
additional data and change providers and different 
preprocessors, e.g. Flink. Also, to tailor it to the IoT domain, 
we plan to support MQTT as data and change provider 
(similar to Kafka) and HTTP/CoAP server as change provider. 

 ARTIFACT STRUCTURE 
The artifacts described in this paper are available at 

http://dx.doi.org/10.4230/DARTS.3.1.5. The artifacts are 
available as a single archive which contains the source code, 
together with installation and usage instructions. We have also 
included a pre-configured virtual machine image and two 
Docker containers.  

 RELATED WORK  
Big Data approaches have been proven important in 

learning and analytics with massive data [13]. However, they 
have not yet been used in self-adaptation research. 

In particular, it is surprising that there seems to be a 
vacuum in approaches that base adaptation on Big Data 
analytics (which is the primary aim of RTX). We scouted all 
papers of SEAMS 2010-2016, ICAC 2010-2016, BIGDSE 
2015, 2016 (it did not exist before 2015), SASO 2010-2016, 
and ACM TAAS 2010-2016 for publications that would hint 
in their titles the use of big data technologies for driving 
adaptation. When a title mentioned some big data technique 
or technology, we reviewed the whole paper. Though there are 
a number of approaches that use adaptation to optimize the 
Big Data stack (typically allocation of map-reduce and 
shuffling in Hadoop), we did not find any approach that would 
use Big Data to run analytics for the sake of adaptation. We 
obtained similar results by searching for “self-adaptation”, 
“big data”, “hadoop”, “spark”, etc. in Google Scholar. 

Focusing on works related to CrowdNav, there is research 
on traffic optimization (including routing vehicles [14]) and 
on using Big Data technologies to perform analytics over 
traffic data [13], [15]. From the perspective of artifacts usable 
for experimenting with adaptation, however, there is a lack of 
existing works. Research on vehicular traffic typically uses 
existing datasets of observed traffic, which is however 
unusable for experimenting with adaptation since the datasets 
do not reflect the adaptation of the system. This is alleviated 
by traffic simulation tools (mainly MATSim and SUMO) and 
concrete model problems and frameworks for adaptation built 
around them (e.g. DEECo [16]) or on top of dedicated 
simulators (e.g. ADASIM [17]). Though these are also 
suitable for experimenting with Big Data-driven adaptation, 
CrowdNav provides readily addressable decision problems 
suitable for the use of Big Data analytics. It also provides 
binding to Kafka to produce observations and accept 
adaptation commands. Finally, although CrowdNav uses 
SUMO, it does not depend on SUMO features as it is entirely 
written in Python and can easily extended with custom logic—
e.g. types of drivers (patient/impatient, etc.). 

 CONTRIBUTIONS 
In conclusion, RTX is to our knowledge the only 

framework of its kind that provides configurable adaptation of 
an application based on Big Data analysis (exploiting Kafka 
and Spark). Combined with CrowdNav, which provides a 
model problem and a testbed of Big Data-driven adaptation, 
the artifacts presented in this paper make an interesting first 
step towards experimenting with Big Data-driven adaptation. 
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