
Engineering for a Science-Centric Experimentation Platform
Nikos Diamantopoulos

ndiamantopoulos@netflix.com
Netflix, Inc.

Los Gatos, California, USA

Jeffrey Wong
jeffreyw@netflix.com

Netflix, Inc.
Los Gatos, California, USA

David Issa Mattos
davidis@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Ilias Gerostathopoulos
gerostat@in.tum.de

Vrije Universiteit Amsterdam,
Netherlands and Technical University

of Munich, Germany

Matthew Wardrop
mawardrop@netflix.com

Netflix, Inc.
Los Gatos, California, USA

Tobias Mao
tmao@netflix.com

Netflix, Inc.
Los Gatos, California, USA

Colin McFarland
cmcfarland@netflix.com

Netflix, Inc.
Los Gatos, California, USA

ABSTRACT
Netflix is an internet entertainment service that routinely employs
experimentation to guide strategy around product innovations. As
Netflix grew, it had the opportunity to explore increasingly spe-
cialized improvements to its service, which generated demand for
deeper analyses supported by richer metrics and powered by more
diverse statistical methodologies. To facilitate this, and more fully
harness the skill sets of both engineering and data science, Netflix
engineers created a science-centric experimentation platform that
leverages the expertise of scientists from a wide range of back-
grounds working on data science tasks by allowing them to make
direct code contributions in the languages used by them (Python
and R). Moreover, the same code that runs in production is able
to be run locally, making it straightforward to explore and gradu-
ate both metrics and causal inference methodologies directly into
production services.

In this paper, we provide two main contributions. Firstly, we
report on the architecture of this platform, with a special emphasis
on its novel aspects: how it supports science-centric end-to-end
workflows without compromising engineering requirements. Sec-
ondly, we describe its approach to causal inference, which leverages
the potential outcomes conceptual framework to provide a unified
abstraction layer for arbitrary statistical models and methodologies.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7123-0/20/05. . . $15.00
https://doi.org/10.1145/3377813.3381349

KEYWORDS
experimentation, A/B testing, software architecture, causal infer-
ence, science-centric

ACM Reference Format:
NikosDiamantopoulos, JeffreyWong, David IssaMattos, Ilias Gerostathopou-
los, MatthewWardrop, Tobias Mao, and Colin McFarland. 2020. Engineering
for a Science-Centric Experimentation Platform. In Proceedings of Software
Engineering in Practice (ICSE-SEIP ’20). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3377813.3381349

1 INTRODUCTION
Understanding the causal effects of product and business decisions
via experimentation is a key enabler for innovation [15, 29, 30, 37],
and the gold-standard of experimentation design is the randomized
controlled trial, also known as A/B testing [5, 46, 48].

In this paper, we will be presenting key aspects of the experimen-
tation platform built by Netflix, a leading internet entertainment
service. The innovations of this experimentation platform are in-
teresting because they have resulted in a "technical symbiosis" of
engineers and data scientists, each complementing the skill sets of
the other, in order to create a platform that is robust and scalable,
while also being readily extensible by data scientists.

Netflix routinely uses online A/B experiments to inform strategy
and operation discussions (e.g. [4, 21, 31, 35]), as well as whether
certain product changes should be launched. Over time these dis-
cussions grew to be increasingly specialized, generating demand for
more and richer metrics powered by extensible statistical method-
ologies that are capable of answering diverse causal effects ques-
tions. For example, it was becoming more common for teams to
require bespoke metrics to assist in the analysis of specific ex-
periments, such as when changes to Netflix’s UI architecture and
video player design caused extra hard-to-isolate latency in play-
back startup [21]; or to require bespoke statistical methodologies,
such as when interleaving was used to garner additional statisti-
cal power when trying to compare two already highly-optimised
personalization algorithms [4].

https://doi.org/10.1145/3377813.3381349
https://doi.org/10.1145/3377813.3381349

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Diamantopoulos, et al.

To support these ever-growing use-cases, Netflix made a strate-
gic bet to make their experimentation science-centric; that is, to
place a heavy emphasis on enabling arbitrary data analyses meth-
ods for causal inference that are developed in different fields of
science. To implement this science-centric vision, Netflix’s experi-
mentation platform, Netflix XP, was reimagined around three key
tenets: trustworthiness, scalability, and inclusivity. Trustworthiness
is essential since results that are untrustworthy are not actionable.
Scalability is required to accommodate for Netflix’s growth. In-
clusivity is a key tenet because it allows scientists from diverse
backgrounds such as biology, psychology, economics, mathematics,
physics, computer science and other disciplines, working on data
science tasks, to contribute to the experimentation platform.

The implications of these tenets on Netflix XP arewide-ranging,
but perhaps chief among them are the resulting choices of language
and computing paradigm. Python was chosen as the primary lan-
guage of the platform; with some components in C++ and R as
needed to support performance and/or statistical models. This was
a natural choice because it is familiar to many data scientists, and
has a comprehensive collection of standard libraries supporting
both engineering and data science use-cases. The platform also
adopted a non-distributed architecture in order to reduce the bar-
rier of entry into the platform for new statistical methodologies.
Since non-distributed architectures are not as trivially scaled, the
techniques employed by the platform in order to ensure scalability,
i.e. compression and numerical performance optimizations, are a
significant contribution of this work.

The re-imagined Netflix XP has also had implications for its
stakeholders. Firstly, data science productivity has increased. It is
now straightforward for data scientists to reproduce and extend
the standard analyses performed by the experimentation platform
because they can run the production code in a local environment.
The code also permits ad hoc extensions, allowing scientists to
leverage their background and domain knowledge to easily deliver
customized scorecards [14]; for example, by including explorations
of heterogeneous or temporal effects. Secondly, data science work-
flows have been enriched with a more extensive toolkit. Since the
platform was re-imagined, new statistical methodologies, such as
quantile bootstrapping and regression, have been contributed to
the platform, which can then be used in combination with arbitrary
metrics of the data scientists’ choice. Thirdly, engineers have been
freed up to focus on the platform itself. Since data scientists are now
responsible for contributing and maintaining their own metrics and
methodologies, engineers are now able to focus on aspects of the
platform in which they specialize, leading to greater scalability and
trustworthiness. The effect of these implications has compounded
in rapid innovation cycles around ongoing strategy discussions,
which has changed the face of experimentation at Netflix.

In this paper, we provide two main contributions. Firstly, we
report on the architecture of this platform, with a special emphasis
on its novel aspects: how it supports science-centric end-to-end
workflows without compromising the engineering requirements
laid out in subsequent sections. Secondly, we describe its approach
to causal inference, which leverages the potential outcomes frame-
work to provide a unified abstraction layer for arbitrary statistical
models and methodologies.

The rest of this paper is organized as follows: Section 2 presents
background information in online experiments and related work.
Section 3 presents the research method and validity considerations.
Section 4 presents the architectural requirements, the libraries and
improvements made to Netflix XP to support science-centric
experimentation and the impact of these changes at Netflix. Section
5 discusses the causal inference framework used by Netflix XP
that allows scientists to express their causal models in a unified
way. Section 6 concludes the paper and discusses future research
directions.

2 BACKGROUND AND RELATEDWORK
2.1 Online Experiments
Online experiments have been discussed in research for over 10
years [3]. The most common type of online experiment is the ran-
domized controlled trial (RCT). RCT consists of randomly assigning
users to different experience (control and treatments) of the product,
while their behavior is gauged via logging a number of events. Based
on this telemetry, several metrics are computed during and upon
completion of an experiment. Statistical tests, such as the t-test,
Mann-Whitney test, or CUPED [9] are used to identify statistically
significant changes in the metrics and generate scorecards [14].
These scorecards help product managers, engineers, and data scien-
tists to make informed decisions and identify a causal relationship
between the product change and the observed effect. RCT in web
systems is extensively discussed by Kohavi et al. [29]. The paper
presents an in-depth guide on how to run controlled experiments
on web systems, discussing types of experimental designs, statis-
tical analysis, ramp-up, the effect of robots and some architecture
considerations, such as assignment methods and randomization
algorithms.

Although most research in online experiments has focused on
RCT, companies have been using other types of experimental de-
signs to infer causal relations. For instance, Xu and Chen [47]
describe the usage of quasi A/B tests to evaluate the mobile app
of LinkedIn. The paper details the characteristics of the mobile in-
frastructure that contribute to the need for designing and running
different experiment designs than RCT.

2.2 Experimentation Processes and Platforms
To support and democratize experimentation acrossmultiple depart-
ments, products and use cases, Kaufman et al. [27] have identified
the need for an experimentation platform to be generic and exten-
sible enough to allow the design, implementation, and analysis of
experiments with minimal ad hoc work. They describe, in the con-
text of Booking.com, the usage of an extensible metric framework
to enable experiment owners to create new metrics. However, they
do not describe the extensibility aspect in the context of different
experimental designs and analyses as we do.

Twitter discusses its experimentation platform and how it is
capable of measuring and analyzing a large number of flexible
metrics [11]. The platform supports three types of metrics: built-in
metrics that are tracked for all experiments, event-based metrics,
and metrics that are owned and generated by engineers. One of
the challenges is to scale the system with this flexibility. Scalability
was achieved through several performance optimizations in their

Engineering for a Science-Centric Experimentation Platform ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

infrastructure including profiling and monitoring the capabilities
in Hadoop and making processing jobs more efficient.

The trustworthiness aspect of online experiments has been an
active area of research [10, 16, 25, 28, 49]. Experiments that rely
on violated assumptions or are susceptible to implementation or
other design errors can lead to untrustworthy results that can com-
promise the conclusions and the value of the experiment. Kohavi
et al. [28] discuss lessons learned from online controlled experi-
ments that can influence the experiment result, such as carryover
effects, experiment duration, and statistical power. Fabijan et al.
[16] provide essential checklists to prevent companies from over-
looking critical trustworthiness aspects of online experiments. In
our work, we do not specifically focus on trustworthiness aspects
of online experiments, but on how to make the experimentation
process science-centric.

More similar to our work, the different software architecture
parts and design decisions of an experimentation platform are pre-
sented in Gupta et al. [23]. The paper describes the core components
of the Microsoft ExP Platform, focusing on trustworthiness and
scalability. In summary, their platform can be divided into four main
components: experimentation portal, experiment execution service,
log processing service, and analysis service. In the platform, exper-
iment owners can easily create, deploy, and analyze experiments
reliably and at scale. The platform also supports deep-dive post-
experiment analysis for understanding metric changes in specific
segments. However, such analysis requires a deep understanding
of the structure of the data, the computation of the metrics, and the
way experiment information is stored in the data. In our work, we
specifically focus on the analysis components of Netflix XP and
describe how they have been re-designed to allow science-centric
experimentation.

2.3 Enhancing Productivity of Data Scientists
Finally, re-designing Netflix XP to afford data scientists the ability
to work with their familiar languages and tools is akin to other
efforts to enhance the flexibility and productivity of data scientists.
A prominent example is Tempe [18], an integrated, collaborative
environment for large-scale data analytics, which allows for both
offline and real-time analytics using the same scripts written in
a scripting variant of C#. Tempe relies on a temporal streaming
engine, Trill [7], to progressively compute and report analysis re-
sults. It also relies on the concept of live programming in which
statements are re-evaluated upon edit to keep the results of a script
up-to-date with the script text. Our work also aims at providing a
homogeneous environment for both ad hoc and production analy-
sis flows. To achieve interactivity, Netflix XP does not rely on a
temporal streaming engine, but on a combination of pre-computing
tables and on-demand slicing. Also, contrary to Tempe, interactive
analysis of experiments in Netflix XP is performed in Jupyter
Notebooks and follows the classic read-eval-print loop [8].

3 RESEARCH METHOD
Netflix is an entertainment media service provider and content
producer with over 150 million subscribers. Within the scope of the
online streaming platform, Netflix runs hundreds of experiments

yearly. Netflix XP has been running and supporting experiments
at Netflix for over 9 years.

Over the last 3 years, an increased need for flexibility in the
design and analysis of experiments, as well as the need to optimize
the usability of the platform for its data scientists has led Netflix to
redesign its experimentation infrastructure as science-centric. The
redesign followed an engineering process that resembles the steps
proposed in design science research [24, 36]. Design science seeks to
investigate and develop new and innovative artifact solutions that
emerge from the interactions of the operating environment, organi-
zation technology, and involved stakeholders. The artifact resulted
from such process and described in this research is the (Netflix
XP). The development of the artifact was subjected to continuous
evaluation based on feedback from the data scientists and software
developers using the platform to deploy online experiments.

This paper reports on the main aspects of the platform produced
that reinforced the key tenets of the platform—trustworthiness,
scalability and inclusivity. To identify these main aspects, data from
multiple sources was collected between the years of 2017 and 2019.
The primary source of data consists of documentation from three
regularly scheduled meetings: Experimentation Engineering with
Experimentation Science leaders, Experimentation Science strategy
meetings, and Experimentation Engineering with Experimentation
Science verticals. These meetings provided the main aspects in
which the platform was evaluated. Additionally, we collected data
from the company-wide summit on forward thinking plans for
experimentation, one-on-one interviews with data scientists, engi-
neers, and product managers, internal experiments, observational
data from the usage of the platform as well as software documenta-
tion and product roadmap documents.

The collected data was analyzed in three steps. In the first step,
we gathered all the major design changes of Netflix XP. In the sec-
ond step, we coded these changes into common groups [6], such as
requirements, architecture changes, software libraries, performance
improvements, statistical methods, and causal inference modeling.
Similar codes were merged and grouped under the twomain themes
discussed in this paper: the software architecture and the causal
inference framework. We classified within each theme the changes
that produced, and are expected to produce, high impact for the
platform. The relative impact of the changes was assessed based
on direct feedback observed in the collected data, e.g. recurring
feedback mentioned in meetings and in one-on-one interviews.
These feedback were also supported by internal experiments and
observational data. We then staged the changes in a way that made
the foundations of the Netflix XP strong.

Validity considerations. External validity: This study is based
on a single company and the results and decisions taken that led
to changes in the architecture, software libraries, performance im-
provements and causal modeling are dependent on the specific
context of the development activity. However, the presented results
can provide guidance to other organizations seeking to evolve a
science-centric experimentation culture, since not all of the pre-
sented results and discussions are tied directly to Netflix XP or to
the streaming service industry. Instantiation validity refers to the
validity of the proposed artifacts in the specific context of design sci-
ence [32]. One of the main threats is the large artifact instantiation

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Diamantopoulos, et al.

space, where the artifact can be instantiated in a large number of de-
sign options. While there are other ways that the experimentation
platform could be instantiated, the artifact context and the inclu-
sivity tenet led the platform development to be based on existing
tools, implementations and theoretical frameworks [33].

4 SOFTWARE ARCHITECTURE
Due to the ever increasing number of simultaneous experiments,
experimentation platforms are often expected to derive conclusions
without much human intervention. While automation brings a
huge boost in velocity, Netflix’s view is that it should not stand
in the way of custom analyses that can leverage domain expertise
in order to improve the understanding and context of the effects
created by an experiment. Online experiments can easily become
very complex and challenging to analyze [10]. In such cases, the
custom designs and analyses made by the involved data scientists
are of great importance.

The large number of data scientists running custom analyses
required Netflix to redesign its experimentation platform. From
Netflix’s experience, when the stakeholders who need some changes
are not empowered tomake them, the results are sub-optimal.When
facing engineering barriers to integrate with production systems,
data scientists might end up creating isolated solutions that may not
be integrated with the production system. This can lead to multiple
fragmented systems with different degrees of documentation and
levels of support.

This section describes the architectural components in Netflix
XP to support science-centric experimentation. These components
give data scientists full autonomy to run their analyses end-to-end,
and empower them with the necessary software tools to do deep-
dive analyses. We first describe the requirements and architecture
of the platform and then illustrate how it enables data scientists to
perform deep-dive analyses and contribute new analysis flows.

4.1 Requirements for Experiment Analysis
Regarding the analysis of online experiments, Netflix XP has the
following requirements:

• Scalable. Each experiment at Netflix XP may collect and
analyse data from a large portion of its 150M subscribers.
Since Netflix is a very fast growing business this is just the
starting point for the scalability requirement.

• Performant. Experiment results must be calculated within
seconds or minutes to allow for exploratory analyses with
different user segments and metrics.

• Cost efficient. The use of computational and storage re-
sources for experiment analysis must be minimized to avoid
unnecessary costs.

• Trustworthy. Netflix XP must offer reproducible results
with accurate calculations on all statistics.

• Usable. Data analysts must be able to effortlessly specify
standard and specialized analysis flows, view the results in an
intuitive graphical interface, and perform custom deep-dive
analyses.

• Extensible. Data scientists from different backgrounds must
be able to easily extend Netflix XP by contributing new
experimental designs and analyses.

The last two points are directly related to science-centric ex-
perimentation. They imply that data scientists can easily setup a
development environment so they can reproduce, debug, and extend
analyses that happen in production. This development environment
should in particular:

• support interfacing with existing scientific libraries, such as
Pandas, Statsmodels, and R;

• support local and interactive computation, for example through
Jupyter Notebooks.

4.2 Experiment Analysis Flow
An experiment analysis at Netflix XP consists of three distinct
phases: data collection, statistical analysis, and visualization of the
results [34]. These phases, along with the related components of
the platform, are depicted in Figure 1. As a first step, experiment log
data are extracted, enhanced by user metadata, and stored as a table
in S3. The resulting table is subsequently filtered, aggregated, and
compressed based on the specified analysis configuration. Those
first two tasks are achieved through the Metrics Repo component
which is responsible for generating the appropriate SQL expres-
sions that will be run on top of Spark and Presto. Second, different
statistical methods are run on the compressed data to calculate
the specified metrics and statistics of interest for the experiment.
This step is performed by the Causal Models component. Third,
different graphs are plotted for visual analysis of the results—a
task of the XP Viz component. All of the above are orchestrated
via the XP Platform API which is responsible for delivering the
calculated metrics and produced graphs to Netflix XP’s frontend,
ABlaze. Alternatively, an identical analysis can also run within a
Jupyter Notebook; in this case, the analyst can further customize the
analysis and view the results directly in the Notebook environment.

To enable science-centric experimentation, all three main com-
ponents of Netflix XP’s architecture can be extended by data
scientists providing new metrics, statistical methods, and visualiza-
tions. These three components are described in detail next.

4.3 Metrics Repo
Metrics Repo is an in-house Python framework where users de-
fine metrics as well as programmatically generated SQL queries for
the data collection step. One of the main benefits of this is the cen-
tralization of metric definitions in a unified way. Previously, many
teams at Netflix had their own pipelines to calculate success metrics
which caused fragmentation and discrepancies in calculations.

For each metric, the framework allows contributors to define
certain metadata (e.g. the statistical model to use and how to be
displayed). In order to compare a metric across two user groups,
aggregate data of users in each group need to be collected and com-
pared. For example, Figure 2 shows the specification of a "number of
streamers" metric: for each user, the number of streaming sessions
with duration more than one hour are collected. For comparison
between user groups, a default set of descriptive statistics, as well
as proportion tests are used.

Many related systems in the industry generate the required data
for analyses through a rigorous Extract, Transform, Load (ETL)
pipeline which is responsible to annotate the available business
data with the experiment data. A key design decision of Metrics

Engineering for a Science-Centric Experimentation Platform ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

ABlaze

Figure 1: Experiment analysis flow at Netflix XP.

c l a s s NumStreamers (Me t r i c) :

def _ e xp r e s s i o n (s e l f) :
return Max (I f _ (s e l f . query . s t r e aming_hour s > 0 , 1 , 0))

def _ s t a t i s t i c s (s e l f) :
return [D e s c r i p t i v e S t a t s () , P r o p o r t i o n S t a t s ()]

Figure 2: Example Metric definition.

Repo is that it moves the last mile of metric computation away from
data engineering-owned ETL pipelines into dynamically generated
SQL that runs on Spark. This allows data scientists to add metrics
and join arbitrary tables in a faster and much more flexible way
since they do not have to conform to a strict predefined schema.
The generated SQL is run only on demand and on average takes a
few minutes to execute. This ad-hoc data collection removes the
need for migrations and expensive backfills when making changes
to metrics avoiding the costly and slow ETL alternative. Adding a
new metric is as easy as adding a new field or joining a different
table in SQL. The SQL is generated programmatically in Python
which leads to a maintainable and self-documented code base.

4.3.1 Pre-compute vs Live-compute. When analyzing an experi-
ment, data scientists need to see the metrics through different
slicing of their data. Slicing is typically done based on different
dimensions, e.g., user’s country (only US users) or device type (only
iOS users). To support this in the past, statistics would be com-
puted for each dimension value over all dimensions (pre-compute).
Such computation leads to an explosion of possible comparisons:
e.g. statistics for users in each country are compared separately,
statistics for users on different device types are again compared
separately. The problem becomes exponential when slicing is ap-
plied via conjunction of dimension values (e.g. US users on iOS) or

dis-junction (e.g. users from US or Canada) due to the number of
possible combinations.

To cope with the above problem, the platform adopts the follow-
ing hybrid solution. When a new analysis is requested, statistics for
only a number of commonly used slices are pre-computed. If more
slices are needed, the respective statistics are computed on demand
(live-compute). Live computation is not instant, however, with an
average latency of less than a minute, it is easy to queue all the
slices and view the results as they become available within seconds.
To achieve the above, the data collection is split into two steps:
the first one retrieves raw data without filtering and aggregations,
whereas the second retrieves the final set of filtered and aggregated
data. The first part is usually much more costly to compute (mul-
tiple minutes) due to big table joins, so it is calculated in Spark
and stored as a table in S3. The resulting table can subsequently be
sliced with the requested filter on demand. For quick slicing over
large amounts of data, Presto [40], a distributed SQL engine, has
been used due to its fast and interactive nature in computing filter
and aggregate queries compared to alternatives such as Spark or
Hive.

Lastly, it is worth noting that, given that comparing all the pre-
computed slices is statistically controversial due to multiple hy-
pothesis testing [17], Netflix XP offers segment discovery through
Causal Models, which enables automatic discovery of important
data slices instead of manually comparing them one by one.

4.3.2 Building trustworthiness. Metrics Repo comes with two
powerful features that increase the confidence in changes. The
first is a testing framework which, besides unit testing, allows
integration testing where metric calculations run end-to-end on
real sample data leveraging Spark. This enforces that every change
goes through a continuous integration system, ensuring that none
of the well established reports are affected. Contributors are given
the appropriate tools and are urged to follow internal best practices

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Diamantopoulos, et al.

when submitting changes. The second feature is the option to run
a meta-analysis on historical tests with the proposed changes. This
enables contributors to change a metric definition and view how
this would have affected hundreds of completed tests, allowing
them to confidently decide if they should move forward. Those two
features have proven valuable in providing a safety net and a solid
base for changes.

4.4 Causal Models
Causal Models is a Python library that houses implementations of
causal effectsmodels and serves as the statistical engine for Netflix
XP. Causal effects models are a restricted class of statistical models
that measure causation instead of correlation, a distinction that is
crucial in the context of experimentation. Causal Models receives
data from Metrics Repo, then reports summary statistics such as
the mean, count, and quantiles under a model, as well as treatment
effect statistics such as the average treatment effect, its variance, its
confidence interval and its p-value. Like Metrics Repo, the library
is designed for inclusion in that it allows scientists to contribute
causal effects models that integrate into the experiment analysis
workflow. It also leverages the same meta-analysis framework as
Metrics Repo to ensure stability across changes. To support the
management of many models, the Causal Models library also
employs a modeling framework for causal inference, though we
defer that discussion until section 5 and focus on Causal Models
as a mechanism for statistical testing here.

Netflix seeks to utilize a full repertoire of causal effects models
from different scientific fields in order to provide rich data for deci-
sion making. The two-sample t-test is the most foundational causal
effects model in AB testing. It is simple to understand, simple to im-
plement, is easily scaled, and measures causal relationships instead
of correlational ones when the data is randomized and controlled.
Building on top of that, ordinary least squares (OLS) is a causal
effects model that can be used to determine the differences in the
averages while filtering noise that the t-test cannot filter. Quan-
tile regression can be used to determine differences in quantiles of
the distribution, for example if Netflix is concerned about changes
in its most engaged users. Panel models can be used to measure
treatment effects through time.

By building modeling tools using the same stack that scientists
use, Netflix XP was able to overcome many challenges in gradu-
ating multiple causal effects models. Often, advances in modeling
are developed by scientists with in-depth knowledge of statistics,
and their methods are usually inspired by domain knowledge and
experience in their field. To support their work in field experiments,
their models are developed in programming languages such as R
and Python that emphasize local and interactive computing. The
process of graduating such causal effects models into a production
engineering system can be inefficient. First, context and knowledge
must be transferred. Afterwards, the models would frequently be
re-implemented in Spark in order to make them performant in a
big data environment. Implementations in a distributed computing
environment, such as Spark, makes models hard to debug, and intro-
duces a high barrier for scientists to contribute. This challenge often
leads scientists to create ad-hoc applications in order to communi-
cate their research and conclusions about an experiment. Instead of

re-implementing models, Causal Models is built on Python, and
engineers an interface that can integrate these models into Netflix
XP while preserving the important engineering requirements dis-
cussed in section 4.1. This created a path from research directly into
the experiment analysis workflow. In this case, the tenet of being
inclusive to the data science stack improved the science-centric
vision, as well as the tenet on trustworthiness. The innovations
required to reach this milestone are discussed below.

To make contributions easier for scientists, Causal Models of-
fers all the necessary support to integrate with existing statistics
libraries in Python and R, the most common data science languages
at Netflix. Having a multilingual framework makes Netflix XP
inclusive to scientists from different backgrounds. rpy2 [20] has
enabled the use of R inside a python framework by embedding an R
process, but sharing data across them can consume large amounts
of memory. In order to minimize RAM usage, the platform employs
Apache Arrow [1], an in-memory and cross language data format
that offers zero-copy inter-process communication. Additionally,
Causal Models provides: (1) parallelization over multiple metrics
during the calculation of statistics and (2) caching to simplify man-
aging multiple models for multiple metrics.

Integrating with non-distributed Python and R libraries enables
single-machine computation that is easy to debug and extend, how-
ever this emphasis and deviation from distributed computing can
reduce the scalability of the experimentation platform. Therefore,
the Netflix XP engineering team developed optimizations to scale
modeling, so that the stack can still serve production and also offer
local computation. This was addressed in two ways: data compres-
sion, and high performance numerical computing.

Data compression is an engineering achievement that allows
better inclusion of the data science stack, and improves the tenet
on scalability. Many causal effects models, such as OLS, compute
the difference between the means of two distributions; these means
are estimated using averages from a dataset. Some distributions
can be losslessly summarized using sufficient statistics [19]. For
example, the Normal distribution can be summarized using condi-
tional means and variances. When sufficient statistics are available,
causal effects models do not need to be trained on the raw dataset,
it can be trained on a much smaller dataset containing the sufficient
statistics and features for the model. Compression rates as high as
100x were regularly observed, allowing data that would previously
require hundreds of gigabytes of memory to fit in a single machine
for local and interactive modeling. Compression is a a core part of
the Netflix XP’s analysis workflows, and is applied to all data.
For other causal effects models that cannot be summarized using
sufficient statistics, a lossy compression is used with sensible de-
faults that do not materially impact the precision of the treatment
effect, as validated by the platform’s meta-analysis framework.

Optimizing numeric computations in Causal Models is another
way to be inclusive, performant, and reduce the need for distributed
computing. At Netflix, there is a focus on high performance numeri-
cal computing applied to causal effects. This led to the development
of reuseable causal effects primitives to support Causal Models
through highly optimized and generic functions that are common
in causal effects analysis. Scientists can use these optimized primi-
tives to compose and contribute their own analyses of experiments,
with fewer concerns for performance. For example, linear models

Engineering for a Science-Centric Experimentation Platform ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

ABlaze

Figure 3: Examples of possible analysis flows in Netflix XP.

are a widely used family of causal effects models in Netflix XP.
They have simple assumptions, are easy to interpret, and are highly
extensible: they can be used to estimate average treatment effects,
detect segments where treatment effects are different, and measure
treatment effects through time. All of these variations can be made
faster by using a highly optimized implementation of OLS, which is
included in Causal Models. Previous work from Netflix XP in [44]
demonstrates five significant optimizations to standard implemen-
tations of OLS that ultimately can compute hundreds of treatment
effects over many millions of users in seconds on a single machine.

Many of the causal effects primitives in Causal Models are
developed in C++, in order to have low-level control over compu-
tation. Although scientists normally use interactive programming
languages, many of their primitives are optimized in C or C++,
such as the Python library NumPy [41]. C++ enables developers
to minimize memory allocations, optimize for cache hits, vectorize
functions, and manage references to data without creating deep
copies, important aspects of high performance numerical comput-
ing. Linear algebra functions that support many causal effects mod-
els are invoked through the C++ library, Eigen [22]. Using C++,
Netflix XP engineering can write optimized functions once, and
deliver wrappers for python and R through pybind11 [26] and
Rcpp [12], maintaining the platform’s commitment to inclusivity
by supporting a multilingual environment.

By creating an inclusive and scalable development experience
for causal effects models, Netflix XP has expanded support from
two-sample t-tests and Mann Whitney rank tests to many more
methods, and has gained confidence that it can include more models
that were not originally designed for distributed computing.

4.5 XP Viz
XP Viz is the final component of the science-centric experimen-
tation analysis flow in Netflix XP. It is a library that provides a
lightweight and configurable translation layer from the statistical

output of Causal Models into interactive visualizations. By imple-
menting it as an independent pluggable component, the platform
separates the view layer from the computation layer and allows
reuse of standardized visualizations in other contexts. The plotting
aspects of the visualization layer is based on Plotly’s rich library of
graphs components, allowing different teams to reuse, choose, and
customize the visualizations of their metrics.

A key benefit introduced by XP Viz is that it provides first-class
support for Jupyter Notebooks. Data scientists at Netflix regularly
use Notebooks for their day-to-day development so supporting
their familiar tooling allows them to iterate faster. The integration
of XP Viz library with Notebooks allows data scientists to not
only compute their metrics in a Notebook when exploring, but
also visualize them in the exact same way as they would do in
the production UI, ABlaze. This seamless flow between the server
rendered production views to local Notebook rendered views gives
data scientists the full power to explore and innovate using the
visualizations of their choice.

4.6 Execution of experiment analysis flows
An analysis flow consists of metric definitions from the Metrics
Repo, corresponding statistical tests from Causal Models, and
visualizations from XP Viz. For instance, a possible flow, depicted
in Figure 3, may include the calculation of OLS on total streaming
hours and visualize the results using box plots. All of the above steps
are orchestrated by XP Platform API, a REST API responsible for
kicking off computations, keeping state, and storing results.

One of the requirements of the XP Platform API is to always
function in an interactive manner which means it should remain
performant and with consistent latency as computational load in-
creases. Such a requirement becomes more important when mul-
tiple users are interacting with the system or when a single user
requests multiple slices of an analysis. To achieve this, the heavy
computational workload is offloaded to workers instead of using
the server processes. This avoids competition for server resources
as well as offers a sandboxed environment to run any potentially
unsafe code. A common solution in such architectures is to have
a list of dedicated machines that are responsible to run the jobs.
Instead, Netflix chose to run the jobs on its implementation of
OpenFaaS, a serverless computing platform. This solution provides
a lot of important features such as autoscaling in a cost effective
way, efficient management of the the job queue, managed deploys
as well as easy health metric and log collection. Leveraging Open-
FaaS provides access to a cluster of machines that guarantees the
interactive requirements are met as the load increases.

To unify the execution of workflows with the code in exploratory
Jupyter Notebooks, a Notebook-based execution flow is enabled.
Essentially, each execution is constructed as a parameterized Note-
book that gets evaluated by the different workers. This Notebook
can then be extracted and re-run by data scientists to fully repro-
duce the analysis, which allows them to debug, explore, and extend
the analysis as desired. The described Notebook integration creates
a natural cycle between the production executions and the ad-hoc
Notebook explorations; a production execution can be exported
to a Notebook while a Notebook execution can be promoted to
production.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Diamantopoulos, et al.

4.7 Performing deep-dive analysis
The architecture and framework described above make it possible
for data scientists to easily transition from viewing the results in
ABlaze to conducting a deeper dive in Notebooks. To illustrate
this flow, it is worth revising the NumStreamers metric example
(Figure 2) to show how it can be used for further extensions and
explorations. After computing an analysis that includes the number
of streamers metric, data scientists can view the results in ABlaze
and click a button to generate a Jupyter Notebook that replicates
the exact same calculations and visualizations [34]. From there, data
scientists have multiple potential flows.

Firstly, there is the option of viewing and exploring the raw
data or a reasonably sized sample. The data is stored as a Pandas
dataframe which offers many easy ways for introspection. This
flow is particularly useful in cases where a data scientist wants to
get a better sense of the actual values and their distributions in any
of the segments they are interested in. On top of that, it is easy to
join the data with other tables that were not part of the initially
calculated table in order to enrich it with additional information.
Such exploratory flows can prove of tremendous importance in
analyzing tests as they provide better understanding of the data
and increased insight.

Secondly, data scientists can alter the metric definitions and view
updated calculations. For instance, a data scientist can redefine the
expression for number of streamers to be the people with at least 2
hours of viewing and re-run the statistical analysis.

Thirdly, deep dives can be used to explore the results of different
statistical tests other than the predefined ones. This can be achieved
by simply adding t-test or OLS in the list of statistics of the met-
ric (Figure 2). Lastly, a data scientist can choose to visualize the
results in any of the supported visualizations just by selecting any
of the supported plots.

4.8 Contributing new analysis flows
The ecosystem of Metrics Repo, Causal Models, XP Viz, and
Jupyter Notebooks not only enables deep dive analysis, it also em-
powers scientists to use their new learnings to contribute new
analyses to Netflix XP. This furthers the “technical symbiosis”
where engineers and scientists create a powerful and unified plat-
form together.

Within a Jupyter Notebook, scientists get access to all of the
source code from Metrics Repo, Causal Models and XP Viz. This
allows them to edit any file they want from within the Notebook,
rapidly prototype extensions, and see the impact of the changes.
Such a flow could be used to explore improvements to statistics,
such as reducing variance on the causal effects. All that is needed is
to subclass the causal model base class and conform to the general-
ized causal models API. In a similar fashion, new visualizations can
also be prototyped from within a Notebook. When improvements
are discovered during deep dive analysis, they can be iterated on
locally and interactively in the notebook, and contributed back
into Metrics Repo, Causal Models or XP Viz, which were all
designed to be inclusive to scientists of different backgrounds. That
improvement becomes available to all experiments in the Netflix
XP, which can again be reproduced in a Jupyter Notebook for an-
other scientist to iterate on. This cycle between deep dive, improve,

and contribute has led to a culture of rapid iteration and the ability
to release many new metrics and analysis flows. Based on the col-
lected observational data from the usage of the platform internally,
within less than a year of the introduction of the new architecture,
more than 50 scientists have directly contributed more than 300
metrics, as well as models such as OLS, quantile bootstrapping,
heterogeneous effects, quantile regression, and time series.

5 FRAMEWORK FOR MEASURING CAUSAL
EFFECTS

The science-centric vision has greatly influenced the design of
Causal Models. It offers a software framework that is not only
performant, as mentioned in section 4.4, but also aligns the imple-
mentation of a causal effects model with the science of potential
outcomes [38, 39], making contributions from scientists natural.
Potential outcomes is a generic framing of causal effects computa-
tion that is mirrored in Causal Models’ programmatic interface.
In this way Netflix XP is able to accommodate many causal ef-
fects models without having to worry about the domain specific
implementation details of the model.

To demonstrate how potential outcomes can be used to unify the
computation of three different types of causal effects that Netflix is
interested in, consider the following five statistical variables:

(1) y: The metric that needs to be measured.
(2) X : A binary variable indicating whether a user received

treatment.
(3) W : Other features that are useful for modeling the variation

in y.
(4) t : A variable for indexing time.
(5) θ : Hyperparameters for a model.
The potential outcomes framework is the thought exercise: what

would y be if we apply treatment, and what would y be if we do not
apply treatment? In a randomized and controlled experiment where
all variables are constant except the treatment, any difference in y
must be due to noise, or to the treatment. Furthermore, by using
this framing, a variety of treatment effects that are important for a
business can be computed from an arbitrary model. The average
treatment effect (ATE) on y due to receiving the treatment, X , can
be generically formulated as

ATE = E[y |X = 1,W] − E[y |X = 0,W].

This treatment effect is the expected global difference between
the treatment experience and the control experience. Likewise, the
causal effect on y due to X for the subpopulation whereW = w∗

is the conditional average treatment effect (CATE), and can be
formulated as

CATE(w∗) = E[y |X = 1,W = w∗] − E[y |X = 0,W = w∗].

This treatment effect shows opportunities to personalize for dif-
ferent segments. In many cases, the treatment effect needs to be
traced through time, which is the dynamic treatment effect

DTE(t∗) = E[y |X = 1,W , t = t∗] − E[y |X = 0,W , t = t∗].

This treatment effect can show if a causal effect is diminishing, or
if it can persist for a long time. All causal effects models in Causal
Models can subscribe to this modeling framework.

Engineering for a Science-Centric Experimentation Platform ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

Many challenging aspects of managing causal effects models are
resolved through this software abstraction based on potential out-
comes. For example, models can differ in their input, requirements,
and assumptions. A two-sample t-test accepts strictly two metrics,
one for the control experience and one for the treatment, and re-
quires that the treatment assignment was randomized. Ordinary
least squares (OLS) accepts an arbitrary amount of metrics, the treat-
ment assignment, and a set of covariates for the model. It requires
that the treatment assignment was conditionally randomized, and
that the covariates are exogeneous and full rank [45]. Finally, it
assumes that the noise in the metric is normally distributed. Both
of these models assume that the observations about users are sta-
tistically independent. This assumption prevents them from being
applied to time series data, where following the treatment effect
through time is important; a variation of these models would have
to acknowledge the autocorrelation in the data. All of thesemodels—
the t-test, OLS, and time series variations of them—have different
formulas for how to determine if an effect is significant, or just
noise. Although these individual models vary, they ultimately only
need to return output measuring the expected difference in the
potential outcomes.

In addition to creating a path to contribute causal effects models
and consolidating three types of treatment effects, Causal Models
is able to implement the boilerplate and reduce the amount of code
a scientist needs to contribute. All three variations of treatment
effects are differences in potential outcomes, where features of the
model are controlled to be specific values. They also use the same
procedure: (1) train a model, (2) create a copy of the input dataset
where treatment is applied to all users, (3) create another copy
where treatment is not applied to any user, (4) predict the potential
outcomes from each of these data copies, (5) take the average of
the predictions, (6) then difference the averages. Finally, a model
must implement another method for computing the variance on the
treatment effect, so that it can test if the effect is significant or noise.
This procedure is a burden to implement for every causal effects
model, but it can be reduced through a simple software interface.
Each causal effects model that subscribes to the framework only
needs two unique methods, then Causal Models completes the
work that is common to how all causal effects models compute
treatment effects. The interface for an individual model requires
methods to:

(1) Train a model on a dataset containing y and X , and option-
allyW , and t .

(2) Predict the expected value of y for the potential outcomes
X = 1, and X = 0.

Causal Models as a unifying software framework across multiple
causal effects models does the work to prepare the data, invoke the
train and predict methods, then aggregate and difference the output.
Optionally, a model can also implement methods for ATE, CATE,
or DTE directly, for example if there is a specialized computational
strategy for them, as in [44]. Finally, the bootstrap in [13] allows
Causal Models to compute the variance for an arbitrary causal
effects model.

Developing this software framework honors the scientific study
of causal effects, and is another form of engineering that can allow
Netflix XP to better include work from scientists.

6 CONCLUSION
In this paper we have introduced the architecture and innovations
of Netflix’s experimentation platform, which is routinely used to
perform online A/B testing for the purposes of informing business
decisions. The architecture’s design was strongly influenced by
a strategic bet to make the platform science-centric and support
arbitrary scientific analyses on the platform, which led to its being
non-distributed and written in Python. Our analysis of the plat-
form has resulted in two novel contributions to the literature: how
an experimentation platform can be designed around data science
contributions without sacrificing trustworthiness and scalability,
and how this is in part achieved by framing the experimentation
inference problem generically enough to allow for arbitrarymethod-
ologies (via the potential outcomes conceptual framework). Other
innovations include compression strategies and low-level statistical
optimizations that keep the non-distributed platform performant.

Since the release of the platform described in this paper, there
has been a significant increase in the engagement and contributions
to the experimentation platform from scientists. This includes not
only the local installation of the experimentation platform tooling,
but also direct contributions of metrics and methodologies that
have greatly enriched the platform and the analyses it can perform.
This "technical symbiosis" of engineers and scientists has greatly
increased the pace of innovation in experimentation at Netflix, and
has already resulted in even deeper strategy discussions around
richer analyses.

The next frontiers for the Netflix experimentation platform re-
volve around feature-based analyses, automation, and adaptive
experiments. Feature-based analyses will allow for richer explo-
rations of the treatment effect and interactions between multiple
features in a single experiment. Automation will allow for tests to
be programmatically created and modified in response to events
on the platform. Adaptive experiments leverage the former two
features in order to allow for automated decision making during the
test; for example, this might be used to stop tests early if we have
sufficient evidence [42, 43] or use multi-arm bandits to optimally
choose per-feature test allocation rates [2, 50]. Working groups of
engineers and scientists have already started collaborating on how
to best approach these features in a science-centric manner.

We hope that reporting this case study will spark interest in
science-centric experimentation platforms, and welcome feedback
from companies or individuals interested in working or collaborat-
ing on this important topic.

ACKNOWLEDGMENTS
This work was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation and by the
Software Center. This work was partially sponsored by the German
Ministry of Education and Research (grant no 01Is16043A).

We also acknowledge Martin Tingley for supporting the science-
centric vision, and Rina Chang, Pablo Lacerda de Miranda, Susie
Lu, Sri Sri Perangur, and Michael Ramm for their substantial con-
tributions to the experimentation platform.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Diamantopoulos, et al.

REFERENCES
[1] Apache Arrow. 2019. Apache Arrow. A cross-language development platform for

in-memory data. https://arrow.apache.org/
[2] Susan Athey and Stefan Wager. 2017. Efficient Policy Learning.

arXiv:math.ST/1702.02896
[3] Florian Auer and Michael Felderer. 2018. Current state of research on continuous

experimentation: A systematic mapping study. In Proceedings - 44th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA 2018. 335–
344. https://doi.org/10.1109/SEAA.2018.00062

[4] Juliette Aurisset, Michael Ramm, and Joshua Parks. 2017. Innovating Faster on
Personalization Algorithms at Netflix Using Interleaving. https://medium.com/
netflix-techblog/interleaving-in-online-experiments-at-netflix-a04ee392ec55

[5] George Box, Stuart Hunter, and William Hunter. 2005. Statistics for Experimenters.
Wiley.

[6] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psy-
chology. Qualitative Research in Psychology 3, 2 (jan 2006), 77–101. http:
//www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

[7] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: a
high-performance incremental query processor for diverse analytics. Proceedings
of the VLDB Endowment 8, 4 (Dec. 2014), 401–412.

[8] Robert DeLine and Danyel Fisher. 2015. Supporting exploratory data analysis
with live programming. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, Atlanta, GA, 111–119.

[9] Alex Deng, Ya Xu, Ron Kohavi, and Toby Walker. 2013. Improving the sensitivity
of online controlled experiments by utilizing pre-experiment data. In Proceedings
of the sixth ACM international conference on Web search and data mining. ACM,
123–132.

[10] Pavel Dmitriev, Somit Gupta, Dong Woo Kim, and Garnet Vaz. 2017. A Dirty
Dozen. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining - KDD ’17, Vol. Part F1296. ACM Press, New
York, New York, USA, 1427–1436.

[11] Dmitriy Ryaboy. [n.d.]. Twitter experimentation: technical
overview. https://blog.twitter.com/engineering/en_us/a/2015/
twitter-experimentation-technical-overview.html

[12] Dirk Eddelbuettel and Romain François. 2011. Rcpp: Seamless R and C++ Inte-
gration. Journal of Statistical Software 40, 8 (2011), 1–18. http://www.jstatsoft.
org/v40/i08/

[13] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap.
CRC press.

[14] A. Fabijan, P. Dmitriev, H. Holmström Olsson, and J. Bosch. 2018. Effective
Online Controlled Experiment Analysis at Large Scale. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 64–67.

[15] Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch.
2017. The Evolution of Continuous Experimentation in Software Product Devel-
opment: From Data to a Data-Driven Organization at Scale. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, Buenos Aires,
770–780. http://ieeexplore.ieee.org/document/7985712/

[16] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, Jan Bosch, Lukas
Vermeer, and Dylan Lewis. 2019. Three Key Checklists and Remedies for Trust-
worthy Analysis of Online Controlled Experiments at Scale. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 1–10.

[17] Alessio Farcomeni. 2008. A review of modern multiple hypothesis testing, with
particular attention to the false discovery proportion. Statistical methods in
medical research 17, 4 (2008), 347–388.

[18] Danyel Fisher, Badrish Chandramouli, Robert DeLine, Jonathan Goldstein, Andrei
Aron, Mike Barnett, John C Platt, James F Terwilliger, and John Wernsing. 2014.
Tempe: An Interactive Data Science Environment for Exploration of Temporal
and Streaming Data. (2014), 7.

[19] Ronald A Fisher. 1922. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character 222, 594-604 (1922), 309–368.

[20] Laurent Gautier. 2019. rpy2 - R in Python. https://rpy2.bitbucket.io/
[21] Corey Grunewald and Matt Jaquish. 2018. Modernizing

the Web Playback UI. https://medium.com/netflix-techblog/
modernizing-the-web-playback-ui-1ad2f184a5a0

[22] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[23] Somit Gupta, Lucy Ulanova, Sumit Bhardwaj, Pavel Dmitriev, Paul Raff, and Alek-

sander Fabijan. 2018. The Anatomy of a Large-Scale Experimentation Platform.
In 2018 IEEE International Conference on Software Architecture (ICSA). IEEE, 1–109.
https://doi.org/10.1109/ICSA.2018.00009

[24] Hevner, March, Park, and Ram. 2004. Design Science in Information Systems
Research. MIS Quarterly 28, 1 (2004), 75. https://doi.org/10.2307/25148625

[25] David Issa Mattos, Pavel Dmitriev, Aleksander Fabijan, Jan Bosch, and Helena
Holmström Olsson. 2018. An Activity and Metric Model for Online Controlled
Experiments. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11271
LNCS. 182–198. http://link.springer.com/10.1007/978-3-030-03673-7{_}14

[26] Wenzel Jakob, Jason Rhinelander, and DeanMoldovan. 2019. pybind11 – Seamless
operability between C++11 and Python. https://github.com/pybind/pybind11.

[27] Raphael Lopez Kaufman, Jegar Pitchforth, and Lukas Vermeer. 2017. Democratiz-
ing online controlled experiments at Booking.com. arXiv:1710.08217 [cs] (Oct.
2017). http://arxiv.org/abs/1710.08217 arXiv: 1710.08217.

[28] Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya
Xu. 2012. Trustworthy online controlled experiments: Five Puzzling Outcomes
Explained. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’12. ACM Press, New York, New
York, USA, 786. http://dl.acm.org/citation.cfm?doid=2339530.2339653

[29] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. 2009.
Controlled experiments on the web: Survey and practical guide. Data Mining
and Knowledge Discovery 18, 1 (2009), 140–181.

[30] Ron Kohavi, Diane Tang, and Ya Xu. 2020. Trustworthy Online Controlled Experi-
ments: A Practical Guide to A/B Testing. Cambridge University Press.

[31] Gopal Krishnan. 2016. Selecting the best artwork for videos
through A/B testing. https://medium.com/netflix-techblog/
selecting-the-best-artwork-for-videos-through-a-b-testing-f6155c4595f6

[32] Roman Lukyanenko, Joerg Evermann, and Jeffrey Parsons. 2014. Instantiation va-
lidity in IS design research. In International Conference on Design Science Research
in Information Systems. Springer, 321–328.

[33] Roman Lukyanenko, Joerg Evermann, and Jeffrey Parsons. 2015. Guidelines
for establishing instantiation validity in IT artifacts: A survey of IS research.
In International Conference on Design Science Research in Information Systems.
Springer, 430–438.

[34] Toby Mao, Sri Sri Perangur, and Colin McFarland. [n.d.]. Reimagining Ex-
perimentation Analysis at Netflix. https://medium.com/netflix-techblog/
reimagining-experimentation-analysis-at-netflix-71356393af21

[35] Nick Nelson. 2016. The Power Of A Picture. https://media.netflix.com/en/
company-blog/the-power-of-a-picture

[36] Jay F. Nunamaker, Minder Chen, and Titus D. M. Purdin. 1990. Systems Devel-
opment in Information Systems Research. J. Manage. Inf. Syst. 7, 3 (Oct. 1990),
89–106.

[37] H. H. Olsson and J. Bosch. 2014. From Opinions to Data-Driven Software R
D: A Multi-case Study on How to Close the ’Open Loop’ Problem. In 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications.
9–16.

[38] Donald B Rubin. 2005. Causal Inference Using Potential Outcomes. J. Amer.
Statist. Assoc. 100, 469 (2005), 322–331.

[39] Jerzy Splawa-Neyman, Dorota M Dabrowska, and TP Speed. 1990. On the ap-
plication of probability theory to agricultural experiments. Essay on principles.
Section 9. Statist. Sci. (1990), 465–472.

[40] Martin Traverso. 2016. Presto: Interacting with petabytes of data at
Facebook. https://www.facebook.com/notes/facebook-engineering/
presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/

[41] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22.

[42] John Whitehead. 1997. The Design and Analysis of Sequential Clinical Trials,
Revised, 2nd Edition. Wiley.

[43] John Whitehead. 1997. Group Sequential Methods with Applications to Clinical
Trials. Jennison, Christopher and Turnbull, Bruce W.

[44] Jeffrey Wong, Randall Lewis, and Matthew Wardrop. 2019. Efficient Com-
putation of Linear Model Treatment Effects in an Experimentation Platform.
arXiv:stat.CO/1910.01305

[45] Jeffrey Wooldridge. 2010. Econometric Analysis of Cross Section and Panel Data.
The MIT Press, Chapter 4.2.

[46] Huizhi Xie and Juliette Aurisset. 2016. Improving the Sensitivity of Online
Controlled Experiments: Case Studies at Netflix. ACM Press, 645–654.

[47] Ya Xu and Nanyu Chen. 2016. Evaluating Mobile Apps with A/B and Quasi
A/B Tests. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’16, Vol. 13-17-Augu. ACM Press,
New York, New York, USA, 313–322. https://doi.org/10.1145/2939672.2939703

[48] Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. 2015.
From Infrastructure to Culture: A/B Testing Challenges in Large Scale Social
Networks. In Proc. of KDD’15 (KDD ’15). ACM, 2227–2236.

[49] Zhenyu Zhao, Miao Chen, Don Matheson, and Maria Stone. 2016. Online Exper-
imentation Diagnosis and Troubleshooting Beyond AA Validation. In Proc. of
DSAA’16. IEEE, 498–507.

[50] Zhengyuan Zhou, Susan Athey, and Stefan Wager. 2018. Offline Multi-Action
Policy Learning: Generalization and Optimization. arXiv:stat.ML/1810.04778

https://arrow.apache.org/
http://arxiv.org/abs/math.ST/1702.02896
https://doi.org/10.1109/SEAA.2018.00062
https://medium.com/netflix-techblog/interleaving-in-online-experiments-at-netflix-a04ee392ec55
https://medium.com/netflix-techblog/interleaving-in-online-experiments-at-netflix-a04ee392ec55
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://blog.twitter.com/engineering/en_us/a/2015/twitter-experimentation-technical-overview.html
https://blog.twitter.com/engineering/en_us/a/2015/twitter-experimentation-technical-overview.html
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://ieeexplore.ieee.org/document/7985712/
https://rpy2.bitbucket.io/
https://medium.com/netflix-techblog/modernizing-the-web-playback-ui-1ad2f184a5a0
https://medium.com/netflix-techblog/modernizing-the-web-playback-ui-1ad2f184a5a0
https://doi.org/10.1109/ICSA.2018.00009
https://doi.org/10.2307/25148625
http://link.springer.com/10.1007/978-3-030-03673-7{_}14
http://arxiv.org/abs/1710.08217
http://dl.acm.org/citation.cfm?doid=2339530.2339653
https://medium.com/netflix-techblog/selecting-the-best-artwork-for-videos-through-a-b-testing-f6155c4595f6
https://medium.com/netflix-techblog/selecting-the-best-artwork-for-videos-through-a-b-testing-f6155c4595f6
https://medium.com/netflix-techblog/reimagining-experimentation-analysis-at-netflix-71356393af21
https://medium.com/netflix-techblog/reimagining-experimentation-analysis-at-netflix-71356393af21
https://media.netflix.com/en/company-blog/the-power-of-a-picture
https://media.netflix.com/en/company-blog/the-power-of-a-picture
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/
http://arxiv.org/abs/stat.CO/1910.01305
https://doi.org/10.1145/2939672.2939703
http://arxiv.org/abs/stat.ML/1810.04778

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Experiments
	2.2 Experimentation Processes and Platforms
	2.3 Enhancing Productivity of Data Scientists

	3 Research Method
	4 Software Architecture
	4.1 Requirements for Experiment Analysis
	4.2 Experiment Analysis Flow
	4.3 Metrics Repo
	4.4 Causal Models
	4.5 XP Viz
	4.6 Execution of experiment analysis flows
	4.7 Performing deep-dive analysis
	4.8 Contributing new analysis flows

	5 Framework for Measuring Causal Effects
	6 Conclusion
	References

