
Self-Adaptation Based on Big Data Analytics:
A Model Problem and Tool

Sanny Schmid1, Ilias Gerostathopoulos1, Christian Prehofer1,2, Tomas Bures3

 1Fakultät für Informatik
Technische Universität München

 Munich, Germany
{schmidsa,gerostat,prehofer}@in.tum.de

2fortiss GmbH

Munich, Germany
prehofer@fortiss.org

3Charles University in Prague

Faculty of Mathematics and Physics
Prague, Czech Republic
bures@d3s.mff.cuni.cz

Abstract—In this paper, we focus on self-adaptation in large-
scale software-intensive distributed systems. The main problem
in making such systems self-adaptive is that their adaptation
needs to consider the current situation in the whole system.
However, developing a complete and accurate model of such
systems at design time is very challenging. To address this, we
present a novel approach where the system model consists only
of the essential input and output parameters. Furthermore, Big
Data analytics is used to guide self-adaptation based on a
continuous stream of operational data. We provide a concrete
model problem and a reference implementation of it that can be
used as a case study for evaluating different self-adaptation
techniques pertinent to complex large-scale distributed systems.
We also provide an extensible tool for endorsing an arbitrary
system with self-adaptation based on analysis of operational
data coming from the system. To illustrate the tool, we apply it
on the model problem.

Keywords-self-adaptation; Big Data analytics; model problem

 INTRODUCTION

In this paper, we focus on self-adaptation in large-scale

software-intensive distributed systems. As an example,
consider a city traffic management system, which collects data
from many sources like cars or traffic lights and then
optimizes the traffic guidance. The main problem in making
such systems self-adaptive is that their adaptation needs to
consider the current situation (and possibly predictions on
future situations) in the whole system. Due to the complexity
of such systems, it is very difficult to explicitly plan for all
eventual situations and model them accurately upfront. This
means that most current approaches for adaptive systems
which build an explicit model of the system [1]–[4] are not
very suitable in our case.

The main, novel approach in this paper is to use the data
generated by the system at runtime (operational data) for
adaptation. Recent advances in Big Data technology permit
the efficient storage and analysis of large amount of data both
as they come (stream mode) and in batch mode [5]. In our
approach, the stream of data coming from the distributed
system is processed and used for adaptation.

Instead of creating an explicit system model, which is
typically an abstraction to capture all essential states, we only
use a simple model with the essential input and output

parameters which is easy to construct at design time. Based on
the operational data, we aim to optimize the system by
different adaptation steps. For this purpose, we use evaluation
functions to analyze the data and extract the suitable actions.

We provide the following two artifacts to substantiate our
approach:
1. A model problem for adaptation in large-scale complex

distributed systems, relying on Big Data analytics.
2. A tool for performing adaptation of a system based on

analysis of large scale operational data at run time. The
tool is based on established Big Data tools like Kafka and
Spark. We employ a simple model based on input and
output parameters and focus mainly on system
optimizations based on optimization functions.

The main novelty of our artifacts is the seamless
integration of self-adaptation with latest Big Data technology.
This permits to evaluate large scale data sets at run time to
effectively optimize systems based on adaptation.

As a sample application area for our model problem, we
focus on a traffic application. We consider a smart navigation
system that is deployed in a number of cars in a city, collects
data from the cars’ sensors (e.g. position, speed), and
navigates the cars based on the current estimation of traffic in
the streets. In the context of this running example, the main
challenges connected with adaptation are as follows: How to
design the system to minimize data collection from the cars so
that the traffic predictions are still useful? How to design the
system to use a different routing algorithm that scales better
but has a bigger setup cost, based on the number of drivers
that are present?

In this context, we provide a Big Data-based tool that
makes it possible to specify how to experiment with different
settings in the system and based on this specification, it drives
the experiments and adapts the system.

The paper is structured as follows. Section II provides a
brief overview of the Big Data tools relevant to our work.
Section III describes the model problem, while Section IV
provides the tool for performing Big Data-enabled adaptation.
Section V describes challenges we faced and possible
extensions of our work. Section VI briefly details on the
structure of the provided artifacts (detailed instructions are
packaged together with the software artifacts). Section VII
discusses related work while Section VIII provides an
overview of contributions.

 BACKGROUND ON BIG DATA TOOLS

A. Kafka
Kafka is a distributed messaging system originally

developed by LinkedIn, now an open-source project of the
Apache foundation [6], [7]. It is intended for building real-
time data pipelines with high throughout and low latencies.

In Kafka, a stream of messages of a particular type is
defined by a topic. Producers publish messages to topics; the
published messages are stored at a set of servers called
brokers. Consumers subscribe to topics and pull messages
from the brokers. Kafka supports both point-to-point delivery,
where multiple consumers consume a single copy of all
messages in a topic, and publish-subscribe, where each
consumer receives its own copy of messages in a topic. Topics
in Kafka are divided into multiple partitions; each broker
(server in the cluster) stores one or more partitions,
represented by a logical log (set of typically 1-GB-long files).
Each message is addressed by its logical offset in the log. As
a design decision for simplicity and low overhead, Kafka
brokers are stateless: it is the consumers that need to keep
track of the offset and send it to the broker when pulling new
data. This has the interesting feature of a consumer being able
to rewind to an old offset and re-consume data.

Kafka can scale horizontally by adding more brokers to a
cluster. There is no central master broker; instead, consumers
coordinate in a decentralized way using a distributed
consensus service called Zookeeper [8].

B. Spark
Spark is a fault-tolerant computing framework for large

clusters [9]. It was originally developed to support (i)
interactive data exploration and analytics (a shortcoming of
traditional map-reduce-based computations due to their high
latency), and (ii) iterative jobs, where a function is repeatedly
applied to a dataset—a common case in many multi-pass
machine learning computations. Spark deals with both issues
by keeping data in memory at each cluster node and avoiding
the reloading of data from disk as much as possible.

To use Spark, developers write a driver program that
connects to a cluster of workers. Driver programs can be
written in Scala, Java, Python, or R. Spark comes with a
number of libraries to support real-time SQL querying (Spark
SQL), graph processing (GraphX), machine learning (MLlib)
and stream analytics based on micro-batches (Spark
Streaming [10]). In a Spark Streaming engine, data is typically
injected from sources like Kafka or TCP sockets, processed
using high-level functions over a pre-defined window (e.g. 1
sec) and outputted to filesystems, databases, or brokers.

 MODEL PROBLEM: CROWDSOURCED NAVIGATION
SYSTEM

The reference problem embodied in the Crowdsourced
Navigation system (CrowdNav), a hypothetical system
inspired by the Waze app (https://www.waze.com).
CrowdNav consists of a number of cars traveling in a city
following the itineraries of their drivers and of a centralized
navigation service. The city consists of a number of streets and
intersections. Each car relies on the navigation service to

receive a route, i.e. a series of streets to travel through, from
its position to a destination. The navigation service employs a
Dijkstra algorithm to calculate the shortest path to a
destination in the map. The cost of the streets (edges) in the
algorithm are calculated based on static information, i.e. the
length and maximum speed of each street, and on dynamic
information, i.e. the traffic on each street. The latter is
estimated based on data being transmitted to the service by the
cars via cellular technologies. Each car transmits the time it
takes to navigate a street upon reaching its end (an
intersection).

The efficacy of navigation based on real-time information
in CrowdNav highly depends on the freshness of traffic
information available to the navigation service. For example,
in case of a traffic jam in certain streets, the service may be
able to navigate some cars through longer but faster streets, if
it has up-to-date information indicating low traffic in these
streets. To obtain fresh data about some streets, the service
may choose to route certain cars via different—possibly
worse—routes than the ones calculated by the regular version
of the Dijkstra algorithm in order to explore the traffic level
and flow in these streets. We call the cars that are routed via
exploration routes to collect up-to-date traffic information
“explorers”. Employing explorers may increase the efficacy
of navigation (and therefore overall improve the system) at the
expense of some potentially dissatisfied drivers.

As with any complex, real-life system with intricate
dependencies and trade-offs, there is a need to tune the
parameters of CrowdNav to maximize its value. Doing so at
design time (e.g. via extensive simulations) is not a viable
option, since there is high complexity and uncertainty
regarding the operating conditions of the system, including the
behavior of humans in the loop. What if some of the streets
are blocked (due to an accident or traffic jam), making routing
based on static data irrelevant? What if drivers do not follow
the routes calculated by the navigation service? What if
explorers get dissatisfied and stop using the service if they get
highly suboptimal routes?

Ideally, the system should be aware of its goals (Section
III.A), monitor its environment, and tune its parameters/knobs
(Section III.B) at runtime, making CrowdNav an excellent
case for self-adaptation.

A. Self-Adaptation Goals
The main goal of self-adaptation in CrowdNav relates to

the non-functional requirement of optimizing user
satisfaction. We provide here a number of metrics that can be
used to quantify this abstract requirement.

Average of trip durations. A trip is defined as traveling along
a set of streets from a start position to a destination. Each car
makes several trips and measures their durations. Although
different statistic measures can be evaluated on the set of
durations we consider the average of trip durations as a
representative quantity to be minimized in the system.

Average of trip overheads. A trip overhead is defined as the
actual duration of a trip versus the theoretical case where
routing is performed based only on static map data—length
and maximum speed of each street. Ideally, this should be 1.

In practice, it is always higher, as vehicles slow down to stop
and accelerate again before reaching their maximum speed,
which they might not be able to do in case of high traffic.
Similar to average durations, we consider the average of trip
overheads as representative metric; we have also used it in our
experiments (Section IV). The advantage of using overheads
over durations is that the first do not depend directly on street
lengths, thus are directly comparable and can be better
summarized by a single value (here, average).

Driver complaints rate. When a driver gets dissatisfied by
distorted routes (the effect of being an explorer) they can file
a complaint. The rate of complaints has to be minimized.

Driver drop-out events rate. Some drivers might never
provide direct feedback in the form of a complaint in case they
are dissatisfied, but may instead choose not to use
CrowdNav’s routing service anymore. Similar to driver
complaints, the rate of such events should be minimized.
Contrary to driver complaints, however, such events cannot
be traced back to a system action, e.g. treating a car as
explorer, in a straightforward way: a driver’s impatience may
grow over time or a driver may drop-out for completely
different reasons.

Acceptance rate for recommended routes. Having drivers not
following the routes provided by the navigation service is an
indication they are dissatisfied. The acceptance rate should of
course be maximized.

B. Self-Adaptation Knobs
In CrowdNav, the main component that can be configured

to optimize the system is the navigation service and
specifically its routing algorithm, which is based on the
following per-edge cost function:

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡&'(')* + 𝑐𝑜𝑠𝑡,-.(/)* − 𝑏𝑒𝑛𝑒𝑓𝑖𝑡, where

𝑐𝑜𝑠𝑡&'(')* = 𝑤&'(')* ∗ 1 − 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ ;<.='>
/(?@A<<,

𝑐𝑜𝑠𝑡,-.(/)* = 𝑤,-.(/)* ∗ 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ 𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑤G<.<H)' ∗ 1 − 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ∗ 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟

In the above equations, 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 denotes the time since

the street was last visited by any car; 𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is
average duration to traverse the street calculated from the
durations transmitted by each car to the service. The 𝑙𝑒𝑛𝑔𝑡ℎ
and 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑 are static information of the map.

In essence, when the service has up-to-date-enough
information, routing relies more on the dynamic information
on a street (𝑎𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛), otherwise it relies more on static
information (𝑙𝑒𝑛𝑔𝑡ℎ and 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑). If a car is an explorer,
routing through streets not recently visited is prioritized.

The algorithm employs several tunable parameters or
adaptation knobs (Table 1):

• 𝑤&'(')* and 𝑤,-.(/)* can be tuned to make the
routing rely more on the static or the dynamic
information, respectively.

• 𝑤G<.<H)' can be used to tune the degree of distorting
the route of an explorer.

• exploration percentage can be used to control the
number of routes which will be distorted for
exploration reasons (when calculating these routes,
the 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 is set to 1 in the above equation).

C. Relevance to Big Data
CrowdNav can involve thousands of cars and drivers, each

of them feeding the adaptation layer with data of their trip
durations, overheads, complaints, and drop-out events at a
potentially high rate. The adaptation layer should be able to
cope with the high volume and velocity of incoming data in
order to evaluate the metrics pertaining to adaptation goals in
real-time and adapt the system according to the evaluation
results. As such, CrowdNav lends itself as a self-adaptive
system where Big Data analytics tools can be conveniently
used in performing real-time goal evaluation at scale.

D. Reference Implementaiton
We have implemented CrowdNav using SUMO [11], the

most comprehensive open-source solution for simulating
urban mobility, and TraCI, a Python library that acts as
interface to SUMO and allows for high-level control of traffic
simulations.

In our experimental setup, shipped in this artifact, we are
using a map of the medium-size German city of Eichstädt with

TABLE 1. ADAPTATION KNOBS IN CROWDNAV.

Name Range Description

𝒘𝒔𝒕𝒂𝒕𝒊𝒄 1..5 Importance of the static
information is for routing

𝒘𝒅𝒚𝒏𝒂𝒎𝒊𝒄 1..5 Importance of the dynamic
information is for routing

𝒘𝒃𝒆𝒏𝒆𝒇𝒊𝒕 10..20 Importance of the exploration
benefit is for routing

exploration
percentage 0..30% Importance of alternative

(exploration) routes

Figure 1. A snapshot of SUMO visualization. SUMO-

controlled cars are depicted in yellow; CrowdNav-
controlled cars in red.

approx. 450 streets and 1200 intersections. We are simulating
600 cars that continuously travel from a randomly selected
destination to another. Out of them, 60 cars (10% of all cars)
belong to CrowdNav and receive routes from our custom
router, implemented in Python, following the Dijkstra
algorithm described in Section III.B. The rest of the cars
represent the environment in our setting and are routed by the
default SUMO router. Based on the exploration percentage,
our custom router probabilistically treats a car as an explorer.
Figure 1 shows a snapshot of the SUMO GUI that can used to
observe and debug a simulation.

There is a single place in the code (“knobs.json” file)
where the values of the knobs can be set. A user can simply
change the value of a knob and run the simulation for an
amount of time, observing the results in the visualization pane.

In addition, a user can use our tool, described in the next
section, and let the system self-optimize by picking the best
values for the knobs in a fully automatic way.

 TOOL: REAL-TIME EXPERIMENTATION
The Real-Time Experimentation (RTX) tool provided as

part of this artifact allows for endorsing an arbitrary system
with self-adaptation based on analysis of operational data
coming from the system. The strength of this approach to self-
adaptation is that it requires a very simple input-output model
of the system to be provided at design time.

RTX is particularly useful in analyzing operational data
that have the properties to be regarded as Big Data, i.e. high
volume and velocity, although not restricted to this domain.
Its strength lies in automatically and continuously adapting a
system based on high level specifications. RTX also takes care
of the tedious, time-consuming, and error-prone process of
setting up Kafka and Spark and connecting them together. The
user can then focus on the inputs and outputs of the analysis
and on the adaptation logic.

Although we have been using CrowdNav as a testbed for
our tool, RTX can be used with any other system that offers
interfaces to collect data and enact changes to the system.

A. RTX Concepts and Architecture
A main concept in RTX is the experiment. An experiment

involves (i) enacting a change to a running system, (ii)
gathering a large enough amount of operational data from the
system by observing the system for some time, and (iii)
evaluating the result of the change based on the gathered data.

More concretely, RTX assumes the architecture depicted
in Figure 2 for enacting changes and gathering data from the
running system (base-level subsystem in the Figure). In it, a
single Kafka broker acts both as data provider and change
provider, mediating communication between the base-level
subsystem and the adaptation subsystem and in particular the
RTX engine, which includes all the RTX libraries and
experiment definitions. The base-level subsystem
continuously publishes a part of its operational data to a data
provider topic. It also subscribes to a change provider topic to
receive change directives (requests to change the values of one
or more knobs). For illustration, when using RTX to adapt
CrowdNav, a data provider topic can be “crowd_nav_trips”,
on which RTX receives trip overheads. A change provider
topic can be “crowd_nav_commands”, where RTX publishes
changes in values of CrowdNav’s knobs (Table 1).

To evaluate the result of a change in the system, four
functions must be provided: a state initializer, a data reducer,
a change event creator and an evaluator. State initializer
initializes a local dictionary variable representing the state of
the analysis. Data reducer calculates a summary of the
incoming data stream and saves it to the local state. Change
event creator is used to transform knob values into change
directives. Evaluator receives the local state and calculates a
number quantifying the satisfaction of the base-level
subsystem’s goals. For illustration, for CrowdNav, four
possible functions, written in Python, are depicted in Listing
1. The data reducer calculates the cumulative moving average
of trip overheads (second self-adaptation goal in Section
III.A), and the evaluator simply returns it.

To reduce the amount of the incoming data on the data
reducer, a preprocessor can be used. In RTX architecture, this
is realized by a Spark Streaming engine. The preprocessor
subscribes to the data provider Kafka topic, calculates a
summary of the input data stream on a predefined sliding
window, and periodically publishes it back to a summary
Kafka topic. If a preprocessor is used, the incoming data on
the data reducer comes from the summary topic, instead of the
data provider one. When applied to CrowdNav, the Spark
Streaming driver may pre-calculate the cumulative moving
average of trip overheads (essentially replicating the data
reducer of Listing 1).

Figure 2. Overview of complete system architecture,

including the RTX engine.

1. def state_initializer(state):
2. state["count"] = 0
3. state["avg_overhead"] = 0
4. return state
5.
6. def data_reducer(state, newData):
7. cnt = state["count"]
8. state["avg_overhead "] = (state["avg_overhead "] * cnt +
9. newData["overhead "]) / (cnt + 1)
10. state["count"] = cnt + 1
11. return state
12.
13. def change_event_creator(knobs):
14. return knobs
15.
16. def evaluator(state):
17. return state["avg_overhead "]

Listing 1: Example of state initializer, data reducer, change
event creator and evaluator functions for CrowdNav.

Having the setting described above, different experiments
can be run. Each experiment starts by initializing the local
analysis state and requesting a change on the base-level
subsystem via publishing the appropriate message to the
change provider. It then applies the data reducer function to
the summary topic to update the local state according to the
incoming data. To avoid hysteresis effects (i.e. allow the
effects of the change to take place), each experiment
disregards a predefined number of Kafka messages on the
summary topic. An experiment runs until a target number of
Kafka messages has been successfully processed.

B. User’s perspective
A user of RTX should provide a folder containing a

Python file called “definition.py”, and, in case a preprocessor
is needed, a jar file with the Spark driver. The Python file has
to include the following:

• The four essential Python functions: state initializer,
data reducer, change event creator and evaluator
(Listing 1).

• A configuration of Kafka producer, Kafka consumer,
and Spark, corresponding to the change provider, data
provider, and preprocessor, respectively (Listing 2).

• An execution strategy, which specifies how multiple
experiments are to be performed. We are supporting
three strategies: sequential, step and self-optimizer.

If the sequential strategy is used, a sequence of
experiments has to be provided (Listing 3). In this case, each
experiment is specified by (i) the changes it assumes to the
knobs of the base-level subsystem (lines 2, 5) (ii) the number
of Kafka messages that will be ignored in the beginning (lines
3, 6), and (iii) the number of Kafka messages to be processed
until the end of the experiment (lines 4, 7).

 The step strategy is essentially a succinct way of
specifying sequential experiments (Listing 4). In this case,
only the permissible bounds of the values of the knobs have to
be provided, together with a step value (line 2). A sequence of
experiments is generated by starting from the lower bound and
increasing every time the value by the step until the value
exceeds the upper bound. Each generated experiment inherits
the number of Kafka messages to be ignored and the target
number of messages to be processed from the step explorer
specification (lines 3-4).

The self-optimizer strategy is also generating experiments
(Listing 5). This time, only the permissible bounds of the
values of the knobs have to be provided (line 2). The exact
values of the knobs are set by the optimization process in the
generation of experiments. Similar to the step strategy, each
generated experiment inherits the number of Kafka messages
to be ignored and the target number of messages to be
processed from the self-optimizer specification (lines 4-5).
For the optimization process, we are providing the option of
Bayesian optimization using Gaussian processes 1 (line 3),
which attempts to find the minimum value of an unknown
function in as few iterations as possible [12].

1 https://scikit-optimize.github.io/#skopt.gp_minimize

Note that all strategies support specification of multiple
knobs, allowing for multivariable optimization. Examples of
such specifications are provided in the artifact.

To run RTX, a command-line utility is provided which
reads the definition.py, executes a series of experiments, and
creates a CSV file with knob values of the experiments that
were performed and their results. It also plots the results into
a scatter plot (one knob) or heat map (two knobs). The knob
values that produced the best effect are not automatically
applied on the base-level subsystem; this is the task of the
user, who reviews the results and chooses whether to fix
certain knobs and/or continue experimenting.

 DISCUSSION

A. Experience and Lessons Learned
Building the artifacts led us to interesting observations,

which we believe are of general interest. We share them here.

1. self-optimizer = {
2. "knobs": { "exploration_percentage": [0.0, 0.3] }
3. "method”: "gauss_process”,
4. "first_samples_to_ignore": 1000,
5. "sample_size": 5000,
6. }

Listing 5: Example of self-optimizer strategy.

1. experiments_seq = [
2. { "knobs": { "exploration_percentage": 0.05 },
3. "ignore_first_n_results": 1000,
4. "sample_size": 5000 },
5. { "knobs": { "exploration_percentage": 0.1 }
6. "ignore_first_n_results ": 1000
7. "sample_size": 5000 },
8. … # more experiments here
9.]

Listing 3: Example of sequential strategy.

1. configuration = {
2. "kafka_producer": {
3. "kafka_uri": "kafka:9092",
4. "topic": "crowd-nav-commands",
5. "serializer": "JSON" # alternatives: raw, CSV, …
6. },
7. "kafka_consumer": {
8. "kafka_uri": "kafka:9092",
9. "topic": "crowd-nav-summary",
10. "serializer": "JSON" # alternatives: raw, CSV, …
11. },
12. "spark": {
13. "submit_mode": "client_jar", # alternatives: python, R, …
14. "job_file": "CrowdNavSpark-assembly-1.0.jar",
15. "job_class": "crowdnav.Main "
16. }
17. }

Listing 2: Kafka and Spark configuration in RTX.

1. step_explorer = {
2. "knobs": { "exploration_percentage": ([0.0, 0.3], 0.1) }
3. "first_samples_to_ignore": 1000,
4. "sample_size": 5000,
5. }

Listing 4: Example of step strategy.

Controlling a SUMO simulation (C++) through TraCI
Python interface is quite flexible and robust. Nevertheless, we
had to make a number of workarounds to allow for custom
routing and for having cars that move continuously in the map.
In the current implementation, we are representing the entire
SUMO map in Python and re-creating a car when it reaches
its destination into a new car with the same ID, the reached
destination as starting point and a route to a new randomly
selected destination. To minimize the amount of interaction
between SUMO and Python, we used event register functions.

Setting up Kafka via a pre-existing Docker image was a
smooth experience. However, the existence of consumer-
specific offsets in Kafka, enabling a consumer to “catch up”
with missed messages, did not fit well to our setting. We
actually needed to consume only fresh data upon starting an
experiment. To do this, we chose to assign a new groupID to
each experiment (effectively resetting the Kafka queue).

Finally, although we had originally planned to use Python
for the Spark driver we decided to switch to Scala as it is
generally better supported: using Python to process streams in
parallel works only when setting up Spark on top of Hadoop
YARN, whereas Scala works also with the standalone cluster
deployment mode of Spark.

B. Possible Extensions
RTX is a project under active development. We plan to

extend its functionalities in several directions, namely:

Support for dynamically calculated sample size. Instead of
having the user specify a minimum number of messages to be
processed for each experiment, the tool itself could infer this
number from the minimum sample size for rejecting a null
hypothesis in a statistical test. In that case, the user would need
to specify their hypothesis on the result (e.g. avg_overhead <
2), the target confidence level (e.g. 95%) and the maximum
number of messages. The tool would stop processing data
once it has enough evidence to reject the null hypothesis or if
the maximum number of messages is reached (thus not
rejecting the hypothesis).

Support for specification of multiple data sources. In many
cases, evaluation functions are composed of different metrics
that need to be separately quantified by incoming data. For
example, in CrowdNav, we would ideally like to calculate the
overall utility as a function of both the average overhead in
trip durations and average (or close to worst case, e.g. 90%
percentile) of drivers’ complains and drop-out event rates.
This calls for (i) extending RTX to support multiple data
sources, i.e. data provider Kafka topics, and multiple data
reducer functions, (ii) extending CrowdNav with probes (in
Python) that emit data other than trip overheads, to support the
rest of the self-adaptation goals described in Section III.A.

Support for other domains apart from Big Data. We would
like to test the generality of the RTX concepts by considering
additional data and change providers and different
preprocessors, e.g. Flink. Also, to tailor it to the IoT domain,
we plan to support MQTT as data and change provider
(similar to Kafka) and HTTP/CoAP server as change provider.

 ARTIFACT STRUCTURE
The artifacts described in this paper are available at

http://dx.doi.org/10.4230/DARTS.3.1.5. The artifacts are
available as a single archive which contains the source code,
together with installation and usage instructions. We have also
included a pre-configured virtual machine image and two
Docker containers.

 RELATED WORK
Big Data approaches have been proven important in

learning and analytics with massive data [13]. However, they
have not yet been used in self-adaptation research.

In particular, it is surprising that there seems to be a
vacuum in approaches that base adaptation on Big Data
analytics (which is the primary aim of RTX). We scouted all
papers of SEAMS 2010-2016, ICAC 2010-2016, BIGDSE
2015, 2016 (it did not exist before 2015), SASO 2010-2016,
and ACM TAAS 2010-2016 for publications that would hint
in their titles the use of big data technologies for driving
adaptation. When a title mentioned some big data technique
or technology, we reviewed the whole paper. Though there are
a number of approaches that use adaptation to optimize the
Big Data stack (typically allocation of map-reduce and
shuffling in Hadoop), we did not find any approach that would
use Big Data to run analytics for the sake of adaptation. We
obtained similar results by searching for “self-adaptation”,
“big data”, “hadoop”, “spark”, etc. in Google Scholar.

Focusing on works related to CrowdNav, there is research
on traffic optimization (including routing vehicles [14]) and
on using Big Data technologies to perform analytics over
traffic data [13], [15]. From the perspective of artifacts usable
for experimenting with adaptation, however, there is a lack of
existing works. Research on vehicular traffic typically uses
existing datasets of observed traffic, which is however
unusable for experimenting with adaptation since the datasets
do not reflect the adaptation of the system. This is alleviated
by traffic simulation tools (mainly MATSim and SUMO) and
concrete model problems and frameworks for adaptation built
around them (e.g. DEECo [16]) or on top of dedicated
simulators (e.g. ADASIM [17]). Though these are also
suitable for experimenting with Big Data-driven adaptation,
CrowdNav provides readily addressable decision problems
suitable for the use of Big Data analytics. It also provides
binding to Kafka to produce observations and accept
adaptation commands. Finally, although CrowdNav uses
SUMO, it does not depend on SUMO features as it is entirely
written in Python and can easily extended with custom logic—
e.g. types of drivers (patient/impatient, etc.).

 CONTRIBUTIONS
In conclusion, RTX is to our knowledge the only

framework of its kind that provides configurable adaptation of
an application based on Big Data analysis (exploiting Kafka
and Spark). Combined with CrowdNav, which provides a
model problem and a testbed of Big Data-driven adaptation,
the artifacts presented in this paper make an interesting first
step towards experimenting with Big Data-driven adaptation.

ACKNOWLEDGEMENTS
This work has been partly funded by the Bayerisches

Staatsministerium für Wirtschaft und Medien, Energie und
Technologie as part of the TUM Living Lab Connected
Mobility Project and partly sponsored by the German Ministry
of Education and Research (BMBF) under grant n°
01Is16043A.

REFERENCES
[1] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and K. Inoue,

“Learning Revised Models for Planning in Adaptive Systems,” in
Proceedings of the 2013 International Conference on Software
Engineering, Piscataway, NJ, USA, 2013, pp. 63–71.

[2] C. Ghezzi, J. Greenyer, and V. P. L. Manna, “Synthesizing
dynamically updating controllers from changes in scenario-based
specifications,” in 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
2012, pp. 145–154.

[3] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic, “PLASMA: a
plan-based layered architecture for software model-driven
adaptation,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010, pp. 467–476.

[4] A. Filieri, C. Ghezzi, A. Leva, M. Maggio, and P. Milano, “Self-
Adaptive Software Meets Control Theory: A Preliminary Approach
Supporting Reliability Requirements,” in Proc. of ASE ’11, 2011, pp.
283–292.

[5] N. Marz and J. Warren, Big Data: Principles and Best Practices of
Scalable Realtime Data Systems, 1st ed. Greenwich, CT, USA:
Manning Publications Co., 2015.

[6] “Kafka website,” 17-Jan-2017. [Online]. Available:
https://kafka.apache.org/.

[7] J. Kreps, N. Narkhede, J. Rao, and others, “Kafka: A distributed
messaging system for log processing,” in Proceedings of the 6th

International Workshop on Networking Meets Databases
(NetDB’11), 2011, pp. 1–7.

[8] “Zookeeper website,” 17-Nov-2017. [Online]. Available:
https://zookeeper.apache.org/.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
Berkeley, CA, USA, 2010, pp. 10–10.

[10] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: fault-tolerant streaming computation at scale,”
2013, pp. 423–438.

[11] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
Development and Applications of SUMO - Simulation of Urban
MObility,” Int. J. Adv. Syst. Meas., vol. 5, no. 3&4, pp. 128–138,
Dec. 2012.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” ArXiv12062944 Cs
Stat, Jun. 2012.

[13] J. Yu, F. Jiang, and T. Zhu, “RTIC-C: A Big Data System for
Massive Traffic Information Mining,” in 2013 International
Conference on Cloud Computing and Big Data, 2013, pp. 395–402.

[14] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” Eur. J. Oper. Res., vol. 225, no.
1, pp. 1–11, Feb. 2013.

[15] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, “Traffic Flow
Prediction With Big Data: A Deep Learning Approach,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 2, pp. 865–873, Apr. 2015.

[16] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil,
“An Architecture Framework for Experimentations with Self-
Adaptive Cyber-Physical Systems,” in SEAMS’15: Proceedings of
the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2015.

[17] Jochen Wuttke, Yuriy Brun, Alessandra Gorla, and Jonathan
Ramaswamy, “Traffic Routing for Evaluating Self-Adaptation,” in
Proc. of SEAMS ’12, 2012, pp. 27–32.

