
TRAPPed in Traffic? A Self-Adaptive Framework
for Decentralized Traffic Optimization

*Authors ordered alphabetically

Ilias Gerostathopoulos
Department of Software and Systems Engineering

Technical University of Munich
Munich, Germany
gerostat@in.tum.de

Evangelos Pournaras
Professorship of Computational Social Science

ETH Zurich
Zurich, Switzerland
epournaras@ethz.ch

Abstract—Optimizing the traffic flow in a city is a challenging
problem, especially in a future traffic system of self-driving cars
and sharing vehicles. This is due to the interactions between
the individual traffic agents (vehicles) that compete for the use
of the common infrastructure (streets) given traffic dynamics
such as stop-and-go effects, changing lanes, and other. The goal
of this paper is to provide a solution to the above problem
that works in a fully decentralized and participatory way, i.e.
autonomous agents collaborate without a centralized data collec-
tor and arbitrator. Such a solution should be scalable, privacy-
preserving, and flexible with respect to the degree of autonomy
of agents. A self-adaptive framework to support this research
is introduced: TRAPP – Traffic Reconfigurations via Adaptive
Participatory Planning. The framework relies on a microscopic
traffic simulator, SUMO, for simulating urban mobility scenarios,
and on a decentralized multi-agent planning system, EPOS, for
decentralized combinatorial optimization, applied here in traffic
flows. A data-driven interoperation of the two tools in the pro-
posed framework allows high modularity and customization for
experimenting with different scenarios, optimization objectives
and agents’ behavior and as such providing new perspectives for
resilient future traffic infrastructures.

Index Terms—self-adaptation, optimization, multi-agent sys-
tem, traffic, planning, framework

I. INTRODUCTION

Optimizing the traffic flow in a city is a challenging problem
that is amenable to self-adaptation approaches. Indeed, real-
time traffic control—viewed as a self-adaptation challenge—is
the problem of monitoring the current traffic state, analyzing
the state to identify traffic jams (and potentially predicting
such bottlenecks as well as slow-downs in the near future),
planning measures that can regulate or steer driving behavior
in order to avoid negative externalities or further optimize the
traffic flow, and applying these measures in the real world [1].
In this view, the managed system comprises the vehicles
together with their drivers and passengers, and the managing
system is responsible for performing changes in the navigation
of cars in order to optimize the overall traffic flow.

From the perspective of self-adaptation, traffic control is a
challenging problem, since it is very complex to plan ahead

for all possible situations and corresponding actions. There is
high uncertainty, e.g., on when a certain event that warrants a
collective adaptation, such as a traffic accident, might occur.
At the same time, it is equally challenging to prescribe an
adaptation action when such an event occurs and a road
segment is blocked: Shall only some of the vehicles be routed
from one of the alternative routes or all of them? Upon re-
opening a road segment, shall all vehicles be navigated through
that road again? The complexity of traffic coordination is
relevant in the case of regular traffic flow as well, however
in exceptional situations it becomes even more prominent.

Another question concerns the optimization objective be-
hind real-time traffic control. In many cases, optimizing traffic
concerns the maximization of throughput in streets and the
minimization of trip times. However, instead of or together
with minimizing the time of the average trip, an objective
could be to avoid too long trips. As another possible objective,
public authorities may also care for balancing the utilization
of streets in order to reduce the overall decay and hence
maintenance costs in the road network.

A solution to traffic flow optimization should consider
the different optimization objectives in the traffic domain
and should be able to deal with the real-life incidents by
self-adaptive collaborative planning from the traffic agents—
drivers and, in the future, self-driving vehicles. In particular,
it should allow the drivers to collectively plan towards a
solution of overall benefit and should tailor the collective
planning process to the specifics of the situation at hand
(e.g. high traffic that necessitates increased and more regular
collaboration between the agents).

To this end, in this paper we provide a self-adaptive frame-
work that can be used for research in this challenging domain.
Traffic Reconfigurations via Adaptive Participatory Planning
(TRAPP) combines scalable decentralized planning with a
self-adaptation loop that oversees and tailors the decentralized
planning process to the specifics of the situation at hand.
Technically, it provides an interoperation of SUMO and EPOS,
two existing frameworks. The former is a state-of-the-art
simulation environment for traffic dynamics and therefore



domain-specific. The latter is a recent advance in decentralized
combinatorial optimization problems for multi-agents systems.
Their integration comes with three extensible and customizable
adaptation strategies.

Succinctly, the contributions of this paper are: (i) introduc-
tion of a novel open-source self-adaptive framework for traffic
flow optimization; (ii) showcasing the applicability of EPOS
in traffic optimization; and (iii) supporting experimention with
decentralized participatory optimization in SUMO.

The rest of the paper is structured as follows. Section 2 lists
the requirements for a self-adaptive framework for traffic opti-
mization, Section 3 gives an overview of the framework while
Section 4 explains the way SUMO and EPOS interoperate in
the framework. Then, Section 5 presents the three proposed
self-adaptation strategies and Section VI details our initial
experience with the framework. Finally, Section VII compares
our work to related work and Section VIII concludes.

II. SYSTEM REQUIREMENTS

A system that supports research in self-adaptive traffic
optimization should satisfy the following main requirements:

1) Realistic traffic simulation. The system should support
the realistic simulation of traffic that captures the domain
dynamics, including stop-and-go effects, vehicles accel-
eration/deceleration, traffic light effects, traffic jams, etc.

2) Scalable traffic simulation. The system should scale in
the number of cars, drivers, and streets in order to be
used with real-life scenarios.

3) Local and global optimization objectives. The system
should be able to work with both global traffic optimiza-
tion objectives (e.g. optimize for the average ride) and
local ones (e.g. avoid certain streets and routes).

4) Different self-adaptation strategies. The system should
support different strategies that can be applied at runtime
in order to deal with different situations that warrant
adaptation (e.g. traffic accidents, road blockages, in-
creased traffic) and continue to satisfy its objectives.

5) Extensibility and customizability. The system should
offer abstractions and modularity that make it easy for
researchers to tailor it to their needs, e.g. by creating
new self-adaptation strategies.

6) Ease of use. The system should offer an easy way for
specifying traffic scenarios and self-adaptation strategies
by externalizing its configuration. It should also provide
feedback on the result of a self-adaptation action via
logging and visualization capabilities.

In the following, we present our framework that integrates
two existing tools, SUMO for traffic simulation and EPOS for
decentralized planning, in order to meet these requirements.

III. OVERVIEW OF THE FRAMEWORK

An overview of TRAPP is depicted in Figure 1. As typical
in self-adaptation approaches, TRAPP comprises a managed
and a managing subsystem. The managed subsystem contains
the traffic simulator SUMO (domain-specific) and the decen-
tralized optimization tool EPOS (domain-independent). In a

Simulation
(SUMO)

Planner
(EPOS)

Managed System

agents’
possible

plans

agents’
selected 
plans

Managing System

trip 
overheads,

street 
utilizations,

…

#1: Perform generic load-balancing on streets 

planning period, 
planning horizon, 
planning fairness,
agents’ selfishness,
signals to avoid 
streets in planning,
…

#2: Determine overloaded streets and avoid them

#3: Tuning of planning frequency to deal with uncertainties 

domain-independent
domain-specific

Fig. 1. Overview of the TRAPP framework.

nutshell, SUMO provides EPOS with a list of possible plans
(routes to follow) for each agent (vehicle in our simulation).1

EPOS outputs the selected plan for each agent; these are
picked up and executed by SUMO to progress the simulation.
The above process repeats periodically.

At the outer loop, the managing system monitors data
related to trip overheads and street utilizations. A trip overhead
is the ratio of the actual duration for a trip that takes place
in the simulation to the theoretical duration of a trip when
physical dynamics and the traffic situation are ignored and the
car travels with the maximum speed allowed at each street. A
street utilization is the percentage of the street length that is
occupied by cars. Trip overheads are obtained at the end of
every trip, while street utilizations on every simulation tick.

The managing system runs periodical adaptation cycles,
which, in correspondence to the MAPE-K loop [2], monitor
data, analyze them for detecting traffic problems or irregular-
ities, plan corresponding actions to tune the way participatory
planning takes place, and finally execute the adaptation actions
by configuring EPOS accordingly. The next times EPOS
is invoked, it uses the updated configuration. What can be
changed at runtime via an adaptation strategy (tunable runtime
parameters) is described in detail in Section IV-C.

As a proof of concept, this paper presents three concrete
adaptation strategies, namely with (1) performing load balanc-
ing in the streets in order to reduce overall trip overheads and
street utilizations, (2) avoiding overutilized streets, (3) tuning
the planning frequency and horizon as a response to traffic
events that necessitate more frequent and accurate planning.
We detail on these three self-adaptation strategies and on how
to create different strategies in Section V.

A. User’s Perspective

The user of the framework needs to set a number of
parameters, conveniently gathered in a single configuration file
(app.Config.py).

1We are currently supporting three different plans per agent, each generated
with a different router. However, the list of plans per agent can be extended
by implementing other routers.



In particular, the user needs to select the values for some
general parameters related to whether to use the graphical user
interface (GUI) of SUMO, whether to print debug information,
and which random seed to use. Also, the user has to specify
the location of the EPOS jar. With regard to simulation-related
parameters, the user needs to specify the path to a SUMO
configuration file and a SUMO network file, along with the
number of cars and the total simulation time. With regard
to adaptation-related parameters, the user needs to specify
whether the simulation should start with an EPOS invocation,
along with the adaptation period, i.e. how often the managing
system should be invoked. Finally, the user needs to select
initial values for all the runtime parameters related to planning,
described in detail in Section IV-C.

With respect to the self-adaptation strategies, the user can
either choose one of the three available strategies or provide
their own strategies by providing a Python class with one
method for each of the Monitor, Analyze, Plan, and Execute
phases (following the MAPE-K model) and integrate them to
the framework as explained in Section V.

Once a simulation starts, the user can observe the simulation
via the SUMO GUI and the information regarding EPOS self-
adaptation loop execution in the console. Once a simulation
ends, they can inspect the graphs that may have been generated
in support of analyzing the self-adaptation strategy of choice.
We note that the data visualization and analysis part is highly
specific to the self-adaptation strategy, optimization objective,
and evaluation strategy followed. The user can always create
custom graphs that analyze the results of a run—we provide
a jupyter notebook as a starting point.

IV. TECHNICAL INTEGRATION

In this section, we first give an overview of the two main
tools that TRAPP brings together, SUMO and EPOS, and then
delve into the details of the integration we performed.

A. SUMO and TraCI

Simulation of Urban Mobility (SUMO) is the most compre-
hensive open-source microscopic traffic simulator [3]. It has
been successfully used in simulating scenarios that span mid-
sized European cities and hundrends of thousands of vehicles
[4], [5]. SUMO simulations are realistic since they involve
different maps (provided as input to the simulation), multiple
lanes per street, acceleration and deceleration of cars in traffic
lights and intersections, different car driving styles, speed
limits per street, and other features. It also offers a Graphical
User Interface (GUI) for observing the simulation (Figure 2).

Although SUMO is written in C++, TraCI (Traffic Control
Interface) is a Python interface to SUMO that can be used
for controlling a simulation through Python. TraCI offers a
convenient way of both monitoring different aspects of the
simulation (e.g., number of cars on each street, vehicle speeds)
and enacting changes to a running simulation. For example,
TraCI can be used for dynamically changing the route of a
vehicle or blocking a lane or street as the simulation runs.

Fig. 2. Graphical User Interface of SUMO.

Similar to our previous work [6], we have created a Python
wrapper over TraCI that allows us to start a SUMO simulation
with a prescribed number of vehicles on a provided map and
continuously route cars to their destinations using different
Python-coded routers. Both the initial positions and the desti-
nations of all cars are randomly chosen. When a car reaches
its destination, it randomly picks another destination.

A car can choose between one of three available routers
to obtain a route. The first router routes cars based on the
minimum distance to the destination, the second by selecting
the streets with maximum speed, and the third by considering
both the maximum speed and the street length in routing.
Unless otherwise specified, cars pick one of the routers at
random when looking for a new route. The goal of using
participatory planning in this setting is for each car to select a
route among the ones generated from the different routers that
satisfies to the degree possible both local and global objectives.

B. EPOS

EPOS, the Economic Planning and Optimized Selections [7]
is a Java-based general-purpose decentralized multi-agent sys-
tem that efficiently solves complex multi-objective combinato-
rial problems via a collective participatory learning approach.
The agents in EPOS self-organize in hierarchical structures,
i.e. tree topologies, over which they can perform efficient
aggregation and decision-making in an iterative fashion: con-
secutive child-parent interactions in the bottom-up phase,
followed by parent-child interactions in the top-down phase.

In this paper an agent is a smart vehicle, i.e. a self-driving
car, that autonomously generates a set of finite number of
possible plans that represent the scheduling or allocation of
resources for consumption or production. In this paper a
possible plan represents the utilization of the traffic links,
i.e. streets, that this vehicle is expected to use over a future
horizon. In other words, a possible plan encodes a followed
route and how much of the traffic network capacity this route
utilizes. Figure 3 illustrates how plans are modeled so that
EPOS can interoperate with SUMO. For each agent, multiple
plans are generated corresponding to alternative routes for a
vehicle to reach its destination. These alternative plans provide
the necessary flexibility to each vehicle to contribute to a traffic
equilibrium that is beneficial system-wide. Each plan is asso-
ciated with a cost that represents the preferences of the driver



or passengers. For instance, cost can measure the distance of
each route, the average speed, the fuel consumption, or the
safety of the route.

EPOS is designed to perform collective participatory learn-
ing such that each agent selects in a fully decentralized
fashion a plan that satisfies multiple complex objectives, i.e.
minimization of quadratic cost functions that require agents’
coordination and cannot be minimized locally. In this paper,
EPOS has the capability to minimize the variance of the
utilization over the different road segments as the means to (i)
potentially limit traffic congestion, (ii) limit the concentration
of traffic and noise pollution as well as (iii) limit the decay
and damages of the road network. Such collective objective
may oppose the drivers’ or passengers’ objectives. Selecting
the plan with the lowest cost can result in the tragedy of
the commons, i.e. selfish agents choosing the shortest route
may experience high traffic congestion due to imbalanced
utilization of the network. Finally, fairness objectives can also
be met in order to preserve an equality in terms of costs
payed for the selected plans from the different agents. EPOS is
designed to self-regulate all these orthogonal objectives based
on local agents’ parameters that govern trade-offs.

C. Integration

The plans and their associated costs for each agent are
generated by SUMO, followed by a decentralized plan selec-
tion in EPOS, and finally the execution of the selected plans
within SUMO (inner loop in Figure 1). For now, no agents are
modeled as disobedient, i.e. agents always accept the plans of
EPOS. The execution of the plans results in a new, eventually
optimized state of the traffic flow, given the status of the traffic.
At the next planning period the above workflow is repeated.

Independently, a self-adaptation loop (outer loop in Fig-
ure 1) is responsible for adapting the way decentralized
planning is performed by EPOS to deal with runtime changes.
The orchestration of this self-adaptation logic between EPOS
and SUMO is performed by exposing and contextualizing
a number of application-independent EPOS parameters that
are controlled during the runtime of the framework. These
parameters are outlined as follows:

• planning_period: It determines how often the EPOS
planning process will be invoked in the simulation.

• planning_steps: It determines the time resolution of
an EPOS planning process and corresponds to the time
blocks of Figure 3.

• planning_step_horizon: It determines the time
duration of a planning step. Therefore the total planning
horizon is calculated as planning_step_horizon ∗
planning_steps.

• alpha: It determines how fair the selected plans of
EPOS are in terms of how equal their costs are among the
agents’ population. The parameter receives value in the
range [0, 1], where 0 represents no fairness optimization
and 1 the highest priority in fairness optimization.

• beta: It determines the average discomfort that the
selected plans of EPOS cause to the agents. Discomfort

may refer to an undesired effect that a plan causes to the
driver of the vehicle, for instance, longer traveling times
or routes with tolls. The parameter receives value in the
range [0, 1], where 0 holds for no comfort optimization
and 1 holds for the highest priority in comfort optimiza-
tion, i.e., the plan with the lowest cost is always selected
for each agent (which then acts as a selfish agent).

• globalCostFunction: It determines the objective of
the decentralized combinatorial optimization. Two types
of objectives are supported: (i) a balancing objective,
i.e. minimization of the variance (VAR) as the means
to load-balance the utilization in the traffic network
over time, as well as (ii) three matching objectives, i.e.
minimization of cross correlation (XCORR), residuals of
sum squares (RSS) and root mean square error (RMSE).
The matching objectives require an input target plan for
the matching. This signal encodes the steering scenario,
for instance, avoiding certain traffic links in which an
accident happened.

V. SELF-ADAPTATION STRATEGIES

To illustrate the use of the TRAPP framework, we detail
here three adaptation strategies we implemented and provide
a cookbook of implementing different ones.

A. Generic Load-balancing Strategy

The goal of this strategy is to balance the cars in the traffic
network in order to potentially decrease trip times and limit
traffic congestion.

Monitor. The overheads of trips in the last adaptation period
are monitored.

Analysis. The median of the monitored trip overheads is
calculated. If it is higher than a prescribed threshold (e.g. 2),
the planning phase is triggered, otherwise the strategy aborts.

Planning. A value for the beta parameter of EPOS, cor-
responding to agents’ preferences for the route comfort, is
selected that is lower than the current one. This allows for
balancing of cars in streets to take place even if this causes
discomfort to certain agents. The strategy may consider results
from previous invocations in order to set the appropriate value.
Such historical information can be stored in the Knowledge
of TRAPP to be used across self-adaptation invocations.

Execution. globalCostFunction is set to VAR and beta
is set to the value selected in the previous phase.

B. Avoiding Overloaded Streets Strategy

Here, the goal is to determine which street or streets are
overloaded and steer traffic to avoid using these streets. This
might also correspond to the real-life case of street closures
due to accidents or extreme weather conditions.

Monitor. The utilization of all streets over the last adaptation
period is monitored. By default, TRAPP provides the highest
possible resolution in monitoring this, i.e. one utilization value
for each street for each simulation tick.



Fig. 3. The traffic plan of a vehicle is determined by a sequence of real values in the range [0, 1] representing the traffic link utilization created during a
specific time interval by the vehicle. The sequence is split in blocks representing planning steps. Each block contains the utilization values for each traffic
link of the network. In this example, the vehicle follows a route that consist of the traffic links B-C-A-D.

Analysis. The average utilization of each street is calculated.
If the average utilization of a street is higher than a prescribed
threshold (e.g. 80%), the street is marked as overloaded.
Planning. A target plan signal is created to steer vehicles
towards avoiding the overloaded streets. Such a signal in EPOS
is a sequence of 0’s or 1’s of the same length as an agent’s
plan, with 0 indicating that a street should be avoided. We
provide convenience methods for creating such signals.
Execution. globalCostFunction is set to XCORR, RSS,
or RMSE and the signal sequence is written to a file to be used
by EPOS in its next invocation. In the experimental evaluation
of this paper, the XCORR value has been used2.

C. Tuning Planning Frequency Strategy

The goal of this strategy is to tune the planning frequency
and horizon in order for planning to better deal with the
uncertainties of the environment. Since planning itself comes
with a communication cost, agents should replan only as
frequently as needed and not more often. However, in case
of a major traffic event such as a holiday or a popular match,
planning should be invoked more frequently to better control
the traffic flows.
Monitor. Either major events are directly monitored or the
street utilizations predicted in the latest EPOS invocation are
obtained in order to be compared to the actual, monitored
street utilizations since that invocation.
Analysis. For each street, the difference between its average
utilization and its predicted utilization by EPOS are compared.
Then, the average of these differences is computed, which
stands as a metric of how accurate planning has been in the
last period. If this metric is higher that a prescribed threshold,
the planning phase is triggered.
Planning. A planning period is selected that is lower than the
current one. Also, the planning step horizon and the number
of planning steps may be reduced to increase the accuracy

2Note that setting globalCostFunction to VAR does not require any
target plan signal. The choice between XCORR, RSS, or RMSE depends on
the scalarization of the plan values and costs and a choice is usually made
empirically [8].

of planning. Note that the total planning horizon can even be
lower than the planning period.
Execution. The new values for the EPOS parame-
ters of planning_period, planning_steps, and
planning_step_horizon are set.

D. Creating and Registering a Custom Strategy

To create a custom strategy, the user needs to create a
new Python class that inherits from the Strategy class and
implement the four MAPE-K phases as methods. The user has
access to convenience methods that monitor trip overhead and
street utilization over the last adaptation period (Util class).
Once a new strategy is implemented, it needs to be “registered”
to the framework (by changing a single file), and then it can be
selected in app.Config.py and used in a self-adaptation
loop that goes through all the prescribed MAPE-K phases.

VI. EXPERIENCE

We report now on our so far experience with experimenting
with the generic load balancing strategy (Section V-A). We
have been experimenting by deploying 600 cars in the city of
Eichstätt with 1131 streets. The main question is how changes
in the agents discomfort (modeled by the beta parameter
of EPOS) can lead to overall more efficient traffic flows
it terms of a balanced utilization of streets. To investigate
this, we first consider the baseline where agents are selfish
(beta=1) and always choose their most preferred plan. We
then consider a load-balancing strategy that assumes that
agents have intrinsic interests to preserve a balanced utilization
of the traffic network (beta=0). Finally, we consider a load-
balancing strategy in which only a small fraction of the agents
contribute to the public good (beta=0.9).

After setting the threshold for the median of trip overheads
to 1.5 and the other parameters to the values shown in Table I,
each of the three simulation scenarios ran for 1000 ticks.
We observe that an adaptation action is already taken in
the first run of the adaptation loop (tick=100), due to the
low threshold. The generic load balancing strategy set the
globalCostFunction to VAR and updated the beta
parameter to 1, 0, and 0.9, respectively.



TABLE I
EXPERIMENTS WITH PLANNING_PERIOD 100, ADAPTATION_PERIOD
100, PLANNING_STEP_HORIZON 50, PLANNING_STEPS 2, ALPHA 0.

Beta Median of Trip Overhead Variance of Street Utilization
1.0 1.86688881491 (baseline) 0.00421584184249 (baseline)
0.0 1.86697727145 (+ 0.005%) 0.00367241577052 (– 12.890%)
0.9 1.85167395638 (– 0.815%) 0.00408485498667 (– 3.107%)

The results, depicted in Table I, indicate that setting beta
to 0 decreased the variance of street utilization (the global
objective of EPOS) with a low sacrifice of 0.005% higher
trip overheads. Setting beta to 0.9 yielded positive results in
both metrics. A thorough analysis of Pareto optimal alpha
and beta values based on TRAPP is part of future work.

VII. COMPARISON TO RELATED WORK

Modeling and simulation software tools for domain-
dependent infrastructural networks and complex techno-socio-
economic systems are subject of active research: The perva-
siveness of the Internet of Things challenges their controlabil-
ity. Modeling and mitigation of energy blackouts and traffic
congestions become more complex. A high degree of shared
interconnections and network interdependencies perplex fur-
ther their dynamics and understanding [9]: Cascading power
failures triggered by individual component failures can influ-
ence other energized networks, e.g. communication networks
and water networks with energized valves. The interoperation
and interaction of domain-specific toolkits such as SUMO
with domain-independent models and tools, i.e. multi-agent
platforms, optimization engines, machine learning frameworks
are the means to cope with such challenges by decreasing
development costs, simplifying interdisciplinary team collab-
oration as well as increasing the resusability, modularity and
applicability of various general-purpose community artifacts.

Such self-adaptive software systems have been studied in
related work. For instance, the multi-agent systems framework
of JADE is earlier used for modeling the driver by providing
a strategic layer for route choices and adaptive learning
behavior, i.e. Q-learning [10]. JADE interoperates with SUMO
that provides the tactic layer of the simulation: accelerating
and breaking actions, lane-changing behavior and other events.
Such interoperation is achieved via the Traffic Simulation
Manager Application Programming Interface (TraSMAPI) and
the Traffic Control Interface (TraCI). In contrast, this paper
introduces a data-driven versatile modeling and interoperation
between SUMO and EPOS with higher flexibility on deter-
mining multiple strategic and tactic layers via the modeling of
possible plans and their cost. This can be crucial as Q-learning
may not provide fast learning convergence, i.e. it does not have
explicit access to all information residing in SUMO.

Similarly, an agent-based integration approach between
MATSim [11] and a Belief, Desire and Intention (BDI) sys-
tem is proposed for extensive modeling of agents’ decision
making as well as reactivity to the environment [12]. Self-
adaptation focuses on modeling agents with predetermined
static plans, while other agents are intelligent and reactive to
the environment, as such the scenarios of bushfire evacuation

or taxis can be effectively modeled. In contrast to this paper,
the configurable mechanisms for collective intelligence in
such heterogeneous scenarios are not addressed. In other
words, decoupling the agents’ individual intelligence from the
physical traffic simulation is not adequate by itself to solve
practical problems that arise when different agents interact
in a dynamic environment. Invocation to collective learning
capabilities can further enhance self-adaptation.

Traffic models usually focus on a specific aspect or ob-
jective, for instance, travel demand and reduction of trips
overhead, load-balanced traffic networks and flows, and re-
duction of carbon emissions [13]. Nevertheless, such traffic
phenomena require integrated modeling and analysis, whose
complexity often results in low interoperability and ad-hoc
solutions. Centralized transport simulation frameworks such
as POLARIS [13] address requirements for higher abstraction,
modularity and interoperability, however, usability requires
continuous maintenance, wrapping of new domain-specific
models, and integration of legacy software. In contrast, de-
centralized multi-agent systems such as EPOS can model
multiple objectives and agents’ behavior by design without a
requirement for domain knowledge. Interoperation with such
systems simplifies the integrated analysis and decreases the de-
velopment effort for domain-specific models and simulations.

Multimodal simulation scenarios for SUMO are the focus of
the SCRUM methodology [14], while other approaches focus
on the design of domain-specific modeling languages [15] or
the integration of traffic demand data derived from differ-
ent contexts [16]. The SFINA framework integrates different
domain-specific backends, including MATSim, to higher-level
interdependent flow network simulations, e.g. mitigation of
cascading failures in power-to-power or power-to-water inter-
dependent networks [9], [17]. None of these methodologies
addresses self-adaptation via decentralized optimization and
learning of multi-agent systems.

VIII. CONCLUSION

In this paper, we have presented a research framework –
TRAPP – that can be used for experimenting with self-adaptive
participatory planning in the traffic domain. We believe that
it can be both extended and configured to different research
needs. We intend to use it in investigating novel strategies for
traffic agents that cooperate in an adaptive way in optimizing
traffic flows in cities. We aspire to make TRAPP useful to
other researchers in the self-adaptive systems community.

IX. ARTIFACT AVAILABILITY

The source code of the artifact, along with an installation,
getting started guide and a pre-installed Virtual Machine are
available at https://github.com/iliasger/TRAPP.

ACKNOWLEDGMENT

This work is part of the Virtual Mobility World (ViM)
project and has been funded by the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy (StMWi)
through the Centre Digitisation.Bavaria, an initiative of the
Bavarian State Government.

https://github.com/iliasger/TRAPP


REFERENCES

[1] D. Helbing and B. Tilch, “Generalized force model of traffic dynamics,”
Physical review E, vol. 58, no. 1, p. 133, 1998.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[4] L. Codecá, R. Frank, S. Faye, and T. Engel, “Luxembourg SUMO
Traffic (LuST) Scenario: Traffic Demand Evaluation,” IEEE Intelligent
Transportation Systems Magazine, vol. 9, no. 2, pp. 52–63, 2017.

[5] L. Codec and J. Hrri, “Towards multimodal mobility simulation of c-its:
The monaco sumo traffic scenario,” in 2017 IEEE Vehicular Networking
Conference (VNC), Nov 2017, pp. 97–100.

[6] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, “Self-
Adaptation Based on Big Data Analytics: A Model Problem and Tool,”
in Proc. of SEAMS 2017. IEEE: IEEE, May 2017, pp. 102–108.

[7] E. Pournaras, P. Pilgerstorfer, and T. Asikis, “Decentralized collective
learning for self-managed sharing economies,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 13, no. 2, p. 10, 2018.

[8] E. Pournaras, M. Yao, and D. Helbing, “Self-regulating supply-demand
systems,” Future Generation Computer Systems, 2017.

[9] E. Pournaras, M. Ballandies, D. Acharya, M. Thapa, and B.-E. Brandt,
“Prototyping self-managed interdependent networks–self-healing syner-
gies against cascading failures,” in 13th International Symposium on
Software Engineering for Adaptive and Self-managing Systems (SEAMS
2018), 2018.

[10] G. Soares, Z. Kokkinogenis, J. L. Macedo, and R. J. Rossetti, “Agent-
based traffic simulation using sumo and jade: an integrated platform for
artificial transportation systems,” in Simulation of Urban MObility User
Conference. Springer, 2013, pp. 44–61.

[11] A. Horni, K. Nagel, and K. W. Axhausen, The multi-agent transport
simulation MATSim. Ubiquity Press London:, 2016.

[12] L. Padgham, K. Nagel, D. Singh, and Q. Chen, “Integrating bdi agents
into a matsim simulation,” in Proceedings of the Twenty-first European
Conference on Artificial Intelligence. IOS Press, 2014, pp. 681–686.

[13] V. Sokolov, J. Auld, and M. Hope, “A flexible framework for devel-
oping integrated models of transportation systems using an agent-based
approach,” Procedia Computer Science, vol. 10, pp. 854–859, 2012.

[14] A. F. Acosta, J. E. Espinosa, and J. Espinosa, “Application of the scrum
software methodology for extending simulation of urban mobility (sumo)
tools,” in Simulating Urban Traffic Scenarios. Springer, 2019, pp. 3–15.

[15] A. Fernández-Isabel and R. Fuentes-Fernández, “Developing an inte-
grative modelling language for enhancing road traffic simulations.” in
FedCSIS, 2015, pp. 1745–1756.

[16] D. Ziemke, K. Nagel, and C. Bhat, “Integrating cemdap and matsim to
increase the transferability of transport demand models,” Transportation
Research Record: Journal of the Transportation Research Board, no.
2493, pp. 117–125, 2015.

[17] E. Pournaras, B.-E. Brandt, M. Thapa, D. Acharya, J. Espejo-Uribe,
M. Ballandies, and D. Helbing, “Sfina-simulation framework for intelli-
gent network adaptations,” Simulation Modelling Practice and Theory,
vol. 72, pp. 34–50, 2017.

https://elib.dlr.de/124092/

	Introduction
	System Requirements
	Overview of the Framework
	User's Perspective

	Technical Integration
	SUMO and TraCI
	EPOS
	Integration

	Self-Adaptation Strategies
	Generic Load-balancing Strategy
	Avoiding Overloaded Streets Strategy
	Tuning Planning Frequency Strategy
	Creating and Registering a Custom Strategy

	Experience
	Comparison to Related Work
	Conclusion
	Artifact Availability
	References

