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Abstract—As software architecture practice relies more and 
more on runtime data to inform decisions in continuous 
experimentation and self-adaptation, it is increasingly 
important to consider the quality of the data used as input to the 
different decision-making and prediction algorithms. One issue 
in data-driven decisions is that real-life data coming from 
running systems can contain invalid or wrong values which can 
bias the result of data analysis. Data-driven decision-making 
should therefore comprise detection and handling of data 
anomalies as an integral part of the process. However, currently, 
anomaly detection is either absent in runtime decision-making 
approaches for continuous experimentation and self-adaptation 
or difficult to tailor to domain-specific needs. In this paper, we 
contribute by proposing a framework that simplifies the 
detection of data anomalies in timeseries-outputs of running 
systems. The framework is generic, since it can be employed in 
different domains, and tunable, since it uses expert user input in 
tailoring anomaly detection to the needs and assumptions of 
each domain. We evaluate the feasibility of the framework by 
successfully applying it to detecting anomalies in a real-life 
timeseries dataset from the traffic domain.  

Keywords-anomaly detection, data-driven decisions, data 
anomalies, experimentation, self-adaptive systems   

I.  INTRODUCTION 
Large, complex, and dynamic software-intensive systems are 
pushing the boundaries of today’s software architecture 
practice towards increased automation and data-driven 
decisions. In the words of Eoin Woods, “large dynamic 
systems will require policy-driven automation rather than 
today’s carefully designed step-by-step processes” [1].  

One manifestation of the above idea can already be 
observed through the increased presence and importance of 
continuous experimentation in today’s web-facing companies 
such as Google [2], Microsoft [3], Yahoo! [4], Facebook [5], 
LinkedIn [6], Amazon [7] and Uber [8]. Such companies, but 
also companies from the embedded domain [9], [10], are 
routinely using A/B testing [11] and more sophisticated 
techniques such as multi-armed bandits [12] and black-box 
optimization [13] to compare features and feature variants 
based on the degree they increase the satisfaction of business 
goals and to optimize their operational systems.   

                                                        
1 Current affiliation: DENSO AUTOMOTIVE Deutschland GmbH   

Another manifestation of the same idea can be seen in the 
area of autonomic and self-adaptive systems, i.e. systems that 
can adapt to changes in their environment by adjusting their 
structure or behavior to continue meeting their goals [14], 
[15]. Cloud auto-scalers, self-driving cars and real-time traffic 
control systems are practical examples of systems that 
currently exhibit certain degree of self-adaptivity.  

A common denominator in all cases of increased 
automation in software architecture practice is the extensive 
use of data. Indeed, decisions made by product managers, 
DevOps teams, and by the running systems themselves are 
based on the collected data and the insights they provide. 
Since real-life data are noisy, several samples of a single 
metric are typically measured, aggregated, summarized, and 
finally analyzed. To obtain statistical guarantees, statistical 
procedures such as t-tests [16] are often employed.  

A problem with data-driven decision-making is that real-
life data are often non-uniform and contain wrong or invalid 
values, all of which can bias the result of data analysis. Data 
anomalies can actually take different forms and have different 
sources. Telemetry loss is an anomaly that has been shown to 
skew the results of continuous experimentation in Microsoft 
[17]. The existence of sudden rises or drops or the breaking of 
a seasonal pattern in an observed timeseries are other kinds of 
anomalies. Anomalies can happen due to failures in the 
monitoring infrastructure, e.g. a failure in a hardware or 
software sensor, temporary network unavailability, rounding 
errors upon aggregation, etc. They can also happen due to 
unusual changes in the system that are correctly and 
accurately detected by the monitoring infrastructure. For 
instance, high peaks in the network traffic of a video 
streaming website or in the traffic in a city can be unusual 
deviations from the normal behavior that can be attributed to 
a particular calendar day.  

Regardless of their forms or sources, data anomalies can 
slow down or harm decision making. Having outliers in 
datasets obtained when comparing two feature variants in an 
A/B experiment increases the noise (variance) of the data and 
demands more data to be collected to reach statistically 
significant results [4]. Having a series of very low CPU 
utilization values (e.g. due to a bug in the monitoring code) 
reported for some servers in a Cloud data center can trigger 
auto-scaler operations that result in an over-utilization of these 



   
 

   
 

servers. Finally, having outliers in the timeseries used for 
training a traffic predictor used in a real-time traffic control 
system will reduce the accuracy of the predictions and hence 
the correctness of the traffic control actions.      

Detecting and filtering out anomalies in timeseries data is 
therefore important for data-driven decisions taken both by 
human operators and by running self-adaptive systems. We 
argue that an anomaly detection component has to be an 
integral part of any experimentation pipeline and self-
adaptation architecture in order to increase trustworthiness of 
the analysis.  

The problem is that existing off-the-shelf anomaly 
detection modules and frameworks, such as tsoutliers [18] and 
Twitter’s anomaly detection [19] R packages, are difficult to 
tune in order to work in concert with experimentation or self-
adaptation processes. For example, Twitter’s package expects 
users to provide the expected percentage of anomalies present 
in the data, which is often not known or hard to estimate [20]. 
Concretely, anomaly detection should consider the running 
experiments and their expected effect, e.g. whether they 
change the model of normal behavior of a timeseries. At the 
same time, the experimentation engine should be aware of the 
expected anomalies (e.g. due to external circumstances such 
as holidays) in the timeseries of a system metric.   

In response, in this paper we provide a simple yet robust 
way to detect anomalies in arbitrary timeseries and connect 
anomaly detection to experimentation and self-adaptation. 
Our method works in two stages: identification of strong 
seasonal patterns and identification of critical anomaly 
thresholds. It is a semi-automated method in the sense that, 
although it assumes the involvement of domain experts in the 
learning phase, it can work in a completely automated way 
after that. Our method can be encapsulated in a component 
that informs either the operator of a system or the adaptation 
manager of an autonomous system about data quality issues 
that may have an impact on the functioning of the system and 
should be dealt with by applying corrective actions.  

We have evaluated the feasibility of our method by 
applying it to identifying anomalies in a real-life data set from 
the traffic domain. Our results show that it is feasible to 
identify different categories of anomalies in the traffic data set 
with minimum input from a user. 

The rest of the paper is structured as follows. Section II 
provides basic background and definitions of anomalies and 
their different types. Section III describes the eight phases of 
our anomaly detection framework, and Section IV provides an 
evaluation of our framework. Then, Section V explains how 
our framework is integrated in a self-adaptive system. Finally, 
Section VII compares our approach to related work and 
Section VII concludes.       

II. PRELIMINARIES 
An anomaly is an observation that departs from the expected 
or usual behavior. Anomaly detection is therefore the task of 
defining a region that represents ‘normal’ behavior and 
identifying the observations that lie outside of this region [21]. 
Our framework builds on both robust statistical techniques 
and expert user input for anomaly detection.  

An important observation is that anomalies can be broadly 
categorized according to two orthogonal dimensions:  
• Contextuality, i.e. whether anomalies are independent of 

the context in which they occur (e.g. extremely high or 
low values or null values) or are deviations from the 
values expected to be observed in a specific context, e.g. 
in a specific hour, day, or week. Based on this, anomalies 
can be divided into non-contextual and contextual.  

• Consecutiveness, i.e. whether anomalies are isolated 
from each other or occur in a sequence. Based on this, 
anomalies can be divided into isolated and sequential. 
Sequential anomalies form anomaly groups that have a 
certain length representing the number of consecutive 
anomalies in the group.   

Table I depicts the four different categories of anomalies 
that can be identified based on the above dimensions.  

Each of the four categories point to different potential 
sources for the existence of anomalies and also pose different 
challenges in anomaly detection and filtering. Type I and II 
anomalies are mostly straightforward to detect compared to 
Type III and IV, which need more sophisticated analysis than 
simple threshold-based methods. At the same time, Type I and 
III anomalies can be easier to deal with by simply removing 
the anomalies from subsequent analyses, whereas Type II and 
IV need more sophisticated methods of dealing with 
anomalies once these are detected. Finally, Type IV anomalies 
can indicate possible patterns of exceptional behavior that 
corresponds to a certain process, e.g. warmup of a JVM in 
performance micro-benchmarking, holiday with increased 
network traffic in a video-streaming website, etc. that could 
not be considered anomalies but rather expected 
measurements that conform to a special pattern.  

In the following, we describe a generic anomaly detection 
framework for time series data that relies on both robust 
statistical techniques and expert user input and, therefore, can 
be used for identifying all four types of anomalies. 

III. ANOMALY DETECTION FRAMEWORK 

A. Overview  
Our framework for anomaly detection of time series data 
consists of the following eight phases, while it relies on three 
types of inputs from expert users (Figure 1). 
Phase 1: Identification of out-of-bounds and wrong values. 
In the first phase, an expert user provides the range(s) of 
acceptable values in the time series (Input A). For instance, a 
user might specify that values should be non-negative with an 
absolute maximum value of 1000. In that case, any 
measurements that either negative or above 1000, along with 

TABLE I.  CATEGORIES OF ANOMALIES. 
 

 Non-contextual Contextual 

Isolated 
Type I: Extreme 

spikes, wrong values 
Type III: Sudden or 

unusual spikes 

Sequential 
Type II: Series of 
wrong or extreme 

values 

Type IV: Series of 
unusual values 

 
 



   
 

   
 

values that are not numbers or simply null are directly flagged 
as non-contextual anomalies in our method.   
Phase 2: Identification of the most effective seasonal 
pattern for anomaly detection. Seasonality is an important 
characteristic of many timeseries and seasonal patterns can 
be used in obtaining a range of normal behavior from data. If 
there is more than one seasonal pattern, a question is how to 
decide which pattern is more representative of normal 
behavior and hence effective in anomaly detection. This 
phase answers this question by considering different user-
provided patterns. 

In particular, in this phase, an expert user provides a list of 
seasonal patterns that are expected to be present in the data 
series (Input B). For instance, a user might specify ‘hourly’ 
and ‘daily’ as the candidate patterns based on their experience 
and domain knowledge. Scatter plots of measured data can be 
used at this phase to inform a user’s decision. Our framework 
then decides which pattern is the most effective for anomaly 
detection (if any at all). The selected pattern is used in the next 
phases to define the range of normal behavior. Section III.B 
provides a detailed technical description of phase 2.    
Phase 3: Calculation of point-distance score per point. 
Given a seasonal pattern in a timeseries, the timeseries can be 
split into several partial timeseries, each of which contains 
data points that belong to the same similarity group. For 
example, a timeseries with hourly measurements that follows 
a daily pattern can be split into 24 partial timeseries, one for 
each hour in a day. One way of identifying contextual 
anomalies is to look for data points that significantly differ 
from the other points in their partial timeseries. Leveraging 
this idea, in this phase we focus on points that lie outside the 
25th-75th percentile range of each partial timeseries dataset. 
For each of these points, to quantify their divergence from 
normal behavior, we calculate their distance from the 25th or 
the 75th percentile (depending on whether the point is below 

the 25th or above the 75th percentile), which we call point-
distance score. Points inside the 25th-75th percentile range 
obtain a point-distance score of zero.  
Phase 4: Calculation of difference-distance score per 
point. Another way of identifying anomalies is to look for 
points which represent sharp rises or drops. Any difference 
between two consecutive measurements (either rise or drop) 
that is unusual is a good candidate for being an anomaly. 
Following this, in this phase we first create the timeseries of 
the differences between each two consecutive points 
(differenced timeseries) and compute the partial differenced 
timeseries that capture the seasonal pattern from phase 2. 
Then, we calculate 𝑑", i.e. the distance 𝑑 of each point 𝑖 that 
lies outside the 25th-75th percentile range of the respective 
partial timeseries dataset from the respective boundary (75th 
or 25th percentile). For any point that lies within the normal 
(25th-75th) range it holds that 𝑑" = 0. Then, each point obtains 
a difference-distance score equal to |𝑑" − 𝑑"()|, where 𝑑"() 
refers to the distance of the previous point in the differenced 
timeseries. This way, effects of sharp rises or drops on a 
single point are not carried over to the score of the next one. 
Phases 5 & 6: Determination of point-distance and 
difference-distance score thresholds. After performing 
phases 3 and 4, each point in the timeseries is assigned two 
scores, a point-distance and a difference-distance score. 
Whereas any point with a positive score is candidate for being 
an anomaly, points with higher scores are more likely to be 
true anomalies. The question is how to set a threshold, for 
each of the two scores, to decide whether a potential anomaly 
will be actually labelled as an anomaly in our framework. 
This is the task of phases 5 and 6. To determine a threshold 
for each score, we rely on expert users providing simple 
(Boolean) feedback on only a subset of characteristic cases. 
A detailed technical explanation of these phases is provided 
in Section III.C.  

 
Figure 1: Overview of the proposed anomaly detection framework.



   
 

   
 

Phase 7: Identification of isolated and sequential 
contextual anomalies. Once the point-distance and 
difference-distance score thresholds have been determined, 
the task of identifying isolated contextual anomalies is simply 
to mark any data points with scores higher than the 
thresholds. Sequential anomalies are by definition 
consecutive anomalies. In our framework, we consider any 
anomaly that has at least one neighboring anomaly as 
sequential anomaly. Hence, the task of identifying sequential 
contextual anomalies is simply going through the list of 
isolated anomalies and marking as sequential the ones that 
have at least one neighboring point marked as isolated 
anomaly.  
Phase 8: Identification of extreme values. In this phase, the 
set of non-contextual anomalies from phase 1 is enhanced by 
points that would be considered anomalies in all partial 
timeseries corresponding to the seasonal pattern. In 
particular, we consider anomalies as non-contextual when 
their (point or difference) score is either 

• greater than the sum of the maximum 75th percentile 
value (out of all the partial timeseries) and the 
selected threshold, or 

• less than the subtraction of the selected threshold 
from the minimum 25th percentile value (out of all 
the partial timeseries).  

B. Identification of the most effective seasonal pattern for 
anomaly detection 

We will describe the process our framework applies in 
identifying the most effective seasonal pattern in a timeseries 
(Phase 2 in our framework). 

A timeseries ts = {𝑡), 𝑡/,… , 𝑡1} is a set of temporal data 
points. We define as 𝑑 the time distance between each two 
adjacent points in ts. For an interval 𝑠 = 𝑚 × 𝑑, where 𝑚 ≥
1 and 𝑚	𝜖	ℕ, we can divide the whole timeseries into 𝑐 =
𝑛 𝑚⁄  blocks, 𝑏?), 𝑏?/,… , 𝑏?@ , with 𝑚 data points per block. Each 
point in a block is indexed by 𝑖 = 𝑗	𝑚𝑜𝑑	𝑚, where j is the 
point’ index in 𝑡𝑠. These blocks are equivalent to seasons in 
time-series literature [7]. Note that, the last block may have 

less than 𝑎 data points, since, e.g., a month can have 28, 29, 
30, or 31 days. In those cases, we pad the last block with 
trailing null values that do not affect the pattern comparison 
since they are omitted in the variance calculation performed 
later. 

Next, we project the 𝑡" points of all blocks into a partial 
timeseries 𝑝𝑡𝑠?" . By construction, 𝑝𝑡𝑠?"  has exactly 𝑐  points. 
We define 𝑃𝑇𝑆? = {𝑝𝑡𝑠?), 𝑝𝑡𝑠?/,… , 𝑝𝑡𝑠?H} as the finite set of 
all partial timeseries for an interval 𝑠. 

Having a timeseries ts and a set of partial timeseries 𝑃𝑇𝑆?, 
we can decide whether ts  or 𝑃𝑇𝑆?  is more effective in 
representing a region of normal behavior by comparing all the 
partial timeseries in 𝑃𝑇𝑆?  with ts . We assume that a 
timeseries is a more effective model of normal behavior than 
another timeseries when it has lower variance, since then 
outliers will be easier to detect. If the majority of the partial 
timeseries are more effective than ts, we conclude that 𝑃𝑇𝑆? 
is more effective than ts, and vice versa. 

One problem when comparing variances of data sets with 
potentially small sample sizes (as in our case) is that a positive 

1. var_ts = variance(ts) 
2. PTS = set of partial_timeseries from ts using interval j 
3. PTS_vote = 0 
4. For each ts_x in PTS: 
5.   var_ts_x = variance(ts_x) 
6.   if var_ts_x < var_ts then 
7.     if difference is statistically significant according to F-test then 
8.       PTS_vote = PTS_vote + 1 
9.          
10. if PTS_vote is greater length of PTS / 2 then 
11.   use PTS to model normal behavior 
12. else then 
13.   use ts to model normal behavior r 

Algorithm 1: Comparison of timeseries and set of partial timeseries. 

  1. vote_TS_k = 0 
2. For each ts in TS_j: 
3.   result = previous_algorithm 
4.   if result is equal to 'use TS to infer' then 
5.     vote_TS_k = vote_TS_k + 1 
6.  
7. if vote_TS_k is greater than length of TS_k /2 then 
8.   use TS_K to infer 
9. else then, 
10.   use TS_j to infer         

Algorithm 2: Comparison of different seasonal patterns. 

  

TABLE III.  BLOCKS BY WEEKLY INTERVAL. 
 

  

Monday ... Sunday 

00:00 ... 23:00  00:00 ... 23:00 

𝑝𝑡𝑠I)  ... 𝑝𝑡𝑠I/J  𝑝𝑡𝑠I)JK ... 𝑝𝑡𝑠I)LM 
Blocks 

Week 1 t1 ... t24  t145 ... t168 

Week 2 t169 ... t192  t313 ... t336 

Week 3 t337 ... t360  t481 ... t504 
 
 

TABLE II.  BLOCKS BY DAILY INTERVAL. 
 

  

Daily Interval 

00:00 01:00   22:00 23:00 

𝑝𝑡𝑠N) 𝑝𝑡𝑠N/ ... 𝑝𝑡𝑠N/O 𝑝𝑡𝑠N/J 

Blocks           

Day 1 t1 t2 ...  t23 t24 

Day 2 t25 t26 ... t47 t48 

Day ... ... 

Day 20 t457 t458 ... t479 t480 

Day 21 t481 t482 ... t503 t504 
 
 



   
 

   
 

or negative outcome might be a result of sampling error from 
the original populations. For this, we use one-tailed F-test [16] 
to check whether 𝑝𝑡𝑠?"  has statistically significant lower 
variance than 𝑡𝑠. If the F-test does not report a statistically 
significant difference, we give a vote to 𝑡𝑠, since at least it has 
more samples compared to 𝑝𝑡𝑠?"  and therefore can be 
considered more representative (Algorithm 1).  

The above comparison can be used to compare an original 
timeseries to a set of partial timeseries generated from the 
original one. This technique can be iteratively applied to 
compare two sets of partial timeseries with each other.  

Let us name the two sets of partial timeseries 𝑃𝑇𝑆? and 
𝑃𝑇𝑆P where 𝑙	𝜖	ℕ and 𝑘 = 𝑙 ∗ 𝑠. In order to deduce which of 
them is a more effective model of normal behavior, we can 
compare each partial timeseries in 𝑃𝑇𝑆?  with each partial 
timeseries in 𝑃𝑇𝑆P and use a voting mechanism to sum up the 
results (Algorithm 2). 

As an example, consider a timeseries with one-hour 
intervals for 21 days. For 'DAILY' and 'WEEKLY' intervals 
we can construct two sets of partial timeseries, 𝑃𝑇𝑆N  and 
𝑃𝑇𝑆I. 𝑃𝑇𝑆N consists of 24 partial timeseries, each with 21 
data points (Table II), whereas 𝑃𝑇𝑆I consists of 24 * 7 = 168 
partial timeseries, each consisting of 3 data points (Table III). 

To know whether 'DAILY' interval is more effective than 
'WEEKLY' we start comparing 𝑝𝑡𝑠N)  against 𝑝𝑡𝑠I) , 𝑝𝑡𝑠I/K , 
𝑝𝑡𝑠IJT, 𝑝𝑡𝑠IUO, 𝑝𝑡𝑠ITU, 𝑝𝑡𝑠I)/), 𝑝𝑡𝑠I)JK. From this step we know 
which interval is more effective for this particular data point 
(e.g. Midnight, 00:00). We repeat for other data points and 
eventually determine which interval is more effective by 
applying the Algorithm 2. Note that if, for a single data point, 
Algorithm 1 returns e.g. 'DAILY' over 'WEEKLY', this does 
not necessarily mean we cannot use 'WEEKLY' pattern for 
anomaly detection; it only means we would not be more 
effective by using 'WEEKLY' in contrast with 'DAILY'. 

C. Determination of thresholds for point-distance and 
difference-distance scores 

We will describe the interactive threshold selection process 
(Phases 5 and 6 in our framework), as well as a fallback 
threshold selection process.  

1) Interactive threshold selection 
For each score, we perform binary search to identify score 
values of interest. In particular, we take the following steps:  
STEP 1: Set the initial threshold as the average between the 
maximum and minimum value of the score. 
STEP 2: Filter out potential anomalies whose score is less 
than or equal to the threshold.  
STEP 3: Select n potential anomalies (we used 5) out of the 
remaining ones that are closest to the threshold. 
STEP 4: Show a scatter plot of the time series around the 
anomaly point (left side of plots in Figure 2), along with a 
scatter plot of the partial timeseries the point belongs in (right 
side of plots), for each of the selected n potential anomalies. 
Mark the potential anomaly in red. Both plots show the 
normal behavior to help the user take an informed decision. 
For the point-distance score, the timeseries shows the actual 
values from the dataset (Figure 2(a)), whereas for the 
difference-distance score, the timeseries shows values from 
the differenced series (Figure 2(b)). The dashed regions in 
both plots depict the normal behavior region that corresponds 
to the selected threshold value.  
STEP 5: Ask the user to decide whether the majority of the 
points marked as red are anomalies or not w.r.t. to that 
domain. The user answers with ‘yes’ or ‘no’. 
STEP 6: Update the threshold based on response of the user 
by performing binary search: In case of a positive answer, the 

 
(a) 

 

 
(b) 

Figure 2: Diagrams shown to user for the determination of (a) point-distance score, and (b) difference-distance score. The line plot 
(left) shows the differenced time-series around the potential anomaly, whereas the scatter plot (right) shows the dataset 

corresponding to the point in the day of the potential anomaly.



   
 

   
 

new threshold becomes the average of the old threshold and 
the minimum value used in the calculation of the old 
threshold, so essentially anomaly detection becomes stricter. 
In case of a negative answer, the new threshold becomes the 
average of the old threshold and the maximum value used in 
the calculation of the old threshold.  
STEP 7: Repeat steps 2 to 6 at most log/ 𝑟𝑎𝑛𝑔𝑒 times, where 
𝑟𝑎𝑛𝑔𝑒 is the difference between the maximum and minimum 
of the scores of the initial dataset of potential anomalies (the 
input of Step 1).  
STEP 8: Use the threshold value after step 7 is complete as 
the final threshold for anomaly detection. 

2) Fallback threshold selection 
In case interactive threshold selection is not an option (e.g. if 
zero manual effort is required or no user is available), a 
threshold can be selected using the modified z-score method, 
which is defined as follows: 

𝑍" 	= 	
0.6745(𝑥" − median	)

𝑀𝑒𝑑𝑖𝑎𝑛	𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

 First, the modified z-score is calculated for each of the 
potential anomalies. Then, the point-distance or difference-
distance score of the first anomaly with z-score more than 3.5 
becomes the threshold for point-distance or difference-
distance scores. The value of 3.5 is a recommended one for 
marking points as outliers [22].  

D. Framework Assumptions and Limitations 
In summary, the proposed framework relies on the following 
assumptions:  
• It deals with regularly spaced, univariate timeseries. We 

believe this covers a rather big class of periodically 
monitored real-life processes, e.g. CPU load. 
Multivariate timeseries can be split into their univariate 
subparts and handled by the framework; however, this 
way, anomalies that result from irregularities in more 
than one timeseries are not identifiable.     

• It can work with timeseries that have a single seasonality 
and no seasonality at all. In both cases, Phase 2 of the 
framework is skipped. 

• It relies on the inter-quartile range (IQR) of data within 
a single block (e.g., Mondays, 11am for a year) to define 
normal behavior. As a result, it can work even with very 
small number of data points per block (which may 
happen if the original timeseries has collection gaps), 
assuming that the IQR can be still used for calculated.  

• Data within a single block need to be normally 
distributed—an assumption of the F-test used in Phase 2 
to compare variances. 

• It classifies anomalies into sequential/isolated and 
contextual/non-contextual. Other well-known patterns 
for anomalies can be found in statistical process control, 
such as sequences of very high or very low values or 
intermittent (but not sequential) anomalies [23].   

IV. EVALUATION 

A. Traffic Data Set 
For evaluation of the framework we have used a dataset of 
traffic from a road-network. These data were collected using 
inductive loop detectors installed on the road network of 
Vienna, Austria. Data from a total of 280 loop detectors (LD) 
were made available to us. For each LD, vehicle flow counts 
are recorded in every 15-minutes interval, from Jan 1st, 2011 
to Dec 31st, 2014. Hence, each day yields 96 records and each 
year 35,040 records for each LD.  

Since traffic pattern can change over time, we have used 
only one year’s data at a time for the construction of normal 
behaviors. Each LD’s data is used separately for anomaly 
detection detection. In this section, we present the results 
obtained from applying our framework to a single LD, LD1, 
for 2011. The results on more loop detectors, along with the 
source code of the developed tool are available at 
https://github.com/rakibulmdalam/TSADF. 

 
Figure 4: Raw data (15-min intervals) of LD1 for 2011. 

 
Figure 3: Daily pattern: each of the 96 points in a day corresponds 

to a dataset of 365 points (days in a year).

 
Figure 5: Weekly pattern: each of the 96 points in a Monday 

corresponds to a dataset of 52 points (weeks in a year). Similar for 
Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays.



   
 

   
 

LD1 has significant number of high peaks which reached 
1,600 VFC, where the usual peaks reach around 600 vehicles 
(Figure 4). Other than two visible gaps it is more or less 
continuous in nature which means this loop detector was able 
to collect data most of the time.  

B. Framework Application in Detecting Traffic Data 
Anomalies for a Single Loop Detector 

To evaluate the feasibility of our framework we have applied 
it in detecting anomalies present in 2011 in LD1. We report 
the activities and results of each phase.  
Phase 1. The acceptable value range provided by the user was 
[0,∞) . Consequently, the framework marks any points of 
LD1 with value outside this range as non-contextual 
anomalies—there are 1505 such points, all corresponding to 
null measurements.  
Phase 2. After looking at the raw timeseries diagrams of LD1 
timeseries, the user specifies the daily and weekly patterns as 
the most characteristic seasonal patterns present in the data. 
Our framework then performs all the possible comparisons 
between the daily pattern (Figure 3) and the weekly pattern 
(data from all days versus data from only Mondays, only 
Tuesdays, etc., see Figure 5) for each of the 96 points in a day. 
If the weekly pattern shows a statistically significantly smaller 
variance that the daily pattern in a comparison, it obtains a 
positive vote. Figure 6 depicts all such votes for all 96 points 
in a day. To make a final decision on which pattern to select 
for the subsequent phases, the framework counts the points in 
a day in which there are more than three votes (so the majority 
out of a total of seven votes). In these points, the weekly 
pattern is considered more effective. The overall result is that 
the weekly pattern is more than half of the cases, and as a 
result is selected as the most effective pattern for the next 
phases. Interestingly, out of the 41.2% of the cases where the 
weekly pattern was not statistically significantly better, in 
25.4% of the cases its variance was still smaller than the 
variance of the daily pattern.  
Phases 3 & 4.  In this phase, the framework calculates the 
point-distance and difference-distance scores for all the points 
in the timeseries. The majority of scores were lower than 100 
while only a small number were higher than 400. The question 
is, at which point to set the cutoff threshold for reporting  
anomaly? This is being handled in the next two phases.    

Phases 5 & 6. To illustrate these phases and in particular the 
impact of user input in the final result, we applied the 
framework with two users, one taking a low-tolerance 
approach where almost everything that is outside of the 
normal behavior is reported as anomaly, and another taking a 
high-tolerance approach in which only big deviations from 
normal behavior are considered true anomalies. Table IV 
depicts the decision-making of the two approaches, in 
particular the thresholds and the corresponding number of 
anomalies when the users answered positively in the question 
of whether the points with scores more than the thresholds are 
to be reported as anomalies.  
Phases 7 & 8. We report here the results of following both a 
high-tolerance and a low-tolerance approach in labeling 
anomalies, as well as following the automated labeling using 
the modified z-score approach (Section III.C.2). The results 
are depicted in Figure 8. As expected, the number of reported 
anomalies greatly varies based on the score thresholds, and the 
modified z-score yields results comparable to a user with high 
tolerance in anomalies. With respect to the two distance 
scores, they are complementary in identifying anomalies, 
since, despite the overlapping cases where any of the two 
could be used (Figure 8), there are also a high number of cases 
where only one score is used. Finally, Figure 8 depicts also the 
important proportion of null values identified by the simple 
range filter. For illustration, Figure 7 depicts the same subset 
of the original timeseries annotated with the identified 
anomalies in the three approaches. 

 
Figure 6: Votes for weekly pattern.

TABLE IV.  THRESHOLDS AND CORRESPONDING NUMBER OF THREHOLDS 
FOR “YES” ANSWERS OF USERS.  

 

High tolerance user mode 

 Threshold Anomalies 

Point 
distance 
score 

543 16 

272 248 

204 400 

Difference 
distance 
score 

485 29 

243 154 

183 224 

Low tolerance user mode 

 Threshold Anomalies 

Point 
distance 
score 

543 16 

272 248 

136 773 

68 2006 

51 3030 

47 3372 

Difference 
distance 
score 

485 29 

243 154 

122 315 

61 947 

31 2809 
 



   
 

   
 

With respect to the different categories of anomalies, 
Figure 9 provides an overview of the different anomalies per 
category in the three approaches. As can be seen, the majority 
of anomalies in both cases are sequential anomalies; in the 
low-tolerance mode more contextual anomalies are reported, 
whereas in high tolerance mode the majority are non-
contextual ones.  

C. Evaluation against manually labelled anomalies 
To obtain a baseline, one of the authors, an expert in data 
analysis of traffic data, performed manual labeling of 
anomalies in the same dataset that we used to demonstrate the 
application of our method, i.e. for data from LD1 in 2011. 
The expert worked with their tools of preference 
independently and without having prior knowledge of how 
the anomaly detection framework was used and configured to 
detect anomalies in the same dataset. The manual labeling 
process lasted about 90 mins and identified 2122 anomalies. 

We compared the results from the three approaches to this 
baseline and calculated the accuracy, precision, recall and F1 
score of our framework in each case (Figure 10). The results 
clearly show that the high tolerance approach performs better 
with accuracy of 98.5% and F1 score of 87.2%. At the same 
time, the labelling process with our framework, performed by 
two of the authors that are not experts in analysis of traffic 
data, took approx. 5 mins only.  

Having a closer look at the wrongly annotated points by 
our framework, in particular at the points that were labelled as 
anomalies by the framework but not by the expert user, the 
majority of the points were within days with unusual traffic 
patterns, i.e. holidays. We hypothesized that holidays can be 
automatically detected by looking at long sequences of 
sequential contextual anomalies and when they happen and 
formulated a rule that specified that “in the high tolerance 
mode, a day is a holiday if it contains a sequence of contextual 
anomalies with length greater than 5”. With the above rule, we 
were able to identify 11 out of a total of 13 holidays, together 
with 3 false positives. After removing holidays from the 
evaluation, all four metrics reported in Figure 10 increased.  

From the above we can conclude that: 
• Our framework allowed a non-expert in the analysis 

of traffic data to annotate anomalies about 20 times 
faster than an expert and with almost the same 
accuracy. 

• Our framework scales with the number of timeseries 
that need to be analyzed since it only needs a small 

upfront input from the user and automates the rest of 
the analysis. As pointed out by the traffic data expert 
in our team, automation is absolutely necessary in 
real settings where manual labeling is not an option.  

V. OPERATION IN SELF-ADAPTIVE SYSTEMS 
Our anomaly detection framework can operate as part of a 
self-adaptive system in order to identify and filter out 
anomalous measurements at runtime. A self-adaptive 
typically consists of a managed subsystem and a managing 
subsystem, which operates based on the well-known Monitor-
Analyze-Plan-Execute loop (MAPE-K) [15], monitors the 

 
 

 
 

 
Figure 7: Anomalies identified in the high-tolerance, low-

tolerance, and mod. z-score approach.

 
Figure 8: Sources of anomalies. 

 
Figure 9: Distribution of anomalies in the categories of Table I. 



   
 

   
 

managed system via sensors and adapts it via actuators, as 
depicted in Figure 11. For instance, in real-time traffic control, 
the managed system is the traffic infrastructure and the 
managing system in the traffic control system which monitors 
the number and speed of cars, analyzes these data to predict 
how traffic will develop in the near future, plans actions to 
avoid possible traffic congestions, and executes the plans via 
e.g. changing speed limits.  

Our anomaly detection framework can be used between 
the monitor and analyze phases, or as part of the monitor 
phase itself. By identifying and filtering out anomalies, 
decision-making in the subsequent phases can be improved. 
Since our framework needs just initial input from the user to 
identify the effective seasonal pattern and select the 
thresholds for anomaly detection, it can work in an automated 
fashion until further input is needed from the user. An 
example is the identification of an excess of anomalies of a 
particular type that might point to specific problems within 
the monitoring infrastructure.  

Our framework can also use the expert input to learn and 
calibrate anomaly detection. In our experiments, we used the 
(user-observed) association between contextual sequential 
anomalies with high sequence number and holidays to 
identify holidays and stop reporting anomalies in these 
exceptional circumstances. Stop reporting anomalies in 
holidays is just one instance of a rule that tunes anomaly 
detection. The framework can be tuned, via similar rules, to 
treat special cases differently: holidays, e.g. could be viewed 
as another pattern in traffic data for which a normal behavior 
needs to be identified and thresholds need to be learned.  

We note, also, that our framework can be tuned to report 
anomalies at different levels of severity: for instance, after a 
“risky” adaptation takes place (e.g., dynamically enforcing 
too low speed limit), the detection module should notify the 
users or the automated decision-making module to revert to a 
safe system state based on an excess of anomalies of a 
particular type (e.g. non-contextual ones) pointing to a 
particular problem. In reverse, an adaptation that is expected 
to change the normal behavior for a metric should notify the 
anomaly detection module to not report anomalies on this 

metric until enough data for learning the new normal 
behavior are gathered. A detailed, statistical analysis of 
considering and balancing anomalies versus adaptations is, in 
general, very domain- and case-specific and is beyond the 
scope of this paper. 

VI. RELATED WORK 
Anomaly detection in time-series is a heavily studied topic 
within data science [21], [24]. In general, approaches can be 
categorized in supervised, which rely on labeled datasets and 
employ classification techniques such as support vector 
machines and decisions trees, and unsupervised, which 
employ clustering and statistical techniques [25]. Most 
approaches are partially online in that they use an offline 
phase to train a detection model whereas the actual detection 
can be done online, i.e. as the data come [25]. Our framework 
assumes no availability of labeled datasets and employs 
statistical methods with minimal assumptions on the 
underlying distributions, i.e. quartile analysis and modified z-
score method. It also follows the idea of learning models 
offline and employing them online. In our case, offline 
learning includes the identification of the most effective 
seasonal pattern (we used a year’s data in our experiments) 
and the determination of thresholds for the two different 
scores based on user input.    

Anomaly detection has also a number of applications in 
software systems, the most prominent examples being the 
detection of performance regressions [26], [27] and detection 
of attacks and intrusions in network data [28]. Viewing an 
intrusion detection system as a self-adaptive system, anomaly 
detection comprises the analysis phase of its MAPE-K loop. 
We focus instead on using anomaly detection as a tunable 
mechanism to detect and filter wrong data or outliers that may 
bias the decisions of a self-adaptive system (such as a traffic 
control system) or cause inaccurate measurements or inflation 
of metric variance in online experimentation pipelines [4].  

Looking at the literature of outlier detection methods, there 
are a number of tests that can be used when the number of 
outliers to be detected can be estimated by the user. For 
instance, Generalized ESD (Extreme Studentized Deviate) 
test [29], [30] requires an upper bound of number of outliers 
to be provided. Twitter has built a novel approach based on 
ESD to employ in its production long-term timeseries data 
[20], [26]. Another standard practice for outlier detection 

 
Figure 10: Evaluation of the three different approaches supported 

by our framework w.r.t. to the manually labelled baseline.

 
Figure 11: Anomaly detection within the MAPE-K loop.



   
 

   
 

using inter-quartile range employs 3X factor to mark potential 
outliers where the 3X factor is arbitrarily chosen [31], [32]. In 
practice, knowing or estimating the number of outliers in 
advance may be difficult. Also, the above methods cannot be 
tuned to incorporate domain knowledge in the anomaly 
detection process. In contrast, our framework (i) does not 
assume that a number of anomalies is provided upfront, (ii) 
relies on the first and third quartiles to assign scores to 
potential anomalies, and (iii) incorporates domain knowledge 
in the threshold selection process, the result of which 
determines the final anomalies.  

Our proposal bears similarities to EGADS (Extensible 
Generic Anomaly Detection System), Yahoo’s generic 
anomaly detection framework, internally used for detecting 
outliers in both system data and business key performance 
indicators [33]. Indeed, we also generate models of normal 
behavior against which we can perform detection in real time 
by calculating the deviation from the normal behavior and 
applying thresholds to judge when an anomalous behavior is 
to be reported. Contrary to them, we do not allow to plug in 
different methods for modeling timeseries (ARIMA, 
Exponential Smoothing, etc.), but employ a more lightweight, 
statistical-based approach which relies on seasonal patterns of 
the original timeseries and their differenced counterpart.  

VII. CONCLUSION 
In this paper, we described a novel framework for anomaly 
detection that is generic and tunable by user input. The main 
benefit of our approach is that our framework does not 
require an expert in data analytics and can thus be easily used 
by software architects, which have general domain 
knowledge. Within a self-adaptive system or a continuous 
experimentation pipeline, the framework can be used to 
increase trustworthiness in data-driven decisions. In 
particular, our framework can be used for learning the normal 
patterns of a timeseries-outputs of running systems and detect 
different types of anomalies that should be dealt with by the 
system to increase its trust in data-driven decisions.   
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