
Intelligent Ensembles – a Declarative Group

Description Language and Java Framework

Filip Krijt1, Zbynek Jiracek1, Tomas Bures1, Petr Hnetynka1, Ilias Gerostathopoulos2

1Charles University

Faculty of Mathematics and Physics

Prague, Czech Republic

{krijt, jiracek, bures, hnetynka}@d3s.mff.cuni.cz

2Fakultät für Informatik

Technische Universität München

Munich, Germany

gerostat@in.tum.de

Abstract— Smart cyber-physical systems (sCPS) is a growing

research field focused on scenarios such as smart cities or smart

mobility, where autonomous components are deployed in a

physical environment, and are expected to cooperate with one

another, as well as with humans. As these systems typically

operate in a highly uncertain and dynamically changing

environment, being able to cooperate and adapt in groups to

cope with various (possibly unanticipated) situations becomes a

crucial and challenging task. In this artifact, we respond to this

challenge by presenting the Intelligent Ensembles framework,

consisting of a high-level declarative language for describing

dynamic cooperation groups, and a Java runtime library for

automatically forming groups that best satisfy the given

specification. The framework provides dynamic architecture

adaptation (i.e., forming groups of components and exchanging

data between them) based on the state of components and

situation in their environment. Further, the framework can be

used as a first step of a group-wise adaptation (i.e., identifying

components that are to negotiate and coordinate in an

adaptation). The framework is built on top of the Z3 SMT solver

and the Eclipse Modelling Framework.

Keywords—smart cyber-physical systems; distributed

cooperation; adaptive architecture; ensemble-based component

system; group-wise adaptation; autonomic systems

I. INTRODUCTION

Recently, a lot of focus has been given to initiatives such
as Internet of Things (IoT), smart cities, smart mobility,
wearables and many more fields that have the same goal—
making the environment that humans live in more intelligent,
responsive, and helpful. The common denominator of these
initiatives is the presence of physical devices (sensors,
actuators, or complex devices such as smartphones) in the
environment, and the fact that these devices are connected to
one another over a network, which enables them to provide
better or more complex services than they would be able to do
individually.

The research field of smart Cyber-Physical Systems
(sCPS) is focused on such types of systems—those comprised
of individual components with both software and physical
representation, capable of autonomous operation, but also of
networked cooperation. There are many challenges in
building such systems due to the number (and often conflicts)
of the required quality attributes. In this artifact we focus on

enabling cooperation via complex component group
formation without breaking the autonomicity of the
components, and the loose-coupling of the system as a whole.
At the same time, we aim to support dynamicity in terms of
addition and removal of components, and the ability to adapt
to sensed changes in the environment or the system itself—a
key property for sCPS, which often have to cope with highly
uncertain and dynamic environment.

To this end, we build on the concept of autonomous
component ensembles [1], as introduced within the ASCENS
project (EU FP7 FET – http://ascens-ist.eu/). Ensembles are
dynamic groups of components periodically formed at
runtime based on the current state of the components (their
knowledge). Components themselves are not allowed any
kind of direct interaction—instead, interaction is the
responsibility of the ensemble, and takes the form of data
transfers (knowledge exchange in ensemble terminology)
between components in an ensemble. Ensemble-based
approaches have been shown to provide properties desirable
in sCPS, such as resilience, open-endedness and architecture
flexibility in face of high dynamism.

In our previous work, we have proposed the concept of
Intelligent Ensembles, which allows for optimizing the
process of member selection when forming ensembles, and for
specifying arbitrary ensemble structure. The artifact described
in this paper wraps this concept into a tool-based framework.
The framework consists of (i) language editing tools for
specifying complex groups of components in a custom DSL,
and (ii) a runtime library capable of parsing the specification
and forming groups adhering to this specification.

Note that while it is anticipated that groups formed by the
framework will be realized in the system as ensembles, this is
in no way mandatory—in fact, the framework itself should be
viewed as a general tool for describing complex groups on a
high level of abstraction, and then using an SMT solver for
selecting the best possible assignment of components to these
groups. Its applicability is thus not limited to ensemble-based
systems, or even sCPS—the framework is suitable for any
situation where complex, adaptive, prescriptive grouping of
components is desirable. Therefore, where suitable, we use the
general term group instead of ensemble in the rest of the text.

Since the groups are always formed at runtime based on
the current state of a system, they are dynamic and able to

http://ascens-ist.eu/

adapt to changes in the environment. As the group formation
dictates also the connections between the components in the
system, the architecture of the system as a whole is adaptive,
dynamically resolved at runtime. Moreover, the formed
groups themselves can also be used as a starting point for
further adaptation among their members—with the
framework able to identify what is to be adapted based on a
declarative description. For example, one can imagine a high-
level adaptation rule that prescribes that “all members of
firefighters scouting groups have to switch to indoor
positioning system from GPS when entering a building”.

The structure of the paper is as follows. In Section II, we
show several scenarios where the artifact would be helpful to
developers and summarize the challenges common to the
scenarios. Section III presents an overview of the framework
including the domain-specific language we have devised for
describing groups of components, as well as the technical
architecture. A summary of the artifact structure is presented
in Section IV, followed by Section V detailing the framework
from the perspective of the user. A discussion of the
limitations and future work is provided in Section VI, together
with an overview of related work. The paper is concluded with
a short summary of contributions of this artifact.

II. MOTIVATION

To better illustrate the kind of groups we are interested in,
we provide several examples with focus on a smart domain
that has been rapidly gaining traction for the past few years—
smart mobility. We assume a system consisting both of mobile
entities, such as cars, as well as static entities, such as gas
stations, traffic lights and parking lots. To enable smart
coordination, each entity is equipped with a mobile network
device enabling communication both with a central server,
and directly amongst the components. Many examples of
hard-to-form groups can be found in this domain:

 Emergency response—Suppose a car accident
happens. Depending on the severity of the event,
various parties should be alerted and vehicles
dispatched—an ambulance, one or more police cars,
towing service vehicle, etc. Normally, reporting an
accident requires a report call, so the event must be
witnessed or the driver must be conscious. With a
smart car however, the car itself (unless utterly
demolished) can detect and assess the situation (i.e.,
state of the passengers, risk of fire, mobility of the car,
damage costs, etc.) via sensors, set the corresponding
severity level, and then form a group with the most
suitable vehicles that are required to respond based on
their position and the severity of the event. Consider
also that assigning the closest response vehicles might
not be the best strategy for the system as a whole, as
these vehicles might be more needed elsewhere. To
optimize for this case, groups should be decided
globally.

 Smart parking—In this scenario we assume an
integrated system of cars and smart parking lots, each
equipped with an embedded device and a network
connection. Cars desire to park near their destinations,

and should thus consider grouping with parking lots
close to them. At the same time, the number of
assigned cars to one parking lot must not exceed its
capacity. Additionally, more constraining
requirements might be placed here as well, such as
prioritizing cars that have been looking for a parking
place longer, or cars with higher priority level, or only
considering a certain number of cars that are closest
to a lot.

 Autonomous road trains—A lot of cargo is
transported via trucks, often travelling at different
speeds, overtaking one another and forming a
transportation bottleneck. With smart mobility, it is
possible to form groups of trucks traveling in the same
direction, with the first truck in a group setting the
speed and the others following it. Such road train
group could also include and coordinate with passing
cars, letting emergency vehicles pass, etc.

 Many additional scenarios in smart mobility can be
addressed by dynamic prescription-based groups—
traffic light preference can be done by grouping an
emergency vehicles with all traffic lights along its
path. Similarly, cars waiting at red light could form a
group and accelerate at the same time when given the
green light.

A. Engineering and Coordination Challenges

When dealing with loosely-coupled systems comprised of
autonomous components, such as those outlined in the
previous section, forming non-trivial, structured groups is a
difficult and important task, since the assignment of
components to groups effectively dictates the system’s
structural architecture. Without a framework capable of
understanding high-level group prescriptions and using them
to efficiently form groups at runtime, developers of such
systems are limited to creating tailored solutions to the group
formation process. Such solutions would have to either
explore all possible configurations, or use some kind of
application-specific heuristic or approximation. Such a
process is of course possible, but also tedious and error-prone,
especially when dealing with multiple complex group types.
Also, it demotes the reuse of the group formation logic.

In all the previous scenarios, a developer tasked with
implementing such dynamic constrained groups would face
several engineering challenges, namely:

 Adaptive architecture—Since the groups are typically
dynamic and cannot be a part of the static structural
architecture, the implementation must be adaptive in
terms of components (cars, etc.) in the system. This
entails creating an adaptation mechanism enabling
pre-existing groups to change, or reform the groups
when certain situations arise.

 Separation of concerns—As the group formation
mechanism is essentially a part of dynamic
architecture, good software engineering dictates that
its implementation be separated from the actual
business logic, on the grounds of having different
responsibilities.

 Resolving structural and semantic constraints—In
many cases of group formation, the group has
members of various types, possibly with a limit on
number of members, or even constraints on their state.
The implementation would either have to deal with
these cases uniformly, or use similar code for each
group type, leading to duplicities.

 Optimization—Often, it is not enough to form any
groups satisfying certain constraints, but instead form
the best groups possible. For example, assigning
police vehicles that are geographically the closest in
case of emergency, or assigning parking slots to cars
that have spent the longest time trying to find a place
to park.

The Intelligent Ensembles framework was designed from

the ground up to help developers tackle these challenges. It
offers a high-level declarative language for group
specification, constructs for placing both structural and
semantic constraints, as well for selecting the best possible
group formation. As the groups are described in the
specification language, formed by the framework, and
connected with the rest of the application via well-defined
abstractions, the formation mechanism is completely
separated from the business logic of the application.

III. THE FRAMEWORK

A. Ensemble Definition Language

Before going into how the framework itself works, we first
show the Ensemble Definition Language (EDL), which is
used to specify what groups should be present in the system.
Such specification is the main input provided by the
framework’s user. To better enable the understanding of the
concepts used for modelling the specification of the target
system, we show an EDL file that models the Smart parking
scenario outlined in Section II and contains all the major
features of the EDL. We assume that each car requests a
parking place at most some distance from its target location,
and that each car is also assigned a priority value representing
how fast it needs to park. We further assume that the situation
can be modelled using discrete coordinates, such as the regular
streets in United States cities, making it easy to denote the
position of entities for the solver, and that each parking lot has
at most 20 slots.

An EDL document must start with a package declaration
in a familiar Java format, enabling fully qualified
identification of the types declared in the document. There are
two concepts in the EDL that represent a type declaration,
similar to classes in traditional programming languages—data
contract and ensemble type declaration. Data contract
declaration can be seen on lines 2 and 10 and serves
essentially as an interface over component knowledge.
However, unlike traditional interfaces, a data contract can
only prescribe data fields, not methods or any kind of
interaction paradigm. A component therefore satisfies (or
implements) a data contract if it has all the required fields. In
our case, there are two types of components in the system—

cars and parking lots—so we declare a new data contract for
each of them.

The other type declaration available is the ensemble type
declaration, seen on line 16. With ensembles being a
realization of a group of components, the ensemble
declaration defines how a specific type of group is shaped,
what kind of components can participate in it, and what
semantic constraints must be enforced for the group to exist.
In our running example, we use the ensemble to model the
assignment of cars to parking lots, each parking lot having a
group (ensemble) of its own containing all cars currently
expected to park there.

The ensemble type declaration consists of several sections.
Each ensemble type declaration must contain an id definition.
The purpose of the id is to uniquely identify each instance of
this ensemble type. Indirectly, it also restricts the domain of
the possible instances, with its size corresponding to the size
of the id type domain. As we want to form one ensemble per
parking lot, we use the components with ParkingLot data
contract to identify ensembles of this type.

The type of the id can be either an integer, or a data
contract. In the case of integer identification, the number of
instances is not limited by the id, and the created instances will
be numbered sequentially starting from 0. In this mode, only
the other properties of the ensemble type (such as the required
structure) will restrict the domain of instances. Alternately, if
the id type is a data contract, the domain of instances is
restricted by how many components satisfying the contract are
present in the system, as an ensemble instance must be
associated with a unique instance of the data contract.
Additionally, when used with a data contract, the ensemble id

1 package SeamsDemo
2 data contract Car
3 priority : int
4 targetX : int
5 targetY : int
6 driveToX : int
7 driveToY : int
8 end
9
10 data contract ParkingLot
11 locationX : int
12 locationY : int
13 capacity : int
14 end
15
16 ensemble ParkingAssignment
17 id parking : ParkingLot
18 membership
19 roles
20 cars [0..20] : Car where (
(Abs(it.targetX - parking.locationX) +
Abs(it.targetY - parking.locationY)) < 10)
21 constraints
22 constraint sum cars 1 <=
parking.capacity
23 fitness sum cars it.priority
24 knowledge exchange
25 cars.driveToX = parking.locationX
26 cars.driveToY = parking.locationY

 Figure 1. An example of an EDL specification.

also serves as a shared storage for all members of the
ensemble instance—realizing the concept of ensemble
knowledge. To avoid synchronization problems, the storage is
expected to be read-only to ensemble members, with the
ensemble id being the sole writer.

The membership section starting on line 18 groups
together features that influence how components in the
systems are selected to form ensembles of this type. First
selection constraint is structural—following the roles
keyword on line 19 is a list of roles in the ensemble that a
component can participate in. Roles are analogous to class
fields in traditional languages. In this case, we have a single
role, named cars, consisting of all cars assigned to a specific
parking lot. A role declaration must consist of the name of the
role, multiplicity, and the required type. The type of the role
must be a data contract, and only components satisfying the
data contract are allowed to participate in the role.

In addition to the structural and type conformance, EDL
also allows specification of semantic constraints, such as
saying that the number of assigned cars—specified using the
sum expression aggregating the value 1 for each car in the
ensemble—must not exceed the parking lot capacity.
Constraints can be written in the constraints section starting
on line 21. Each constraint is prefixed with a constraint
keyword. A constraint is a logical expression over data visible
in the ensemble, i.e., the knowledge accessible through the
data contracts of the individual roles, as well as the ensemble
knowledge represented by the id of the ensemble. As the
current implementation of the constraint concept depends on
an SMT solver, some limitations as to what field types can be
used in the expression; this is discussed in Section VI.B.

In [2] we have argued for the need for additional language
constructs that further restrict the set of components suitable
for a specific role. One such construct that is fully realized in
the current implementation is the where clause seen on line
20, which limits the component selection only to those
satisfying a given constraint, for example allowing us to
disregard parking lots that are further from the car’s
destination than a certain limit. Syntactically, the where clause
must follow a role type declaration and consists of a single
logical expression, similar to constraints. It is evaluated
individually for each component that has passed the type
validation step (corresponding data contract), with the aim of
filtering out components that would result in unreasonable
configurations. As such, it cannot depend on arbitrary
knowledge available to such ensemble—its structure is not yet
known. Instead, where is limited to the shared ensemble
knowledge (i.e., the knowledge of the ensemble id), and the
knowledge of the component under consideration, represented
by the it keyword.

Finally, EDL allows its users to define a measure of how
well an ensemble instance is suited to fulfil the ensemble’s
goal. This measure is defined following the fitness keyword
on line 23. The fitness is an expression that must be evaluable
to an integer value, having similar limitations as the
constraints do w.r.t. its data fields. The purpose of the fitness
clause is to enable the framework to prefer some
configurations of an ensemble over others—if the framework
has to choose between forming two instances of the same

ensemble, it will prefer the one with higher fitness. In fact, the
framework in its current implementation will optimize
globally, forming ensemble instances that have the highest
total sum of fitness values. In our case, we specify fitness as a
sum of priorities of the cars in the ensemble, indicating that
cars with higher priority should be preferred.

Finally, the ensemble contains a knowledge exchange
section that can be used to model data transfer interaction
between the members of the ensemble. EDL supports two
modes of knowledge exchange specification. For simple
scenarios, the data transfer can be directly written in the form
of C-style assignment statements. This is sufficient in the
running example, as we simply assign the location of the
chosen parking lot to all the cars in the ensemble.
Alternatively, knowledge exchange can be specified as
external, meaning it will be defined in the platform-specific
language, in this case Java. The framework then generates an
additional Java class with a knowledge exchange method stub
to be filled by the developer.

B. High-level Architecture Overview

In this section, we describe the technical architecture of
the Intelligent Ensembles framework. The framework is built
on top of a Java-based technology stack, consisting of the
Eclipse Modelling Framework and the DSL development
tools such as XText and XPand. As such, it is tightly
integrated with Java and Eclipse. Additionally, the current
implementation depends on Microsoft’s Z3 SMT solver [3]
for the ensemble formation strategy. Out of the box, the
framework offers good integration with the jDEECo
framework, a Java implementation of DEECo—an ensemble-
based component system [4]—but is also designed to enable
easy binding to other Java environments and frameworks.

 The high-level architecture of the framework, as well as
the typical workflow, can be seen on Figure 2. The process
starts with an EDL specification file describing all types of
groups present in the system, such as the one described in
Section III.A. An important point here is that the specification
does not explicitly state which ensembles should be formed,
but only what constraints they should satisfy. The actual
architecture of the system is thus up to the framework to

Figure 2. Framework high-level architecture.

EDL
Compiler

Ensemble classes

Role classesRole classes

External code – an adaptation framework,
autonomous components framework (e.g. DEECo) etc.

Z3 SMT Solver

Z3
Intelligent
Ensemble

Factory

Knowledge
Container

Ensemble
definitions

EDL File

Data contract
definitions

Data-contract
knowledge

Logical formulas

Ensemble
instances

Knowledge exchange

decide, making the system dynamic and able to respond to
changes.

The input EDL file is processed by the EDL compiler,
which is provided in the form of an Eclipse plugin. The
compiler parses the file into an Ecore model and then
generates Java classes corresponding to the ensemble types
defined in this model. All ensemble classes share a common
interface providing a knowledge exchange method, which is
invoked either by the external framework (e.g., jDEECo), or
by user code.

The most complicated and important part of the
framework is the ensemble formation mechanism itself. The
formation strategy is encapsulated in the Ensemble Factory
component, whose purpose is to take the Ecore model
(representing specification) and the current component
knowledge, and then use the components available in the
system to build the best ensembles that satisfy the
specification. The specification takes the form of the same
Ecore model that is gained from the EDL file and used for
code generation. This means that the specification is easily
mutable at runtime, essentially being an application of the
Models@run.time [5] approach and lending itself well to self-
adaptation. The current version of the Ensemble Factory is
built on top of the Microsoft Z3 SMT solver, forming
ensembles by (i) translating the knowledge data and the
specification model into logical formulas, (ii) feeding them to
the solver, and (iii) interpreting the resulting valuation of
variables as a specific architectural configuration.

C. Reusability

Despite being developed with jDEECo integration in
mind, the Intelligent Ensembles framework was always
designed as a separate entity, having only a minimal common
interface with the goal of easy reuse. In fact, the framework
has only one critical dependency in the form of the
KnowledgeContainer interface, representing a data storage of
components in the system—how exactly the container
manages the instances is not important, as long as the
invariants of the interface are maintained. This abstraction
allows the framework to be easily integrated with many
environments. As storing the knowledge in the form of data
class instances is anticipated to be a common scenario, the
framework is shipped with an implementation of such a
knowledge container. If needed, a different ensemble
formation strategy (e.g., based on another solver) can be easily
introduced via a new Ensemble Factory implementation.

IV. ARTIFACT STRUCTURE

The artifact accompanying this paper can be found either
at http://d3s.mff.cuni.cz/software/deeco/files/seams-2017.zip
or at http://dx.doi.org/10.4230/DARTS.3.1.6. The artifact
comprises of a single archive containing both the source code
of the framework, as well as precompiled eclipse plugins and
an eclipse project containing the implementation of the
example discussed in Section III.A. Due to the platform
requirements of the current implementation and the licensing
of the Windows OS, we are unable to provide a complete
virtual machine image. Instead, the archive provides a
modified Eclipse instance containing all the necessary

configuration out of the box. This instance can be used on any
Windows 10 x64 machine.

V. USER’S PERSPECTIVE

A. Current Features

Faced with a problem that can be solved by applying the
Intelligent Ensembles framework, an architect needs to take
several steps. First, they should analyze the problem and
identify the actors in the system to be realized as components,
and specify their data contracts. Next, they need to design the
groups representing assignments or cooperation, and decide
how exactly the groups are structured, i.e., what components
participate in it and how, what are the semantic constraints of
the group, and which groups should be preferred. Together,
these design decisions form the description of the group,
realized as ensemble types in the EDL code.

The data contracts and ensemble types can be written in
the EDL editor, and then translated into Java code via the
automatically invoked EDL compiler. The resulting Java
classes can then easily be used in the user code, as described
further on.

B. Working with the EDL editor

The Intelligent Ensembles framework is intended to be
used in the context of the Eclipse platform, with the compiler,
UI and the language representation all provided as Eclipse
plugins. The EDL editor currently supports highlighting,
syntax validation, and a simple type validation that checks
signatures of functions, compatibility of assignments and
other type-based restrictions.

C. Using the Framework with General Java Code

In order to invoke the group formation logic from Java,
only a few steps are needed—a concise example of the code
is shown in Figure 3. First, the application code must create a
new instance of a Factory class (line 27), generated by the
EDL compiler and prefixed with the source EDL file name.
Next, the state of the components must be provided via a
knowledge container. Unless a special kind of component data
handling is needed (e.g., support for data rollback), the
provided DataclassKnowledgeContainer implementation can
be used. After the container is created (line 28), component
data must be stored in the container (line 29) for each
component in the system. A simple createInstances method
call on the factory (line 30) then creates the groups specified
in the EDL file, returned as a collection of the
EnsembleInstance interface implementors (a specific class is
generated for each ensemble type). If any kind of data flow

27 seamsEdlFactory factory = new seamsEdlFactory();
28 DataclassKnowledgeContainer container = new

DataclassKnowledgeContainer();
29 container.storeDataClass(new CarComponent(…));

...
30 Collection<EnsembleInstance> formed =

factory.createInstances(container);
31 for (EnsembleInstance instance : formed) {
 instance.performKnowledgeExchange();
 }

Figure 3. Using the framework from application code.

http://d3s.mff.cuni.cz/software/deeco/files/seams-2017.zip
http://dx.doi.org/10.4230/DARTS.3.1.6

was used in the knowledge exchange specification, the
returned groups must be iterated and a knowledge exchange
method called on all of them (line 31). In a typical scenario,
the group formation calls would be handled by the framework,
and periodically scheduled to ensure adaptivity.

VI. DISCUSSION

A. Inherent Problem Complexity

Since selecting an optimal configuration from a space of
all possible configurations is clearly an NP-complete problem,
this inherent complexity impacts the scalability of the
framework. The scalability challenge has been elaborated on
in [2] where we have considered some assumptions on the
common sCPS scenarios that allow us to mitigate the issue by
introducing filtering concepts, such as the where clause
mentioned in Section III.A. These concepts allow the user to
specify additional domain-specific knowledge, which makes
it possible to reduce the size of the problem. While still NP-
complete, the reduced problem is much smaller, allowing us
to obtain approximate solutions to otherwise infeasible use
cases. In order to further improve scalability, it is possible to
move from running the solver in each formation step to only
running it when the system performance degrades below a
certain threshold, and using more lightweight ensemble
formation strategies otherwise (e.g., trading components
between ensembles, or applying predefined group adaptation
tactics).

B. Data Type Limitations

As the underlying mechanism of the ensemble formation
depends on an SMT solver, this naturally introduces some
limitations on the possible form of the expressions used in the
constraints and fitness function. As Z3 can deal with integer
and boolean variables, these are supported in all EDL
expressions. However, we currently do not have any way of
representing floating point and string values in Z3, so the
compiler has been configured to not allow them in any
expression that must be passed to the solver. Of course, these
values can still be used in other parts of the specification, such
as when declaring knowledge fields, or in knowledge
exchange. In the future, it may be possible to introduce simple
expressions over strings, such as equality, and possibly
prefixes and suffixes, by hashing the value of the string and
storing the hash in the solver as a representation of the string.
In fact, a similar method could be used to enable at least
equality expressions for composite types.

C. Future Features

In addition to addressing the challenges mentioned above,
some features of the framework are still to be implemented or
improved. Apart from improving the user experience of the
library, such as by introducing fully functional code
completion in addition to the already present type validation,
the expressivity of the framework is the main area that we
would like to focus on, primarily contained in the following
aspects.

General aggregation functions—We currently support
the sum aggregation which was chosen as the most critical and

common form of aggregation. Supporting general aggregation
reminiscent of functional languages would allow a wider
range of situations to be captured in constraints and fitness
functions.

Function extensibility—EDL supports defining functions
(e.g., absolute value) both for general and solver-related
expressions and the functions are not hardcoded but stored as
data, making the function set extensible. However, a
definition of a new function currently requires that the library
and the plugins are recompiled. Having the ability to load
function definition classes from the class path of the project
would therefore much improve the ease of use of the
framework.

D. Related Work

As mentioned in Section I, the concept of autonomous
component ensembles has been introduced within the scope
of the ASCENS project. It appears to be suitable for modelling
sCPS scenarios and has been applied to sCPS scenarios, such
as the e-mobility use case [6]. Till now, the concept was
realized in several component models and frameworks such
as DEECo [4], JRESP (http://jresp.sourceforge.net), and
Helena [7]. DEECo, JRESP and Helena offer the same
concepts of components with roles and ensembles, however
they do not provide self-formation of ensembles based on
high-level specification. AbaCuS [8], which is a Java-based
implementation of AbC [9] and can be seen as a kind of
successor to JRESP, is not an ensemble-based framework, but
it also employs components and dynamic opportunistic
communication among them. However, as above, it does not
provide self-formation of communication groups based on
high-level specification. The concept of ensemble was also
utilized in our previous work [10] as part of the simulation
testbed implementation. Whereas the purpose of the testbed
was to provide a case study driven sCPS simulation
environment, this artifact delivers a general group formation
library backed by the intelligent ensemble concepts and EDL.

VII. CONTRIBUTIONS

In this artifact paper we have presented the Intelligent
Ensembles, a framework for dynamic group formation based
on a high-level specification. Due to its adaptive architecture
capabilities and its high-level description language, we
envision the framework to be useful for implementing all
kinds of group-based use cases, as a part or spring board for
implementation of another framework focused on group-wise
self-adaptation, or as an example adaptive architecture
framework in university software architecture courses. The
framework is designed to be easily integrated with existing
code, and general enough to be applied even outside the sCPS
domain for which it is primarily intended.

ACKNOWLEDGMENT

This work was partially supported by the project no.
LD15051 from COST CZ (LD) programme by the Ministry
of Education, Youth and Sports of the Czech Republic,
partially supported by Charles University Grant Agency
project No. 390615, and partially supported by Charles
University institutional funding SVV-260451.

http://jresp.sourceforge.net/

REFERENCES

1. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.:

ASCENS: Engineering Autonomic Service-Component

Ensembles. In: Beckert, B., Damiani, F., Boer, F.S. de, and

Bonsangue, M.M. (eds.) Proceedings of FMCO 2011 (Revised

Selected Papers), Turin, Italy. pp. 1–24. Springer (2011).

2. Krijt, F., Jiracek, Z., Bures, T., Hnetynka, P., Plasil, F.:

Automated Dynamic Formation of Component Ensembles. In:

Proceedings of Modelsward 2017, Porto, Portugal.

SCITEPRESS (2017).

3. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In:

Proceedings of TACAS’08, Budapest, Hungary. pp. 337–340.

Springer (2008).

4. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit,

M., Plasil, F.: DEECo: An ensemble-based component system.

In: Proceedings of CBSE 2013, Vancouver, Canada. pp. 81–90.

ACM (2013).

5. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.:

Models@ Run.time to Support Dynamic Adaptation.

Computer. 42, 44–51 (2009).

6. Hoch, N., Bensler, H.-P., Abeywickrama, D., Bureš, T.,

Montanari, U.: The E-mobility Case Study. In: Wirsing, M.,

Hölzl, M., Koch, N., and Mayer, P. (eds.) Software

Engineering for Collective Autonomic Systems. pp. 513–533.

Springer (2015).

7. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling

– The Helena Approach. In: Iida, S., Meseguer, J., and Ogata,

K. (eds.) Specification, Algebra, and Software. pp. 359–381.

Springer (2014).

8. Alrahman, Y.A., Nicola, R.D., Loreti, M.: On the Power of

Attribute-Based Communication. In: Proceedings of FORTE

2016, Heraklion, Crete, Greece. pp. 1–18. Springer (2016).

9. Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming of

CAS Systems by Relying on Attribute-Based Communication.

In: Proceedings of ISOLA 2016, Corfu, Greece. pp. 539–553.

Springer (2016).

10. Matena, V., Bures, T., Gerostathopoulos, I., Hnetynka, P.:

Model Problem and Testbed for Experiments with Adaptation

in Smart Cyber-physical Systems. In: Proceedings of SEAMS

2016, Austin, USA. pp. 82–88. ACM (2016).

