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Abstract— Smart cyber-physical systems (sCPS) is a growing 

research field focused on scenarios such as smart cities or smart 

mobility, where autonomous components are deployed in a 

physical environment, and are expected to cooperate with one 

another, as well as with humans. As these systems typically 

operate in a highly uncertain and dynamically changing 

environment, being able to cooperate and adapt in groups to 

cope with various (possibly unanticipated) situations becomes a 

crucial and challenging task. In this artifact, we respond to this 

challenge by presenting the Intelligent Ensembles framework, 

consisting of a high-level declarative language for describing 

dynamic cooperation groups, and a Java runtime library for 

automatically forming groups that best satisfy the given 

specification. The framework provides dynamic architecture 

adaptation (i.e., forming groups of components and exchanging 

data between them) based on the state of components and 

situation in their environment. Further, the framework can be 

used as a first step of a group-wise adaptation (i.e., identifying 

components that are to negotiate and coordinate in an 

adaptation). The framework is built on top of the Z3 SMT solver 

and the Eclipse Modelling Framework. 

Keywords—smart cyber-physical systems; distributed 

cooperation; adaptive architecture; ensemble-based component 
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I.  INTRODUCTION 

Recently, a lot of focus has been given to initiatives such 
as Internet of Things (IoT), smart cities, smart mobility, 
wearables and many more fields that have the same goal—
making the environment that humans live in more intelligent, 
responsive, and helpful. The common denominator of these 
initiatives is the presence of physical devices (sensors, 
actuators, or complex devices such as smartphones) in the 
environment, and the fact that these devices are connected to 
one another over a network, which enables them to provide 
better or more complex services than they would be able to do 
individually. 

The research field of smart Cyber-Physical Systems 
(sCPS) is focused on such types of systems—those comprised 
of individual components with both software and physical 
representation, capable of autonomous operation, but also of 
networked cooperation. There are many challenges in 
building such systems due to the number (and often conflicts) 
of the required quality attributes. In this artifact we focus on 

enabling cooperation via complex component group 
formation without breaking the autonomicity of the 
components, and the loose-coupling of the system as a whole. 
At the same time, we aim to support dynamicity in terms of 
addition and removal of components, and the ability to adapt 
to sensed changes in the environment or the system itself—a 
key property for sCPS, which often have to cope with highly 
uncertain and dynamic environment. 

To this end, we build on the concept of autonomous 
component ensembles [1], as introduced within the ASCENS 
project (EU FP7 FET – http://ascens-ist.eu/). Ensembles are 
dynamic groups of components periodically formed at 
runtime based on the current state of the components (their 
knowledge). Components themselves are not allowed any 
kind of direct interaction—instead, interaction is the 
responsibility of the ensemble, and takes the form of data 
transfers (knowledge exchange in ensemble terminology) 
between components in an ensemble. Ensemble-based 
approaches have been shown to provide properties desirable 
in sCPS, such as resilience, open-endedness and architecture 
flexibility in face of high dynamism.  

In our previous work, we have proposed the concept of 
Intelligent Ensembles, which allows for optimizing the 
process of member selection when forming ensembles, and for 
specifying arbitrary ensemble structure. The artifact described 
in this paper wraps this concept into a tool-based framework. 
The framework consists of (i) language editing tools for 
specifying complex groups of components in a custom DSL, 
and (ii) a runtime library capable of parsing the specification 
and forming groups adhering to this specification.  

Note that while it is anticipated that groups formed by the 
framework will be realized in the system as ensembles, this is 
in no way mandatory—in fact, the framework itself should be 
viewed as a general tool for describing complex groups on a 
high level of abstraction, and then using an SMT solver for 
selecting the best possible assignment of components to these 
groups. Its applicability is thus not limited to ensemble-based 
systems, or even sCPS—the framework is suitable for any 
situation where complex, adaptive, prescriptive grouping of 
components is desirable. Therefore, where suitable, we use the 
general term group instead of ensemble in the rest of the text. 

Since the groups are always formed at runtime based on 
the current state of a system, they are dynamic and able to 
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adapt to changes in the environment. As the group formation 
dictates also the connections between the components in the 
system, the architecture of the system as a whole is adaptive, 
dynamically resolved at runtime. Moreover, the formed 
groups themselves can also be used as a starting point for 
further adaptation among their members—with the 
framework able to identify what is to be adapted based on a 
declarative description. For example, one can imagine a high-
level adaptation rule that prescribes that “all members of 
firefighters scouting groups have to switch to indoor 
positioning system from GPS when entering a building”.  

The structure of the paper is as follows. In Section II, we 
show several scenarios where the artifact would be helpful to 
developers and summarize the challenges common to the 
scenarios. Section III presents an overview of the framework 
including the domain-specific language we have devised for 
describing groups of components, as well as the technical 
architecture. A summary of the artifact structure is presented 
in Section IV, followed by Section V detailing the framework 
from the perspective of the user. A discussion of the 
limitations and future work is provided in Section VI, together 
with an overview of related work. The paper is concluded with 
a short summary of contributions of this artifact. 

II. MOTIVATION 

To better illustrate the kind of groups we are interested in, 
we provide several examples with focus on a smart domain 
that has been rapidly gaining traction for the past few years—
smart mobility. We assume a system consisting both of mobile 
entities, such as cars, as well as static entities, such as gas 
stations, traffic lights and parking lots. To enable smart 
coordination, each entity is equipped with a mobile network 
device enabling communication both with a central server, 
and directly amongst the components. Many examples of 
hard-to-form groups can be found in this domain: 

 

 Emergency response—Suppose a car accident 
happens. Depending on the severity of the event, 
various parties should be alerted and vehicles 
dispatched—an ambulance, one or more police cars, 
towing service vehicle, etc. Normally, reporting an 
accident requires a report call, so the event must be 
witnessed or the driver must be conscious. With a 
smart car however, the car itself (unless utterly 
demolished) can detect and assess the situation (i.e., 
state of the passengers, risk of fire, mobility of the car, 
damage costs, etc.) via sensors, set the corresponding 
severity level, and then form a group with the most 
suitable vehicles that are required to respond based on 
their position and the severity of the event. Consider 
also that assigning the closest response vehicles might 
not be the best strategy for the system as a whole, as 
these vehicles might be more needed elsewhere. To 
optimize for this case, groups should be decided 
globally. 

 Smart parking—In this scenario we assume an 
integrated system of cars and smart parking lots, each 
equipped with an embedded device and a network 
connection. Cars desire to park near their destinations, 

and should thus consider grouping with parking lots 
close to them. At the same time, the number of 
assigned cars to one parking lot must not exceed its 
capacity. Additionally, more constraining 
requirements might be placed here as well, such as 
prioritizing cars that have been looking for a parking 
place longer, or cars with higher priority level, or only 
considering a certain number of cars that are closest 
to a lot. 

 Autonomous road trains—A lot of cargo is 
transported via trucks, often travelling at different 
speeds, overtaking one another and forming a 
transportation bottleneck. With smart mobility, it is 
possible to form groups of trucks traveling in the same 
direction, with the first truck in a group setting the 
speed and the others following it. Such road train 
group could also include and coordinate with passing 
cars, letting emergency vehicles pass, etc. 

 Many additional scenarios in smart mobility can be 
addressed by dynamic prescription-based groups—
traffic light preference can be done by grouping an 
emergency vehicles with all traffic lights along its 
path. Similarly, cars waiting at red light could form a 
group and accelerate at the same time when given the 
green light. 

A. Engineering and Coordination Challenges 

When dealing with loosely-coupled systems comprised of 
autonomous components, such as those outlined in the 
previous section, forming non-trivial, structured groups is a 
difficult and important task, since the assignment of 
components to groups effectively dictates the system’s 
structural architecture. Without a framework capable of 
understanding high-level group prescriptions and using them 
to efficiently form groups at runtime, developers of such 
systems are limited to creating tailored solutions to the group 
formation process. Such solutions would have to either 
explore all possible configurations, or use some kind of 
application-specific heuristic or approximation. Such a 
process is of course possible, but also tedious and error-prone, 
especially when dealing with multiple complex group types. 
Also, it demotes the reuse of the group formation logic. 

In all the previous scenarios, a developer tasked with 
implementing such dynamic constrained groups would face 
several engineering challenges, namely: 

 

 Adaptive architecture—Since the groups are typically 
dynamic and cannot be a part of the static structural 
architecture, the implementation must be adaptive in 
terms of components (cars, etc.) in the system. This 
entails creating an adaptation mechanism enabling 
pre-existing groups to change, or reform the groups 
when certain situations arise. 

 Separation of concerns—As the group formation 
mechanism is essentially a part of dynamic 
architecture, good software engineering dictates that 
its implementation be separated from the actual 
business logic, on the grounds of having different 
responsibilities. 



 Resolving structural and semantic constraints—In 
many cases of group formation, the group has 
members of various types, possibly with a limit on 
number of members, or even constraints on their state. 
The implementation would either have to deal with 
these cases uniformly, or use similar code for each 
group type, leading to duplicities. 

 Optimization—Often, it is not enough to form any 
groups satisfying certain constraints, but instead form 
the best groups possible. For example, assigning 
police vehicles that are geographically the closest in 
case of emergency, or assigning parking slots to cars 
that have spent the longest time trying to find a place 
to park. 

 
The Intelligent Ensembles framework was designed from 

the ground up to help developers tackle these challenges. It 
offers a high-level declarative language for group 
specification, constructs for placing both structural and 
semantic constraints, as well for selecting the best possible 
group formation. As the groups are described in the 
specification language, formed by the framework, and 
connected with the rest of the application via well-defined 
abstractions, the formation mechanism is completely 
separated from the business logic of the application. 

III. THE FRAMEWORK 

A. Ensemble Definition Language 

Before going into how the framework itself works, we first 
show the Ensemble Definition Language (EDL), which is 
used to specify what groups should be present in the system. 
Such specification is the main input provided by the 
framework’s user. To better enable the understanding of the 
concepts used for modelling the specification of the target 
system, we show an EDL file that models the Smart parking 
scenario outlined in Section II and contains all the major 
features of the EDL. We assume that each car requests a 
parking place at most some distance from its target location, 
and that each car is also assigned a priority value representing 
how fast it needs to park. We further assume that the situation 
can be modelled using discrete coordinates, such as the regular 
streets in United States cities, making it easy to denote the 
position of entities for the solver, and that each parking lot has 
at most 20 slots. 

An EDL document must start with a package declaration 
in a familiar Java format, enabling fully qualified 
identification of the types declared in the document. There are 
two concepts in the EDL that represent a type declaration, 
similar to classes in traditional programming languages—data 
contract and ensemble type declaration. Data contract 
declaration can be seen on lines 2 and 10 and serves 
essentially as an interface over component knowledge. 
However, unlike traditional interfaces, a data contract can 
only prescribe data fields, not methods or any kind of 
interaction paradigm. A component therefore satisfies (or 
implements) a data contract if it has all the required fields. In 
our case, there are two types of components in the system—

cars and parking lots—so we declare a new data contract for 
each of them. 

The other type declaration available is the ensemble type 
declaration, seen on line 16. With ensembles being a 
realization of a group of components, the ensemble 
declaration defines how a specific type of group is shaped, 
what kind of components can participate in it, and what 
semantic constraints must be enforced for the group to exist. 
In our running example, we use the ensemble to model the 
assignment of cars to parking lots, each parking lot having a 
group (ensemble) of its own containing all cars currently 
expected to park there. 

The ensemble type declaration consists of several sections. 
Each ensemble type declaration must contain an id definition. 
The purpose of the id is to uniquely identify each instance of 
this ensemble type.  Indirectly, it also restricts the domain of 
the possible instances, with its size corresponding to the size 
of the id type domain. As we want to form one ensemble per 
parking lot, we use the components with ParkingLot data 
contract to identify ensembles of this type.  

The type of the id can be either an integer, or a data 
contract. In the case of integer identification, the number of 
instances is not limited by the id, and the created instances will 
be numbered sequentially starting from 0. In this mode, only 
the other properties of the ensemble type (such as the required 
structure) will restrict the domain of instances. Alternately, if 
the id type is a data contract, the domain of instances is 
restricted by how many components satisfying the contract are 
present in the system, as an ensemble instance must be 
associated with a unique instance of the data contract. 
Additionally, when used with a data contract, the ensemble id 

1 package SeamsDemo 
2 data contract Car      
3   priority : int 
4   targetX : int 
5   targetY : int 
6   driveToX : int 
7   driveToY : int 
8 end 
9  
10 data contract ParkingLot 
11   locationX : int 
12   locationY : int 
13   capacity : int     
14 end 
15  
16 ensemble ParkingAssignment 
17   id parking : ParkingLot 
18   membership 
19     roles 
20       cars [0..20] : Car where ( 
(Abs(it.targetX - parking.locationX) + 
Abs(it.targetY - parking.locationY)) < 10)    
21     constraints 
22       constraint sum cars 1 <= 
parking.capacity 
23     fitness sum cars it.priority 
24   knowledge exchange 
25       cars.driveToX = parking.locationX 
26       cars.driveToY = parking.locationY 

 Figure 1.  An example of an EDL specification. 



also serves as a shared storage for all members of the 
ensemble instance—realizing the concept of ensemble 
knowledge. To avoid synchronization problems, the storage is 
expected to be read-only to ensemble members, with the 
ensemble id being the sole writer. 

The membership section starting on line 18 groups 
together features that influence how components in the 
systems are selected to form ensembles of this type. First 
selection constraint is structural—following the roles 
keyword on line 19 is a list of roles in the ensemble that a 
component can participate in. Roles are analogous to class 
fields in traditional languages. In this case, we have a single 
role, named cars, consisting of all cars assigned to a specific 
parking lot. A role declaration must consist of the name of the 
role, multiplicity, and the required type. The type of the role 
must be a data contract, and only components satisfying the 
data contract are allowed to participate in the role.  

In addition to the structural and type conformance, EDL 
also allows specification of semantic constraints, such as 
saying that the number of assigned cars—specified using the 
sum expression aggregating the value 1 for each car in the 
ensemble—must not exceed the parking lot capacity. 
Constraints can be written in the constraints section starting 
on line 21. Each constraint is prefixed with a constraint 
keyword. A constraint is a logical expression over data visible 
in the ensemble, i.e., the knowledge accessible through the 
data contracts of the individual roles, as well as the ensemble 
knowledge represented by the id of the ensemble. As the 
current implementation of the constraint concept depends on 
an SMT solver, some limitations as to what field types can be 
used in the expression; this is discussed in Section VI.B. 

In [2] we have argued for the need for additional language 
constructs that further restrict the set of components suitable 
for a specific role. One such construct that is fully realized in 
the current implementation is the where clause seen on line 
20, which limits the component selection only to those 
satisfying a given constraint, for example allowing us to 
disregard parking lots that are further from the car’s 
destination than a certain limit. Syntactically, the where clause 
must follow a role type declaration and consists of a single 
logical expression, similar to constraints. It is evaluated 
individually for each component that has passed the type 
validation step (corresponding data contract), with the aim of 
filtering out components that would result in unreasonable 
configurations. As such, it cannot depend on arbitrary 
knowledge available to such ensemble—its structure is not yet 
known. Instead, where is limited to the shared ensemble 
knowledge (i.e., the knowledge of the ensemble id), and the 
knowledge of the component under consideration, represented 
by the it keyword.  

Finally, EDL allows its users to define a measure of how 
well an ensemble instance is suited to fulfil the ensemble’s 
goal. This measure is defined following the fitness keyword 
on line 23. The fitness is an expression that must be evaluable 
to an integer value, having similar limitations as the 
constraints do w.r.t. its data fields. The purpose of the fitness 
clause is to enable the framework to prefer some 
configurations of an ensemble over others—if the framework 
has to choose between forming two instances of the same 

ensemble, it will prefer the one with higher fitness. In fact, the 
framework in its current implementation will optimize 
globally, forming ensemble instances that have the highest 
total sum of fitness values. In our case, we specify fitness as a 
sum of priorities of the cars in the ensemble, indicating that 
cars with higher priority should be preferred. 

Finally, the ensemble contains a knowledge exchange 
section that can be used to model data transfer interaction 
between the members of the ensemble. EDL supports two 
modes of knowledge exchange specification. For simple 
scenarios, the data transfer can be directly written in the form 
of C-style assignment statements. This is sufficient in the 
running example, as we simply assign the location of the 
chosen parking lot to all the cars in the ensemble. 
Alternatively, knowledge exchange can be specified as 
external, meaning it will be defined in the platform-specific 
language, in this case Java. The framework then generates an 
additional Java class with a knowledge exchange method stub 
to be filled by the developer. 

B. High-level Architecture Overview 

In this section, we describe the technical architecture of 
the Intelligent Ensembles framework. The framework is built 
on top of a Java-based technology stack, consisting of the 
Eclipse Modelling Framework and the DSL development 
tools such as XText and XPand. As such, it is tightly 
integrated with Java and Eclipse. Additionally, the current 
implementation depends on Microsoft’s Z3 SMT solver [3] 
for the ensemble formation strategy. Out of the box, the 
framework offers good integration with the jDEECo 
framework, a Java implementation of DEECo—an ensemble-
based component system [4]—but is also designed to enable 
easy binding to other Java environments and frameworks.   

 The high-level architecture of the framework, as well as 
the typical workflow, can be seen on Figure 2. The process 
starts with an EDL specification file describing all types of 
groups present in the system, such as the one described in 
Section III.A. An important point here is that the specification 
does not explicitly state which ensembles should be formed, 
but only what constraints they should satisfy. The actual 
architecture of the system is thus up to the framework to 

Figure 2.  Framework high-level architecture. 
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decide, making the system dynamic and able to respond to 
changes.   

The input EDL file is processed by the EDL compiler, 
which is provided in the form of an Eclipse plugin. The 
compiler parses the file into an Ecore model and then 
generates Java classes corresponding to the ensemble types 
defined in this model. All ensemble classes share a common 
interface providing a knowledge exchange method, which is 
invoked either by the external framework (e.g., jDEECo), or 
by user code. 

The most complicated and important part of the 
framework is the ensemble formation mechanism itself. The 
formation strategy is encapsulated in the Ensemble Factory 
component, whose purpose is to take the Ecore model 
(representing specification) and the current component 
knowledge, and then use the components available in the 
system to build the best ensembles that satisfy the 
specification. The specification takes the form of the same 
Ecore model that is gained from the EDL file and used for 
code generation. This means that the specification is easily 
mutable at runtime, essentially being an application of the 
Models@run.time [5] approach and lending itself well to self-
adaptation. The current version of the Ensemble Factory is 
built on top of the Microsoft Z3 SMT solver, forming 
ensembles by (i) translating the knowledge data and the 
specification model into logical formulas, (ii) feeding them to 
the solver, and (iii) interpreting the resulting valuation of 
variables as a specific architectural configuration.  

C. Reusability 

Despite being developed with jDEECo integration in 
mind, the Intelligent Ensembles framework was always 
designed as a separate entity, having only a minimal common 
interface with the goal of easy reuse. In fact, the framework 
has only one critical dependency in the form of the 
KnowledgeContainer interface, representing a data storage of 
components in the system—how exactly the container 
manages the instances is not important, as long as the 
invariants of the interface are maintained. This abstraction 
allows the framework to be easily integrated with many 
environments. As storing the knowledge in the form of data 
class instances is anticipated to be a common scenario, the 
framework is shipped with an implementation of such a 
knowledge container. If needed, a different ensemble 
formation strategy (e.g., based on another solver) can be easily 
introduced via a new Ensemble Factory implementation. 

IV. ARTIFACT STRUCTURE 

The artifact accompanying this paper can be found either 
at http://d3s.mff.cuni.cz/software/deeco/files/seams-2017.zip 
or at http://dx.doi.org/10.4230/DARTS.3.1.6. The artifact 
comprises of a single archive containing both the source code 
of the framework, as well as precompiled eclipse plugins and 
an eclipse project containing the implementation of the 
example discussed in Section III.A. Due to the platform 
requirements of the current implementation and the licensing 
of the Windows OS, we are unable to provide a complete 
virtual machine image. Instead, the archive provides a 
modified Eclipse instance containing all the necessary 

configuration out of the box. This instance can be used on any 
Windows 10 x64 machine. 

V. USER’S PERSPECTIVE 

A. Current Features 

Faced with a problem that can be solved by applying the 
Intelligent Ensembles framework, an architect needs to take 
several steps. First, they should analyze the problem and 
identify the actors in the system to be realized as components, 
and specify their data contracts. Next, they need to design the 
groups representing assignments or cooperation, and decide 
how exactly the groups are structured, i.e., what components 
participate in it and how, what are the semantic constraints of 
the group, and which groups should be preferred. Together, 
these design decisions form the description of the group, 
realized as ensemble types in the EDL code. 

The data contracts and ensemble types can be written in 
the EDL editor, and then translated into Java code via the 
automatically invoked EDL compiler. The resulting Java 
classes can then easily be used in the user code, as described 
further on. 

B. Working with the EDL editor 

The Intelligent Ensembles framework is intended to be 
used in the context of the Eclipse platform, with the compiler, 
UI and the language representation all provided as Eclipse 
plugins. The EDL editor currently supports highlighting, 
syntax validation, and a simple type validation that checks 
signatures of functions, compatibility of assignments and 
other type-based restrictions.  

C. Using the Framework with General Java Code 

In order to invoke the group formation logic from Java, 
only a few steps are needed—a concise example of the code 
is shown in Figure 3. First, the application code must create a 
new instance of a Factory class (line 27), generated by the 
EDL compiler and prefixed with the source EDL file name. 
Next, the state of the components must be provided via a 
knowledge container. Unless a special kind of component data 
handling is needed (e.g., support for data rollback), the 
provided DataclassKnowledgeContainer implementation can 
be used. After the container is created (line 28), component 
data must be stored in the container (line 29) for each 
component in the system. A simple createInstances method 
call on the factory (line 30) then creates the groups specified 
in the EDL file, returned as a collection of the 
EnsembleInstance interface implementors (a specific class is 
generated for each ensemble type). If any kind of data flow 

27 seamsEdlFactory factory = new seamsEdlFactory(); 
28 DataclassKnowledgeContainer container = new  

DataclassKnowledgeContainer(); 
29 container.storeDataClass(new CarComponent(…)); 

... 
30 Collection<EnsembleInstance> formed =   

factory.createInstances(container); 
31 for (EnsembleInstance instance : formed) { 
        instance.performKnowledgeExchange(); 
   } 

Figure 3.  Using the framework from application code. 

http://d3s.mff.cuni.cz/software/deeco/files/seams-2017.zip
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was used in the knowledge exchange specification, the 
returned groups must be iterated and a knowledge exchange 
method called on all of them (line 31). In a typical scenario, 
the group formation calls would be handled by the framework, 
and periodically scheduled to ensure adaptivity. 

VI. DISCUSSION 

A. Inherent Problem Complexity 

Since selecting an optimal configuration from a space of 
all possible configurations is clearly an NP-complete problem, 
this inherent complexity impacts the scalability of the 
framework. The scalability challenge has been elaborated on 
in [2] where we have considered some assumptions on the 
common sCPS scenarios that allow us to mitigate the issue by 
introducing filtering concepts, such as the where clause 
mentioned in Section III.A. These concepts allow the user to 
specify additional domain-specific knowledge, which makes 
it possible to reduce the size of the problem. While still NP-
complete, the reduced problem is much smaller, allowing us 
to obtain approximate solutions to otherwise infeasible use 
cases. In order to further improve scalability, it is possible to 
move from running the solver in each formation step to only 
running it when the system performance degrades below a 
certain threshold, and using more lightweight ensemble 
formation strategies otherwise (e.g., trading components 
between ensembles, or applying predefined group adaptation 
tactics). 

B. Data Type Limitations 

As the underlying mechanism of the ensemble formation 
depends on an SMT solver, this naturally introduces some 
limitations on the possible form of the expressions used in the 
constraints and fitness function. As Z3 can deal with integer 
and boolean variables, these are supported in all EDL 
expressions. However, we currently do not have any way of 
representing floating point and string values in Z3, so the 
compiler has been configured to not allow them in any 
expression that must be passed to the solver. Of course, these 
values can still be used in other parts of the specification, such 
as when declaring knowledge fields, or in knowledge 
exchange. In the future, it may be possible to introduce simple 
expressions over strings, such as equality, and possibly 
prefixes and suffixes, by hashing the value of the string and 
storing the hash in the solver as a representation of the string. 
In fact, a similar method could be used to enable at least 
equality expressions for composite types. 

C. Future Features 

In addition to addressing the challenges mentioned above, 
some features of the framework are still to be implemented or 
improved. Apart from improving the user experience of the 
library, such as by introducing fully functional code 
completion in addition to the already present type validation, 
the expressivity of the framework is the main area that we 
would like to focus on, primarily contained in the following 
aspects. 

General aggregation functions—We currently support 
the sum aggregation which was chosen as the most critical and 

common form of aggregation. Supporting general aggregation 
reminiscent of functional languages would allow a wider 
range of situations to be captured in constraints and fitness 
functions. 

Function extensibility—EDL supports defining functions 
(e.g., absolute value) both for general and solver-related 
expressions and the functions are not hardcoded but stored as 
data, making the function set extensible. However, a 
definition of a new function currently requires that the library 
and the plugins are recompiled. Having the ability to load 
function definition classes from the class path of the project 
would therefore much improve the ease of use of the 
framework. 

D. Related Work 

As mentioned in Section I, the concept of autonomous 
component ensembles has been introduced within the scope 
of the ASCENS project. It appears to be suitable for modelling 
sCPS scenarios and has been applied to sCPS scenarios, such 
as the e-mobility use case [6]. Till now, the concept was 
realized in several component models and frameworks such 
as DEECo [4], JRESP (http://jresp.sourceforge.net), and 
Helena [7]. DEECo, JRESP and Helena offer the same 
concepts of components with roles and ensembles, however 
they do not provide self-formation of ensembles based on 
high-level specification. AbaCuS [8], which is a Java-based 
implementation of AbC [9] and can be seen as a kind of 
successor to JRESP, is not an ensemble-based framework, but 
it also employs components and dynamic opportunistic 
communication among them. However, as above, it does not 
provide self-formation of communication groups based on 
high-level specification. The concept of ensemble was also 
utilized in our previous work [10] as part of the simulation 
testbed implementation. Whereas the purpose of the testbed 
was to provide a case study driven sCPS simulation 
environment, this artifact delivers a general group formation 
library backed by the intelligent ensemble concepts and EDL. 

VII. CONTRIBUTIONS 

In this artifact paper we have presented the Intelligent 
Ensembles, a framework for dynamic group formation based 
on a high-level specification. Due to its adaptive architecture 
capabilities and its high-level description language, we 
envision the framework to be useful for implementing all 
kinds of group-based use cases, as a part or spring board for 
implementation of another framework focused on group-wise 
self-adaptation, or as an example adaptive architecture 
framework in university software architecture courses. The 
framework is designed to be easily integrated with existing 
code, and general enough to be applied even outside the sCPS 
domain for which it is primarily intended. 
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