

A Framework for Tunable Anomaly Detection
Md Rakibul Alam

Technical University of Munich
Munich, Germany

rakibulmd.alam@tum.de

Ilias Gerostathopoulos
Technical University of Munich

Munich, Germany
ilias.gerostathopoulos@tum.de

Christian Prehofer1
Technical University of Munich

 Munich, Germany
christian.prehofer@tum.de

Alessandro Attanasi
PTV SISTeMA

Rome, Italy
alessandro.attanasi@ptvgroup.com

Tomas Bures
Charles University in Prague

Prague, Czech Republic
bures@d3s.mff.cuni.cz

Abstract—As software architecture practice relies more and
more on runtime data to inform decisions in continuous
experimentation and self-adaptation, it is increasingly
important to consider the quality of the data used as input to the
different decision-making and prediction algorithms. One issue
in data-driven decisions is that real-life data coming from
running systems can contain invalid or wrong values which can
bias the result of data analysis. Data-driven decision-making
should therefore comprise detection and handling of data
anomalies as an integral part of the process. However, currently,
anomaly detection is either absent in runtime decision-making
approaches for continuous experimentation and self-adaptation
or difficult to tailor to domain-specific needs. In this paper, we
contribute by proposing a framework that simplifies the
detection of data anomalies in timeseries-outputs of running
systems. The framework is generic, since it can be employed in
different domains, and tunable, since it uses expert user input in
tailoring anomaly detection to the needs and assumptions of
each domain. We evaluate the feasibility of the framework by
successfully applying it to detecting anomalies in a real-life
timeseries dataset from the traffic domain.

Keywords-anomaly detection, data-driven decisions, data
anomalies, experimentation, self-adaptive systems

I. INTRODUCTION
Large, complex, and dynamic software-intensive systems are
pushing the boundaries of today’s software architecture
practice towards increased automation and data-driven
decisions. In the words of Eoin Woods, “large dynamic
systems will require policy-driven automation rather than
today’s carefully designed step-by-step processes” [1].

One manifestation of the above idea can already be
observed through the increased presence and importance of
continuous experimentation in today’s web-facing companies
such as Google [2], Microsoft [3], Yahoo! [4], Facebook [5],
LinkedIn [6], Amazon [7] and Uber [8]. Such companies, but
also companies from the embedded domain [9], [10], are
routinely using A/B testing [11] and more sophisticated
techniques such as multi-armed bandits [12] and black-box
optimization [13] to compare features and feature variants
based on the degree they increase the satisfaction of business
goals and to optimize their operational systems.

1 Current affiliation: DENSO AUTOMOTIVE Deutschland GmbH

Another manifestation of the same idea can be seen in the
area of autonomic and self-adaptive systems, i.e. systems that
can adapt to changes in their environment by adjusting their
structure or behavior to continue meeting their goals [14],
[15]. Cloud auto-scalers, self-driving cars and real-time traffic
control systems are practical examples of systems that
currently exhibit certain degree of self-adaptivity.

A common denominator in all cases of increased
automation in software architecture practice is the extensive
use of data. Indeed, decisions made by product managers,
DevOps teams, and by the running systems themselves are
based on the collected data and the insights they provide.
Since real-life data are noisy, several samples of a single
metric are typically measured, aggregated, summarized, and
finally analyzed. To obtain statistical guarantees, statistical
procedures such as t-tests [16] are often employed.

A problem with data-driven decision-making is that real-
life data are often non-uniform and contain wrong or invalid
values, all of which can bias the result of data analysis. Data
anomalies can actually take different forms and have different
sources. Telemetry loss is an anomaly that has been shown to
skew the results of continuous experimentation in Microsoft
[17]. The existence of sudden rises or drops or the breaking of
a seasonal pattern in an observed timeseries are other kinds of
anomalies. Anomalies can happen due to failures in the
monitoring infrastructure, e.g. a failure in a hardware or
software sensor, temporary network unavailability, rounding
errors upon aggregation, etc. They can also happen due to
unusual changes in the system that are correctly and
accurately detected by the monitoring infrastructure. For
instance, high peaks in the network traffic of a video
streaming website or in the traffic in a city can be unusual
deviations from the normal behavior that can be attributed to
a particular calendar day.

Regardless of their forms or sources, data anomalies can
slow down or harm decision making. Having outliers in
datasets obtained when comparing two feature variants in an
A/B experiment increases the noise (variance) of the data and
demands more data to be collected to reach statistically
significant results [4]. Having a series of very low CPU
utilization values (e.g. due to a bug in the monitoring code)
reported for some servers in a Cloud data center can trigger
auto-scaler operations that result in an over-utilization of these

servers. Finally, having outliers in the timeseries used for
training a traffic predictor used in a real-time traffic control
system will reduce the accuracy of the predictions and hence
the correctness of the traffic control actions.

Detecting and filtering out anomalies in timeseries data is
therefore important for data-driven decisions taken both by
human operators and by running self-adaptive systems. We
argue that an anomaly detection component has to be an
integral part of any experimentation pipeline and self-
adaptation architecture in order to increase trustworthiness of
the analysis.

The problem is that existing off-the-shelf anomaly
detection modules and frameworks, such as tsoutliers [18] and
Twitter’s anomaly detection [19] R packages, are difficult to
tune in order to work in concert with experimentation or self-
adaptation processes. For example, Twitter’s package expects
users to provide the expected percentage of anomalies present
in the data, which is often not known or hard to estimate [20].
Concretely, anomaly detection should consider the running
experiments and their expected effect, e.g. whether they
change the model of normal behavior of a timeseries. At the
same time, the experimentation engine should be aware of the
expected anomalies (e.g. due to external circumstances such
as holidays) in the timeseries of a system metric.

In response, in this paper we provide a simple yet robust
way to detect anomalies in arbitrary timeseries and connect
anomaly detection to experimentation and self-adaptation.
Our method works in two stages: identification of strong
seasonal patterns and identification of critical anomaly
thresholds. It is a semi-automated method in the sense that,
although it assumes the involvement of domain experts in the
learning phase, it can work in a completely automated way
after that. Our method can be encapsulated in a component
that informs either the operator of a system or the adaptation
manager of an autonomous system about data quality issues
that may have an impact on the functioning of the system and
should be dealt with by applying corrective actions.

We have evaluated the feasibility of our method by
applying it to identifying anomalies in a real-life data set from
the traffic domain. Our results show that it is feasible to
identify different categories of anomalies in the traffic data set
with minimum input from a user.

The rest of the paper is structured as follows. Section II
provides basic background and definitions of anomalies and
their different types. Section III describes the eight phases of
our anomaly detection framework, and Section IV provides an
evaluation of our framework. Then, Section V explains how
our framework is integrated in a self-adaptive system. Finally,
Section VII compares our approach to related work and
Section VII concludes.

II. PRELIMINARIES
An anomaly is an observation that departs from the expected
or usual behavior. Anomaly detection is therefore the task of
defining a region that represents ‘normal’ behavior and
identifying the observations that lie outside of this region [21].
Our framework builds on both robust statistical techniques
and expert user input for anomaly detection.

An important observation is that anomalies can be broadly
categorized according to two orthogonal dimensions:
• Contextuality, i.e. whether anomalies are independent of

the context in which they occur (e.g. extremely high or
low values or null values) or are deviations from the
values expected to be observed in a specific context, e.g.
in a specific hour, day, or week. Based on this, anomalies
can be divided into non-contextual and contextual.

• Consecutiveness, i.e. whether anomalies are isolated
from each other or occur in a sequence. Based on this,
anomalies can be divided into isolated and sequential.
Sequential anomalies form anomaly groups that have a
certain length representing the number of consecutive
anomalies in the group.

Table I depicts the four different categories of anomalies
that can be identified based on the above dimensions.

Each of the four categories point to different potential
sources for the existence of anomalies and also pose different
challenges in anomaly detection and filtering. Type I and II
anomalies are mostly straightforward to detect compared to
Type III and IV, which need more sophisticated analysis than
simple threshold-based methods. At the same time, Type I and
III anomalies can be easier to deal with by simply removing
the anomalies from subsequent analyses, whereas Type II and
IV need more sophisticated methods of dealing with
anomalies once these are detected. Finally, Type IV anomalies
can indicate possible patterns of exceptional behavior that
corresponds to a certain process, e.g. warmup of a JVM in
performance micro-benchmarking, holiday with increased
network traffic in a video-streaming website, etc. that could
not be considered anomalies but rather expected
measurements that conform to a special pattern.

In the following, we describe a generic anomaly detection
framework for time series data that relies on both robust
statistical techniques and expert user input and, therefore, can
be used for identifying all four types of anomalies.

III. ANOMALY DETECTION FRAMEWORK

A. Overview
Our framework for anomaly detection of time series data
consists of the following eight phases, while it relies on three
types of inputs from expert users (Figure 1).
Phase 1: Identification of out-of-bounds and wrong values.
In the first phase, an expert user provides the range(s) of
acceptable values in the time series (Input A). For instance, a
user might specify that values should be non-negative with an
absolute maximum value of 1000. In that case, any
measurements that either negative or above 1000, along with

TABLE I. CATEGORIES OF ANOMALIES.

 Non-contextual Contextual

Isolated
Type I: Extreme

spikes, wrong values
Type III: Sudden or

unusual spikes

Sequential
Type II: Series of
wrong or extreme

values

Type IV: Series of
unusual values

values that are not numbers or simply null are directly flagged
as non-contextual anomalies in our method.
Phase 2: Identification of the most effective seasonal
pattern for anomaly detection. Seasonality is an important
characteristic of many timeseries and seasonal patterns can
be used in obtaining a range of normal behavior from data. If
there is more than one seasonal pattern, a question is how to
decide which pattern is more representative of normal
behavior and hence effective in anomaly detection. This
phase answers this question by considering different user-
provided patterns.

In particular, in this phase, an expert user provides a list of
seasonal patterns that are expected to be present in the data
series (Input B). For instance, a user might specify ‘hourly’
and ‘daily’ as the candidate patterns based on their experience
and domain knowledge. Scatter plots of measured data can be
used at this phase to inform a user’s decision. Our framework
then decides which pattern is the most effective for anomaly
detection (if any at all). The selected pattern is used in the next
phases to define the range of normal behavior. Section III.B
provides a detailed technical description of phase 2.
Phase 3: Calculation of point-distance score per point.
Given a seasonal pattern in a timeseries, the timeseries can be
split into several partial timeseries, each of which contains
data points that belong to the same similarity group. For
example, a timeseries with hourly measurements that follows
a daily pattern can be split into 24 partial timeseries, one for
each hour in a day. One way of identifying contextual
anomalies is to look for data points that significantly differ
from the other points in their partial timeseries. Leveraging
this idea, in this phase we focus on points that lie outside the
25th-75th percentile range of each partial timeseries dataset.
For each of these points, to quantify their divergence from
normal behavior, we calculate their distance from the 25th or
the 75th percentile (depending on whether the point is below

the 25th or above the 75th percentile), which we call point-
distance score. Points inside the 25th-75th percentile range
obtain a point-distance score of zero.
Phase 4: Calculation of difference-distance score per
point. Another way of identifying anomalies is to look for
points which represent sharp rises or drops. Any difference
between two consecutive measurements (either rise or drop)
that is unusual is a good candidate for being an anomaly.
Following this, in this phase we first create the timeseries of
the differences between each two consecutive points
(differenced timeseries) and compute the partial differenced
timeseries that capture the seasonal pattern from phase 2.
Then, we calculate 𝑑", i.e. the distance 𝑑 of each point 𝑖 that
lies outside the 25th-75th percentile range of the respective
partial timeseries dataset from the respective boundary (75th
or 25th percentile). For any point that lies within the normal
(25th-75th) range it holds that 𝑑" = 0. Then, each point obtains
a difference-distance score equal to |𝑑" − 𝑑"()|, where 𝑑"()
refers to the distance of the previous point in the differenced
timeseries. This way, effects of sharp rises or drops on a
single point are not carried over to the score of the next one.
Phases 5 & 6: Determination of point-distance and
difference-distance score thresholds. After performing
phases 3 and 4, each point in the timeseries is assigned two
scores, a point-distance and a difference-distance score.
Whereas any point with a positive score is candidate for being
an anomaly, points with higher scores are more likely to be
true anomalies. The question is how to set a threshold, for
each of the two scores, to decide whether a potential anomaly
will be actually labelled as an anomaly in our framework.
This is the task of phases 5 and 6. To determine a threshold
for each score, we rely on expert users providing simple
(Boolean) feedback on only a subset of characteristic cases.
A detailed technical explanation of these phases is provided
in Section III.C.

Figure 1: Overview of the proposed anomaly detection framework.

Phase 7: Identification of isolated and sequential
contextual anomalies. Once the point-distance and
difference-distance score thresholds have been determined,
the task of identifying isolated contextual anomalies is simply
to mark any data points with scores higher than the
thresholds. Sequential anomalies are by definition
consecutive anomalies. In our framework, we consider any
anomaly that has at least one neighboring anomaly as
sequential anomaly. Hence, the task of identifying sequential
contextual anomalies is simply going through the list of
isolated anomalies and marking as sequential the ones that
have at least one neighboring point marked as isolated
anomaly.
Phase 8: Identification of extreme values. In this phase, the
set of non-contextual anomalies from phase 1 is enhanced by
points that would be considered anomalies in all partial
timeseries corresponding to the seasonal pattern. In
particular, we consider anomalies as non-contextual when
their (point or difference) score is either

• greater than the sum of the maximum 75th percentile
value (out of all the partial timeseries) and the
selected threshold, or

• less than the subtraction of the selected threshold
from the minimum 25th percentile value (out of all
the partial timeseries).

B. Identification of the most effective seasonal pattern for
anomaly detection

We will describe the process our framework applies in
identifying the most effective seasonal pattern in a timeseries
(Phase 2 in our framework).

A timeseries ts = {𝑡), 𝑡/,… , 𝑡1} is a set of temporal data
points. We define as 𝑑 the time distance between each two
adjacent points in ts. For an interval 𝑠 = 𝑚 × 𝑑, where 𝑚 ≥
1 and 𝑚	𝜖	ℕ, we can divide the whole timeseries into 𝑐 =
𝑛 𝑚⁄ blocks, 𝑏?), 𝑏?/,… , 𝑏?@ , with 𝑚 data points per block. Each
point in a block is indexed by 𝑖 = 𝑗	𝑚𝑜𝑑	𝑚, where j is the
point’ index in 𝑡𝑠. These blocks are equivalent to seasons in
time-series literature [7]. Note that, the last block may have

less than 𝑎 data points, since, e.g., a month can have 28, 29,
30, or 31 days. In those cases, we pad the last block with
trailing null values that do not affect the pattern comparison
since they are omitted in the variance calculation performed
later.

Next, we project the 𝑡" points of all blocks into a partial
timeseries 𝑝𝑡𝑠?" . By construction, 𝑝𝑡𝑠?" has exactly 𝑐 points.
We define 𝑃𝑇𝑆? = {𝑝𝑡𝑠?), 𝑝𝑡𝑠?/,… , 𝑝𝑡𝑠?H} as the finite set of
all partial timeseries for an interval 𝑠.

Having a timeseries ts and a set of partial timeseries 𝑃𝑇𝑆?,
we can decide whether ts or 𝑃𝑇𝑆? is more effective in
representing a region of normal behavior by comparing all the
partial timeseries in 𝑃𝑇𝑆? with ts . We assume that a
timeseries is a more effective model of normal behavior than
another timeseries when it has lower variance, since then
outliers will be easier to detect. If the majority of the partial
timeseries are more effective than ts, we conclude that 𝑃𝑇𝑆?
is more effective than ts, and vice versa.

One problem when comparing variances of data sets with
potentially small sample sizes (as in our case) is that a positive

1. var_ts = variance(ts)
2. PTS = set of partial_timeseries from ts using interval j
3. PTS_vote = 0
4. For each ts_x in PTS:
5. var_ts_x = variance(ts_x)
6. if var_ts_x < var_ts then
7. if difference is statistically significant according to F-test then
8. PTS_vote = PTS_vote + 1
9.
10. if PTS_vote is greater length of PTS / 2 then
11. use PTS to model normal behavior
12. else then
13. use ts to model normal behavior r

Algorithm 1: Comparison of timeseries and set of partial timeseries.

 1. vote_TS_k = 0
2. For each ts in TS_j:
3. result = previous_algorithm
4. if result is equal to 'use TS to infer' then
5. vote_TS_k = vote_TS_k + 1
6.
7. if vote_TS_k is greater than length of TS_k /2 then
8. use TS_K to infer
9. else then,
10. use TS_j to infer

Algorithm 2: Comparison of different seasonal patterns.

TABLE III. BLOCKS BY WEEKLY INTERVAL.

Monday ... Sunday

00:00 ... 23:00 00:00 ... 23:00

𝑝𝑡𝑠I) ... 𝑝𝑡𝑠I/J 𝑝𝑡𝑠I)JK ... 𝑝𝑡𝑠I)LM
Blocks

Week 1 t1 ... t24 t145 ... t168

Week 2 t169 ... t192 t313 ... t336

Week 3 t337 ... t360 t481 ... t504

TABLE II. BLOCKS BY DAILY INTERVAL.

Daily Interval

00:00 01:00 22:00 23:00

𝑝𝑡𝑠N) 𝑝𝑡𝑠N/ ... 𝑝𝑡𝑠N/O 𝑝𝑡𝑠N/J

Blocks

Day 1 t1 t2 ... t23 t24

Day 2 t25 t26 ... t47 t48

Day

Day 20 t457 t458 ... t479 t480

Day 21 t481 t482 ... t503 t504

or negative outcome might be a result of sampling error from
the original populations. For this, we use one-tailed F-test [16]
to check whether 𝑝𝑡𝑠?" has statistically significant lower
variance than 𝑡𝑠. If the F-test does not report a statistically
significant difference, we give a vote to 𝑡𝑠, since at least it has
more samples compared to 𝑝𝑡𝑠?" and therefore can be
considered more representative (Algorithm 1).

The above comparison can be used to compare an original
timeseries to a set of partial timeseries generated from the
original one. This technique can be iteratively applied to
compare two sets of partial timeseries with each other.

Let us name the two sets of partial timeseries 𝑃𝑇𝑆? and
𝑃𝑇𝑆P where 𝑙	𝜖	ℕ and 𝑘 = 𝑙 ∗ 𝑠. In order to deduce which of
them is a more effective model of normal behavior, we can
compare each partial timeseries in 𝑃𝑇𝑆? with each partial
timeseries in 𝑃𝑇𝑆P and use a voting mechanism to sum up the
results (Algorithm 2).

As an example, consider a timeseries with one-hour
intervals for 21 days. For 'DAILY' and 'WEEKLY' intervals
we can construct two sets of partial timeseries, 𝑃𝑇𝑆N and
𝑃𝑇𝑆I. 𝑃𝑇𝑆N consists of 24 partial timeseries, each with 21
data points (Table II), whereas 𝑃𝑇𝑆I consists of 24 * 7 = 168
partial timeseries, each consisting of 3 data points (Table III).

To know whether 'DAILY' interval is more effective than
'WEEKLY' we start comparing 𝑝𝑡𝑠N) against 𝑝𝑡𝑠I) , 𝑝𝑡𝑠I/K ,
𝑝𝑡𝑠IJT, 𝑝𝑡𝑠IUO, 𝑝𝑡𝑠ITU, 𝑝𝑡𝑠I)/), 𝑝𝑡𝑠I)JK. From this step we know
which interval is more effective for this particular data point
(e.g. Midnight, 00:00). We repeat for other data points and
eventually determine which interval is more effective by
applying the Algorithm 2. Note that if, for a single data point,
Algorithm 1 returns e.g. 'DAILY' over 'WEEKLY', this does
not necessarily mean we cannot use 'WEEKLY' pattern for
anomaly detection; it only means we would not be more
effective by using 'WEEKLY' in contrast with 'DAILY'.

C. Determination of thresholds for point-distance and
difference-distance scores

We will describe the interactive threshold selection process
(Phases 5 and 6 in our framework), as well as a fallback
threshold selection process.

1) Interactive threshold selection
For each score, we perform binary search to identify score
values of interest. In particular, we take the following steps:
STEP 1: Set the initial threshold as the average between the
maximum and minimum value of the score.
STEP 2: Filter out potential anomalies whose score is less
than or equal to the threshold.
STEP 3: Select n potential anomalies (we used 5) out of the
remaining ones that are closest to the threshold.
STEP 4: Show a scatter plot of the time series around the
anomaly point (left side of plots in Figure 2), along with a
scatter plot of the partial timeseries the point belongs in (right
side of plots), for each of the selected n potential anomalies.
Mark the potential anomaly in red. Both plots show the
normal behavior to help the user take an informed decision.
For the point-distance score, the timeseries shows the actual
values from the dataset (Figure 2(a)), whereas for the
difference-distance score, the timeseries shows values from
the differenced series (Figure 2(b)). The dashed regions in
both plots depict the normal behavior region that corresponds
to the selected threshold value.
STEP 5: Ask the user to decide whether the majority of the
points marked as red are anomalies or not w.r.t. to that
domain. The user answers with ‘yes’ or ‘no’.
STEP 6: Update the threshold based on response of the user
by performing binary search: In case of a positive answer, the

(a)

(b)

Figure 2: Diagrams shown to user for the determination of (a) point-distance score, and (b) difference-distance score. The line plot
(left) shows the differenced time-series around the potential anomaly, whereas the scatter plot (right) shows the dataset

corresponding to the point in the day of the potential anomaly.

new threshold becomes the average of the old threshold and
the minimum value used in the calculation of the old
threshold, so essentially anomaly detection becomes stricter.
In case of a negative answer, the new threshold becomes the
average of the old threshold and the maximum value used in
the calculation of the old threshold.
STEP 7: Repeat steps 2 to 6 at most log/ 𝑟𝑎𝑛𝑔𝑒 times, where
𝑟𝑎𝑛𝑔𝑒 is the difference between the maximum and minimum
of the scores of the initial dataset of potential anomalies (the
input of Step 1).
STEP 8: Use the threshold value after step 7 is complete as
the final threshold for anomaly detection.

2) Fallback threshold selection
In case interactive threshold selection is not an option (e.g. if
zero manual effort is required or no user is available), a
threshold can be selected using the modified z-score method,
which is defined as follows:

𝑍" 	= 	
0.6745(𝑥" − median)

𝑀𝑒𝑑𝑖𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 First, the modified z-score is calculated for each of the
potential anomalies. Then, the point-distance or difference-
distance score of the first anomaly with z-score more than 3.5
becomes the threshold for point-distance or difference-
distance scores. The value of 3.5 is a recommended one for
marking points as outliers [22].

D. Framework Assumptions and Limitations
In summary, the proposed framework relies on the following
assumptions:
• It deals with regularly spaced, univariate timeseries. We

believe this covers a rather big class of periodically
monitored real-life processes, e.g. CPU load.
Multivariate timeseries can be split into their univariate
subparts and handled by the framework; however, this
way, anomalies that result from irregularities in more
than one timeseries are not identifiable.

• It can work with timeseries that have a single seasonality
and no seasonality at all. In both cases, Phase 2 of the
framework is skipped.

• It relies on the inter-quartile range (IQR) of data within
a single block (e.g., Mondays, 11am for a year) to define
normal behavior. As a result, it can work even with very
small number of data points per block (which may
happen if the original timeseries has collection gaps),
assuming that the IQR can be still used for calculated.

• Data within a single block need to be normally
distributed—an assumption of the F-test used in Phase 2
to compare variances.

• It classifies anomalies into sequential/isolated and
contextual/non-contextual. Other well-known patterns
for anomalies can be found in statistical process control,
such as sequences of very high or very low values or
intermittent (but not sequential) anomalies [23].

IV. EVALUATION

A. Traffic Data Set
For evaluation of the framework we have used a dataset of
traffic from a road-network. These data were collected using
inductive loop detectors installed on the road network of
Vienna, Austria. Data from a total of 280 loop detectors (LD)
were made available to us. For each LD, vehicle flow counts
are recorded in every 15-minutes interval, from Jan 1st, 2011
to Dec 31st, 2014. Hence, each day yields 96 records and each
year 35,040 records for each LD.

Since traffic pattern can change over time, we have used
only one year’s data at a time for the construction of normal
behaviors. Each LD’s data is used separately for anomaly
detection detection. In this section, we present the results
obtained from applying our framework to a single LD, LD1,
for 2011. The results on more loop detectors, along with the
source code of the developed tool are available at
https://github.com/rakibulmdalam/TSADF.

Figure 4: Raw data (15-min intervals) of LD1 for 2011.

Figure 3: Daily pattern: each of the 96 points in a day corresponds

to a dataset of 365 points (days in a year).

Figure 5: Weekly pattern: each of the 96 points in a Monday

corresponds to a dataset of 52 points (weeks in a year). Similar for
Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays.

LD1 has significant number of high peaks which reached
1,600 VFC, where the usual peaks reach around 600 vehicles
(Figure 4). Other than two visible gaps it is more or less
continuous in nature which means this loop detector was able
to collect data most of the time.

B. Framework Application in Detecting Traffic Data
Anomalies for a Single Loop Detector

To evaluate the feasibility of our framework we have applied
it in detecting anomalies present in 2011 in LD1. We report
the activities and results of each phase.
Phase 1. The acceptable value range provided by the user was
[0,∞) . Consequently, the framework marks any points of
LD1 with value outside this range as non-contextual
anomalies—there are 1505 such points, all corresponding to
null measurements.
Phase 2. After looking at the raw timeseries diagrams of LD1
timeseries, the user specifies the daily and weekly patterns as
the most characteristic seasonal patterns present in the data.
Our framework then performs all the possible comparisons
between the daily pattern (Figure 3) and the weekly pattern
(data from all days versus data from only Mondays, only
Tuesdays, etc., see Figure 5) for each of the 96 points in a day.
If the weekly pattern shows a statistically significantly smaller
variance that the daily pattern in a comparison, it obtains a
positive vote. Figure 6 depicts all such votes for all 96 points
in a day. To make a final decision on which pattern to select
for the subsequent phases, the framework counts the points in
a day in which there are more than three votes (so the majority
out of a total of seven votes). In these points, the weekly
pattern is considered more effective. The overall result is that
the weekly pattern is more than half of the cases, and as a
result is selected as the most effective pattern for the next
phases. Interestingly, out of the 41.2% of the cases where the
weekly pattern was not statistically significantly better, in
25.4% of the cases its variance was still smaller than the
variance of the daily pattern.
Phases 3 & 4. In this phase, the framework calculates the
point-distance and difference-distance scores for all the points
in the timeseries. The majority of scores were lower than 100
while only a small number were higher than 400. The question
is, at which point to set the cutoff threshold for reporting
anomaly? This is being handled in the next two phases.

Phases 5 & 6. To illustrate these phases and in particular the
impact of user input in the final result, we applied the
framework with two users, one taking a low-tolerance
approach where almost everything that is outside of the
normal behavior is reported as anomaly, and another taking a
high-tolerance approach in which only big deviations from
normal behavior are considered true anomalies. Table IV
depicts the decision-making of the two approaches, in
particular the thresholds and the corresponding number of
anomalies when the users answered positively in the question
of whether the points with scores more than the thresholds are
to be reported as anomalies.
Phases 7 & 8. We report here the results of following both a
high-tolerance and a low-tolerance approach in labeling
anomalies, as well as following the automated labeling using
the modified z-score approach (Section III.C.2). The results
are depicted in Figure 8. As expected, the number of reported
anomalies greatly varies based on the score thresholds, and the
modified z-score yields results comparable to a user with high
tolerance in anomalies. With respect to the two distance
scores, they are complementary in identifying anomalies,
since, despite the overlapping cases where any of the two
could be used (Figure 8), there are also a high number of cases
where only one score is used. Finally, Figure 8 depicts also the
important proportion of null values identified by the simple
range filter. For illustration, Figure 7 depicts the same subset
of the original timeseries annotated with the identified
anomalies in the three approaches.

Figure 6: Votes for weekly pattern.

TABLE IV. THRESHOLDS AND CORRESPONDING NUMBER OF THREHOLDS
FOR “YES” ANSWERS OF USERS.

High tolerance user mode

 Threshold Anomalies

Point
distance
score

543 16

272 248

204 400

Difference
distance
score

485 29

243 154

183 224

Low tolerance user mode

 Threshold Anomalies

Point
distance
score

543 16

272 248

136 773

68 2006

51 3030

47 3372

Difference
distance
score

485 29

243 154

122 315

61 947

31 2809

With respect to the different categories of anomalies,
Figure 9 provides an overview of the different anomalies per
category in the three approaches. As can be seen, the majority
of anomalies in both cases are sequential anomalies; in the
low-tolerance mode more contextual anomalies are reported,
whereas in high tolerance mode the majority are non-
contextual ones.

C. Evaluation against manually labelled anomalies
To obtain a baseline, one of the authors, an expert in data
analysis of traffic data, performed manual labeling of
anomalies in the same dataset that we used to demonstrate the
application of our method, i.e. for data from LD1 in 2011.
The expert worked with their tools of preference
independently and without having prior knowledge of how
the anomaly detection framework was used and configured to
detect anomalies in the same dataset. The manual labeling
process lasted about 90 mins and identified 2122 anomalies.

We compared the results from the three approaches to this
baseline and calculated the accuracy, precision, recall and F1
score of our framework in each case (Figure 10). The results
clearly show that the high tolerance approach performs better
with accuracy of 98.5% and F1 score of 87.2%. At the same
time, the labelling process with our framework, performed by
two of the authors that are not experts in analysis of traffic
data, took approx. 5 mins only.

Having a closer look at the wrongly annotated points by
our framework, in particular at the points that were labelled as
anomalies by the framework but not by the expert user, the
majority of the points were within days with unusual traffic
patterns, i.e. holidays. We hypothesized that holidays can be
automatically detected by looking at long sequences of
sequential contextual anomalies and when they happen and
formulated a rule that specified that “in the high tolerance
mode, a day is a holiday if it contains a sequence of contextual
anomalies with length greater than 5”. With the above rule, we
were able to identify 11 out of a total of 13 holidays, together
with 3 false positives. After removing holidays from the
evaluation, all four metrics reported in Figure 10 increased.

From the above we can conclude that:
• Our framework allowed a non-expert in the analysis

of traffic data to annotate anomalies about 20 times
faster than an expert and with almost the same
accuracy.

• Our framework scales with the number of timeseries
that need to be analyzed since it only needs a small

upfront input from the user and automates the rest of
the analysis. As pointed out by the traffic data expert
in our team, automation is absolutely necessary in
real settings where manual labeling is not an option.

V. OPERATION IN SELF-ADAPTIVE SYSTEMS
Our anomaly detection framework can operate as part of a
self-adaptive system in order to identify and filter out
anomalous measurements at runtime. A self-adaptive
typically consists of a managed subsystem and a managing
subsystem, which operates based on the well-known Monitor-
Analyze-Plan-Execute loop (MAPE-K) [15], monitors the

Figure 7: Anomalies identified in the high-tolerance, low-

tolerance, and mod. z-score approach.

Figure 8: Sources of anomalies.

Figure 9: Distribution of anomalies in the categories of Table I.

managed system via sensors and adapts it via actuators, as
depicted in Figure 11. For instance, in real-time traffic control,
the managed system is the traffic infrastructure and the
managing system in the traffic control system which monitors
the number and speed of cars, analyzes these data to predict
how traffic will develop in the near future, plans actions to
avoid possible traffic congestions, and executes the plans via
e.g. changing speed limits.

Our anomaly detection framework can be used between
the monitor and analyze phases, or as part of the monitor
phase itself. By identifying and filtering out anomalies,
decision-making in the subsequent phases can be improved.
Since our framework needs just initial input from the user to
identify the effective seasonal pattern and select the
thresholds for anomaly detection, it can work in an automated
fashion until further input is needed from the user. An
example is the identification of an excess of anomalies of a
particular type that might point to specific problems within
the monitoring infrastructure.

Our framework can also use the expert input to learn and
calibrate anomaly detection. In our experiments, we used the
(user-observed) association between contextual sequential
anomalies with high sequence number and holidays to
identify holidays and stop reporting anomalies in these
exceptional circumstances. Stop reporting anomalies in
holidays is just one instance of a rule that tunes anomaly
detection. The framework can be tuned, via similar rules, to
treat special cases differently: holidays, e.g. could be viewed
as another pattern in traffic data for which a normal behavior
needs to be identified and thresholds need to be learned.

We note, also, that our framework can be tuned to report
anomalies at different levels of severity: for instance, after a
“risky” adaptation takes place (e.g., dynamically enforcing
too low speed limit), the detection module should notify the
users or the automated decision-making module to revert to a
safe system state based on an excess of anomalies of a
particular type (e.g. non-contextual ones) pointing to a
particular problem. In reverse, an adaptation that is expected
to change the normal behavior for a metric should notify the
anomaly detection module to not report anomalies on this

metric until enough data for learning the new normal
behavior are gathered. A detailed, statistical analysis of
considering and balancing anomalies versus adaptations is, in
general, very domain- and case-specific and is beyond the
scope of this paper.

VI. RELATED WORK
Anomaly detection in time-series is a heavily studied topic
within data science [21], [24]. In general, approaches can be
categorized in supervised, which rely on labeled datasets and
employ classification techniques such as support vector
machines and decisions trees, and unsupervised, which
employ clustering and statistical techniques [25]. Most
approaches are partially online in that they use an offline
phase to train a detection model whereas the actual detection
can be done online, i.e. as the data come [25]. Our framework
assumes no availability of labeled datasets and employs
statistical methods with minimal assumptions on the
underlying distributions, i.e. quartile analysis and modified z-
score method. It also follows the idea of learning models
offline and employing them online. In our case, offline
learning includes the identification of the most effective
seasonal pattern (we used a year’s data in our experiments)
and the determination of thresholds for the two different
scores based on user input.

Anomaly detection has also a number of applications in
software systems, the most prominent examples being the
detection of performance regressions [26], [27] and detection
of attacks and intrusions in network data [28]. Viewing an
intrusion detection system as a self-adaptive system, anomaly
detection comprises the analysis phase of its MAPE-K loop.
We focus instead on using anomaly detection as a tunable
mechanism to detect and filter wrong data or outliers that may
bias the decisions of a self-adaptive system (such as a traffic
control system) or cause inaccurate measurements or inflation
of metric variance in online experimentation pipelines [4].

Looking at the literature of outlier detection methods, there
are a number of tests that can be used when the number of
outliers to be detected can be estimated by the user. For
instance, Generalized ESD (Extreme Studentized Deviate)
test [29], [30] requires an upper bound of number of outliers
to be provided. Twitter has built a novel approach based on
ESD to employ in its production long-term timeseries data
[20], [26]. Another standard practice for outlier detection

Figure 10: Evaluation of the three different approaches supported

by our framework w.r.t. to the manually labelled baseline.

Figure 11: Anomaly detection within the MAPE-K loop.

using inter-quartile range employs 3X factor to mark potential
outliers where the 3X factor is arbitrarily chosen [31], [32]. In
practice, knowing or estimating the number of outliers in
advance may be difficult. Also, the above methods cannot be
tuned to incorporate domain knowledge in the anomaly
detection process. In contrast, our framework (i) does not
assume that a number of anomalies is provided upfront, (ii)
relies on the first and third quartiles to assign scores to
potential anomalies, and (iii) incorporates domain knowledge
in the threshold selection process, the result of which
determines the final anomalies.

Our proposal bears similarities to EGADS (Extensible
Generic Anomaly Detection System), Yahoo’s generic
anomaly detection framework, internally used for detecting
outliers in both system data and business key performance
indicators [33]. Indeed, we also generate models of normal
behavior against which we can perform detection in real time
by calculating the deviation from the normal behavior and
applying thresholds to judge when an anomalous behavior is
to be reported. Contrary to them, we do not allow to plug in
different methods for modeling timeseries (ARIMA,
Exponential Smoothing, etc.), but employ a more lightweight,
statistical-based approach which relies on seasonal patterns of
the original timeseries and their differenced counterpart.

VII. CONCLUSION
In this paper, we described a novel framework for anomaly
detection that is generic and tunable by user input. The main
benefit of our approach is that our framework does not
require an expert in data analytics and can thus be easily used
by software architects, which have general domain
knowledge. Within a self-adaptive system or a continuous
experimentation pipeline, the framework can be used to
increase trustworthiness in data-driven decisions. In
particular, our framework can be used for learning the normal
patterns of a timeseries-outputs of running systems and detect
different types of anomalies that should be dealt with by the
system to increase its trust in data-driven decisions.

ACKNOWLEDGMENT
This work has been sponsored by the German Ministry of Education and
Research (grant no 01Is16043A) and by the Bavarian Ministry of Economic
Affairs, Regional Development and Energy through the Centre
Digitisation.Bavaria, as part of the Virtual Mobility World (ViM) project.

REFERENCES
[1] E. Woods, “Software Architecture in a Changing World,” IEEE

Software, vol. 33, no. 6, pp. 94–97, Nov. 2016.
[2] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping

experiment infrastructure: More, better, faster experimentation,” in
Proc. of SigKDD 2010, ACM, 2010, pp. 17–26.

[3] R. Kohavi et al., “Online experimentation at Microsoft,” in Data
Mining Case Studies and Practice Prize III, 2009, vol. 11.

[4] Z. Zhao, M. Chen, D. Matheson, and M. Stone, “Online
Experimentation Diagnosis and Troubleshooting Beyond AA
Validation,” in Proc. of DSAA’16, 2016, pp. 498–507.

[5] E. Bakshy, D. Eckles, and M. S. Bernstein, “Designing and Deploying
Online Field Experiments,” in Proc. of WWW’14, 2014, pp. 283–292.

[6] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From
Infrastructure to Culture: A/B Testing Challenges in Large Scale
Social Networks,” in Proc. of KDD’15, 2015, pp. 2227–2236.

[7] D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. V. N. Vishwanathan, “An
Efficient Bandit Algorithm for Realtime Multivariate Optimization,”
in Proc. of the KDD’17, 2017, pp. 1813–1821.

[8] “Uber Experimentation Platform,” 18-Jun-2018. [Online]. Available:
https://eng.uber.com/tag/experimentation/.

[9] D. I. Mattos, J. Bosch, and H. H. Olsson, “Challenges and Strategies
for Undertaking Continuous Experimentation to Embedded Systems:
Industry and Research Perspectives,” in XP 2018, 2018, pp. 277–292.

[10] H. Holmström Olsson and J. Bosch, “Towards Data-Driven Product
Development: A Multiple Case Study on Post-deployment Data Usage
in Software-Intensive Embedded Systems,” in Lean Enterprise
Software and Systems, 2013, pp. 152–164.

[11] H. H. Olsson, J. Bosch, and A. Fabijan, “Experimentation that Matters:
A Multi-case Study on the Challenges with A/B Testing,” in Software
Business, vol. 304, Springer, 2017, pp. 179–185.

[12] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A Contextual-bandit
Approach to Personalized News Article Recommendation,” in Proc.
of WWW’10, New York, NY, USA, 2010, pp. 661–670.

[13] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D.
Sculley, “Google Vizier: A Service for Black-Box Optimization,” in
Proc. of KDD ’17, 2017, pp. 1487–1495.

[14] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape and
Research Challenges,” ACM TAAS, vol. 4, no. 2, May, pp. 1–40, 2009.

[15] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[16] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. Chapman & Hall/CRC, 2007.

[17] J. Gupchup et al., “Trustworthy Experimentation Under Telemetry
Loss,” in Proc. of CIKM’18, Torino, Italy, 2018, pp. 387–396.

[18] “tsoutliers: Detection of Outliers in Time Series.” [Online]. Available:
https://cran.r-project.org/web/packages/tsoutliers/index.html.

[19] Twitter, Inc and other contributors, “AnomalyDetection R package.”
[Online]. Available: https://github.com/twitter/AnomalyDetection.

[20] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic Anomaly
Detection in the Cloud Via Statistical Learning,” arXiv:1704.07706
[cs], Apr. 2017.

[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[22] B. Iglewicz and D. C. Hoaglin, How to Detect and Handle Outliers.
ASQC Quality Press, 1993.

[23] D. C. Montgomery, Introduction to Statistical Quality Control, 6
edition. Hoboken, N.J: Wiley, 2008.

[24] D. Cheboli, “Anomaly Detection of Time Series,” University of
Minessota, 2010.

[25] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, Nov. 2017.

[26] O. Vallis, J. Hochenbaum, and A. Kejariwal, “A Novel Technique for
Long-Term Anomaly Detection in the Cloud,” in 6th USENIX
Workshop on Hot Topics in Cloud Computing, 2014.

[27] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring, “Self-adaptive
software system monitoring for performance anomaly localization,” in
Proc. of ICAC’11, 2011, pp. 197–200.

[28] G. F. Cretu-Ciocarlie, A. Stavrou, M. E. Locasto, and S. J. Stolfo,
“Adaptive Anomaly Detection via Self-calibration and Dynamic
Updating,” in Recent Advances in Intrusion Detection, vol. 5758,
Springer, 2009, pp. 41–60.

[29] B. Rosner, “On the Detection of Many Outliers,” Technometrics, vol.
17, no. 2, pp. 221–227, 1975.

[30] B. Rosner, “Percentage Points for a Generalized ESD Many-Outlier
Procedure,” Technometrics, vol. 25, no. 2, pp. 165–172, 1983.

[31] John W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
[32] J. Laurikkala, M. Juhola, and E. Kentala, “Informal identification of

outliers in medical data,” in Proc. of Fifth International Workshop on
Intelligent Data Analysis in Medicine and Pharmacology, 2000.

[33] N. Laptev, S. Amizadeh, and I. Flint, “Generic and Scalable
Framework for Automated Time-series Anomaly Detection,” in Proc.
of the KDD’17, 2015, pp. 1939–1947.

