
Graphical Spark Programming in IoT Mashup Tools
Tanmaya Mahapatra∗, Ilias Gerostathopoulos, Christian Prehofer and Shilpa Ghanashyam Gore

∗ Lehrstuhl für Software und Systems Engineering, Fakultät für Informatik
Technische Universität München, Boltzmann Straße 03, 85748 Garching, Germany

Phone: +49-89-289-17840, Fax: +49-89-289-17307
Email: ∗mahapatr@in.tum.de,gerostat@in.tum.de,prehofer@in.tum.de, ga89top@mytum.de

Abstract—With the unprecedented rise in the number of IoT
devices, the amount of data generated from sensors is huge
and often demands an in-depth analysis to acquire suitable
insights. Mashup tools, used primarily for intuitive graphical
programming of IoT applications, can help both for efficiently
prototyping and also data analytics pipelines. In this study, we
focus on the tight integration of data analytics capabilities of
Spark in IoT mashup tools. The main challenge in this direction
is the presence of a wide range of data interfaces and APIs
in the Spark ecosystem. In this study, we contribute to current
applications by (i) providing a thorough analysis of the Spark
ecosystem and selecting suitable data interfaces for use in a
graphical flow-based programming paradigm, (ii) devising a
novel, generic approach for programming Spark from graphical
flows that comprises early-stage validation and code generation
of Java Spark programs. The approach is implemented in aFlux,
our JVM-based mashup tool and is evaluated in three use
cases showcasing the machine learning and stream analytics
capabilities of Spark.

Index Terms—Internet of Things, IoT applications, data ana-
lytics, graphical flows, end-users, Spark analytics, mashup tools

I. INTRODUCTION

In recent years, the vision of ubiquitous connected physical
objects commonly referred to as the Internet of Things (IoT),
has become a reality. Analytics of the IoT data generated in
real-time is gaining prominence, as this leads to immediate
uncovering of potentially useful insights. Big Data technolo-
gies can be employed in this context to generate insights such
as end-user behavioural patterns, and applications, such as
generating mobility-models for a city, predicting impending
natural calamities, and performing structural health monitor-
ing. However, the development of IoT applications is not
a straightforward process because developers have to write
boilerplate code to access the data sets from the sensors of dif-
ferent devices and also perform data mediation before actually
using the data in applications. Special graphical tools called
IoT mashup tools have been proposed as a way to simplify
this. Mashup tools typically support a graphical interface to
specify the control-flow between different sensors, services
and actuators [1], [2]. The resulting application follows the
flow-based programming model, where outputs from a node
in the flow become inputs of the next node. An exemplary
tool is Node-RED [3]. Currently, mashup tools do not support
the specification and execution of flows that include Big Data
analytics computations, i.e. they do not support in-flow data
analytics with Big Data technologies. The underlying reasons

for this limitation are (i) the single-threaded execution model,
(ii) the synchronous and blocking execution semantics, and
(iii) the non-concurrent execution of components in state-of-
the-art IoT mashup tools (e.g. Node-RED) [4], [5].

Conversely, we have a large number of tools that are
grouped together as Big Data Analytics tools. These tools
are typically used for applications like targeted advertising
and social network analysis. [1]. Spark is one such prominent
tool, allowing for advanced, scalable, fault-tolerant analytics
and comes equipped with machine learning libraries as well
as stream processing capabilities [6], [7]. Nevertheless, the
learning curve associated with Spark is quite steep [6]. In
response to this, our study focuses on supporting Spark
programming from graphical mashup tools.

To illustrate the importance of efficiently prototyping data
analytics pipelines, consider a scenario where the administrator
of a taxi service wishes to know the current high demand
areas in the city, to redirect the available fleet accordingly and
to reduce customer waiting time. Assuming that the live city
data is available via REST APIs, it is still a non-trivial task to
analyse and draw insights from the data since this involves data
collection, data cleaning and real-time analytics to arrive at
some usable conclusions. If mashup tools supported graphical
blocks for each of the tasks that the administrator needs to
perform, the task would become simpler as it would only
involve specifying the control-flow between various graphical
components. The end result is an application which does real-
time Big Data analytics on sensed traffic data and uses the
analytics results to re-route the taxi fleet on the fly.

The overall problem we address here is the lack of an inte-
grated tool for IoT application development involving Big Data
analytics. aFlux, a new actor-model based [8] mashup tool,
has been developed to overcome the existing limitations of
mashup tools [9]. In this paper, we present with programming
Spark via graphical flows from aFlux, i.e. how to enable Spark
programming at a higher level with modular components in a
mashup tool. Thus, the problems can be broadly classified into
two categories:

1) Diverse data-representational styles, APIs and libraries
centred around Spark make it difficult to extract a
common methodology with which to access the func-
tionalities of Spark and formulate an approach to use it
from a flow-based programming paradigm.

2) Reconciling the difference in the programming paradigm
of Spark and flow-based mashup tools can be a chal-



lenge. Spark relies on a lazy evaluation execution model,
where computations are materialised if their output is
necessary, while flow-based programming has a com-
ponent triggered, then proceeds to execution, and fi-
nally passes their output to the next component upon
completion. To program Spark from mashup tools, this
difference in the computation model needs to be ad-
dressed. Additionally, Spark is highly concurrent; how-
ever, mashups are single thread.

Succinctly, we make the following contributions corre-
sponding to the problems enumerated above: (i) We analyse
the diverse ecosystem of Spark and its various data interfaces
(i.e. data abstractions) to extract a suitable data interface that
would support programming Spark from the higher abstraction
level of flow-based programming (Section III); (ii) We enable
the modelling of Spark applications in aFlux, our JVM based
mashup tool (Section IV); (iii) We evaluate the graphical
programming approach in three traffic case studies involving
fleet management of taxis during rush hour and discuss the
limitations of our approach (Section V).

II. BACKGROUND: MASHUPS & BIG DATA ANALYTICS

A mashup application is a composite application developed
through the agglomeration of reusable components. The indi-
vidual components are known as ‘mashup components’ and
they form the building blocks of the mashup application. The
specification of control-flow between these mashup compo-
nents forms the mashup logic. As control flows from one com-
ponent to the next it typically involves potential data mediation
before the data received from the preceding component can be
used, as well as the execution of business logic, defined within
the component. This process, performed sequentially from the
first to the last component of the flow, defines the business
logic of the application. Figure 1 shows a typical mashup
application (created in Node-RED [3]). In addition, this also
highlights the typical outlook of a mashup application, i.e. the
flow-based programming paradigm it follows. The example
of the figure first fetches data from a REST API, then,
checks for certain conditions in the second component, and,
finally, the control moves to the third component to initiate
actions corresponding to the input received from its preceding
component.

Fig. 1. Model of a mashup application in Node-RED, as in [2]

The tools which support the creation of such mashup
applications are called ‘mashup tools’. They typically provide
a graphical interface and graphical components which can be
orchestrated in a specific order. Prominent mashup tools used
in IoT domain include Node-RED [3], glue.things [10], Thing-
store [11], OpenIoT [12], ThingWorx [13], Paraimpu [14], and
Xively [13]. It is worth noting that many such tools, providing
control-specification between various visual elements, do not
even refer to themselves as mashup tools. The most prominent
is Node-RED, an open-source mashup tool built on Node.js by
IBM. In Node-RED, a mashup application is called a ‘flow”
while the mashup components are called ‘nodes’. Nodes are
simply snippets of JavaScript code, abstracted from the end-
user of the tool, that are connected diagrammatically. From
a functionality perspective, these nodes can be web services,
interfaces to IoT devices or abstractions for IoT protocols (e.g.
MQTT reader).

Today, there are several stream-analytics engines capable
of crunching and extracting business values from Big Data,
including Apache Spark [6], [7], Apache Flink [15], and Kafka
Streams. Spark is a scalable, fault-tolerant cluster computing
framework based on the traditional MapReduce computation
model [16]. Spark supports in-memory computations, thus, al-
lowing interactive data exploration and iterative computations,
like multi-pass machine learning algorithms. In addition to
this, Spark supports both batch as well as stream analytics. It
has evolved from a framework to an ecosystem, with several
libraries built around the core framework; Spark SQL provides
a SQL-like interface for data analysis, GraphX can be used for
graph computations, and different Machine Learning libraries
to learn from data-sets.

III. SPARK ECOSYSTEM: AN ANALYSIS

Spark supports two kinds of transformations among dif-
ferent libraries in its ecosystem. First, it supports high-level
operators which apply user-defined methods to data, e.g. the
map operator. The user-defined operation has to be provided
by the programmer. Newer libraries of Spark have moved away
from this paradigm and instead offer fine-grained operations
where the operation logic is pre-fixed yet parametrizable by
the programmer. Spark has introduced several abstractions to
manage and organize user data within its run-time environ-
ment and several libraries have introduced data abstractions
customized for different cases. Table I summarizes the libraries
and the data abstractions each library requires for interaction.
Fine-grained operations are possible through the Declarative
APIs of Spark, i.e. all APIs of libraries listed in Table I that
are based on the Spark Core library.

The Resilient Distributed Dataset (RDD) is the key ab-
straction for in-memory processing and fault-tolerance of the
engine, which is used heavily for batch processing [17]. Higher
level constructs are supplied with User-Defined Functions
(UDFs) applied to the data in a parallel fashion. UDFs have to
adhere to strong type checking requirements. Spark Streaming
library employs the DStream abstraction [18], which collects
data streamed over a user-defined interval and combines them



Data Interface
Library RDD DStream DataFrame S. DataFrame

Spark Core Yes - - -
Spark Streaming - Yes - -
Spark SQL - - Yes -
Spark MLib Yes - - -
Spark ML - - Yes -
Spark Structured
Streaming

- - - Yes

TABLE I
SPARK LIBRARIES AND DATA INTERFACES

with the rest of the data received so far to create a micro-
batch. This approach hides the process of combining data.
Spark Streaming operations can be performed on a DStream
abstraction or on an RDD abstraction, as DStream can be
operated on by converting it to RDD. While this library is
not a true stream processing library (it internally uses micro-
batches to represent a stream), the most important aspect is
its compatibility with Spark MLib library which makes it
possible to apply machine learning models learned offline, on
Streaming data.

The DataFrame API, introduced by the Spark SQL library, is
a declarative programming paradigm for batch processing built
using the DataFrame abstraction. This abstraction treats data
as a big table with named columns, similar to real-world semi-
structured data (e.g. Excel file). DataFrame API provides a
declarative interface, with which data and parameters required
for processing the data can be supplied. The actual implemen-
tation of the operations performed on the data to produce the
desired transformation is abstracted from the user. Spark ML
is accessed using the DataFrame API.

Finally, the Spark Structured Streaming library provides
real-time stream processing using Streaming DataFrame APIs,
an extension of DataFrame APIs; however. It is incompatible
with the Spark ML library. This is because the incremental
processing programming model of Spark Structured Streaming
programming is not compatible with the Spark ML processing
model, where repeated iterations are carried out on entire
datasets.

Spark libraries have been built on different abstractions. The
Core abstraction is RDD; the other libraries have added layers
of abstraction on top of this core abstraction. Interoperability
between libraries is supported in several cases as illustrated in
Table II.

From the available data interfaces of Spark, DStream and
DataFrame (including Streaming DataFrame), APIs are easy
to represent in a flow-based programming model of mashup
tools. APIs based on these prevent the usage of user-defined
functions and provide predictable input and output types for
each operation—the tool can then focus on validating the
associated schema changes. Moreover, it is easy to represent
DStream and DataFrame APIs as graphical components that
can be wired together. Finally, the different input parameters
required by an API can be specified by the user from the
front-end.

Target Interface
Source Interface RDD DStream DataFrame S. DataFrame

RDD - No Yes No
DStream Yes - No No
DataFrame Yes No - No
Streaming
DataFrame

No No No -

TABLE II
INTEROPERABILITY BETWEEN DIFFERENT SPARK DATA INTERFACES

IV. CONCEPTUAL APPROACH

The conceptual approach for programming Spark via graph-
ical flows addresses the overall problems stated in Section I.
We present the approach in two parts, corresponding to the
first two contributions enumerated in Section I.

(i) Suitable data interface. For expressing the Spark se-
mantics in a flow-based programming paradigm we proceed by
selecting the data interfaces of Spark which are most suitable
for wiring together. Hence, first, we define the scope of the
graphical components. Users would typically drag different
graphical components and wire them together in the form of a
flow. In our approach, we decided to restrict ourselves to the
declarative APIs of Spark as these APIs typically require some
input and produce predictable outputs, making them an ideal
choice as wiring components. From the tool’s perspective, the
input is a compatible schema and the output is a corresponding
altered schema.

In contrast to this, supporting data-transformations based
on user-defined functions (UDFs) would impose several chal-
lenges that are difficult to solve in a generic manner. As every
UDF has tight type requirements, this would introduce type
validation problems from a tool’s perspective. Another consid-
eration is these graphical components do not represent a single
Spark API but rather a set of APIs, which when combined
form a specific data-analytic operation. Since representing
every Spark API via a graphical component would make
the approach unscalable and would not provide an abstract
model, our approach focusing on Declarative APIs attempts to
optimally balance a proposed tool’s usefulness and usability.

Additionally, since the semantics, as well as execution
model of a Spark application, is different from those of mashup
tools, which follow the flow-based programming paradigm, we
have introduced auxiliary graphical components to express the
semantics of Spark from mashup tools. These are typically
used for enforcing a strict sequence of operations, e.g. when
defining the order in pipeline operations of machine learning
APIs or for bridging data-sets, like in join or merge operations.

(ii) Modelling of Spark flows in aFlux. Typically, a
Spark application consists of three main parts, i.e. read-
ing data from file systems or streaming sources, like IoT
sensors, applying analytical transformations on those data-
sets and finally writing the results to either file systems or
publishing them as real-time streams, as the case may be.



One of the primary assumptions is end-users would typically
follow the above high-level model while specifying a Spark
application; hence, this idea can be taken as a preliminary
semantic validation requirement to guide the user in creating
a semantically valid application. To produce a semantically
valid Spark application from the flow, the positional hierarchy
of graphical components needs to be preserved. The flow is
captured and represented as a directed acyclic graph (DAG),
where the roots represent data read operations, branches are
pathways for data transformations and leaves represent data
write operations. Any node in a branch must be compatible
with the schema produced by its immediate predecessor. The
DAG can have multiple root nodes, since users can read data-
sets from two different IoT data sources, merge them and, then,
run analytics on them. In short, the DAG stores the type of
graphical components used by the user and also their positional
information, both of which are necessary to generate a Spark
application.

We maintain method implementations of Spark operations
that take a data interface schema as well as user parameters
as input, make use of one or more Spark APIs to do the data
transformation, and return a modified data interface schema
as the output. Every node in the DAG typically corresponds
to one Spark operation and, thus, to one standalone method
implementation. Hence, the captured DAG is passed to a code
generator, which first generates the necessary code skeleton
for initializing a Spark session and then closes the session
at the end of the application, to create the runnable Spark
application. For the actual business logic of the flow, it wires
the method implementations of Spark operations by providing
the data interface schema and user parameters as inputs. The
only requirements for this wiring process are that the data
interface provided as an input is the same as the data interface
of the output of the previous method, and the data interface
schema must be compatible.

From a high-level perspective, the process of programming
Spark graphically consists of validating the flow to ensure it
follows the semantics of Spark and translating the flow into
a Spark application. Figure 2 illustrates the key concepts for
creating a Spark job involving machine learning algorithms
or real-time analytics, by creating a unidirectional flow of
connected components/graphical blocks.

To support graphical Spark flows, we have used the high-
level design decisions discussed above to create components
for aFlux, our JVM based mashup tool. They consist of five
basic component types namely input, transformation, bridge,
action and executor. Components of these types form the
nodes in the DAG. Input components have no incoming
connections and they read data from external sources into the
run-time environment. From the user’s perspective these start
a Big-Data processing flow, i.e. they are the first components
in a flow and their output is consumed by other compo-
nents. From the mashup tool’s perspective, they introduce the
schema to be used by succeeding components in the flow.
Transformation components are intermediate components and
represent operations on ingested data; they consume as well

Input
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Config Config Config Config
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Fig. 2. High-level view of key concepts: designing of Spark jobs via graphical
flows

as produce schema. Transformation APIs in Spark is designed
to accept, at most, two compatible schema variants, which
means they can accept, at the most, two incoming connections;
they must also have at least one outgoing connection. Bridge
components do not consume or produce schema. Accordingly,
they do not correspond to any method implementation of Spark
operation but are used to express the Spark semantics in a
flow-based programming paradigm. For example, they can
impose an order in processing data coming from preceding
transformations. Action components allow the user to save
the transformed data to external file systems or to stream
it out to message distribution systems. Finally, an executor
component collects all the incoming connections from multiple
action components and adds abstractions related to Spark
Driver program. aFlux has all the data required to generate a
Spark application only after the executor component has been
triggered.

Based on the classification of components, a Spark flow
needs to adhere to the following rules:

1) Flow is unidirectional. Every branch in a flow begins
with an input component, followed by one or more
transformation components which must lead to one and
only one action component.

2) Every flow must end with only one executor compo-
nent and each action component in the flow must be
connected to the executor component.

3) Transformation components, which require incoming
connections in specific order, must be preceded by
bridge component(s).

4) A component accepts an incoming connection(s) if and
only if schema derived from the incoming connection(s)
is valid against schema checks. This means that a named
column operated upon in a component is part of its
incoming schema.

5) Each component internally uses one Spark data interface
which is represented by a uniform colour code. A flow



composed of different coloured components, with the
exception of the executor component, is not accepted.

Every Spark component in aFlux has (i) colour denoting
the data interface the component uses internally, (ii) a unique
name used to represent it in the internal model, (iii) category,
i.e. either input, transformation, action, execute or bridge, (iv)
a set of user-supplied parameters, (v) internal logic, which
houses the core functionality of the component. Hence, every
component interacts with the end-user designing the flow and
also contributes to creating an internal model of the user flow.
All the components in a Spark flow are validated based on
their position in the flow, i.e. if they are allowed in a specific
position in the flow, compatibility of the data interfaces and
if the input schema is compatible with them. For validation,
we maintain meta-data storing the category of every aFlux
component and its list of permissible predecessors. If the
validation is passed, then, an internal model of the user flow
is created from which the generation of a runnable Spark
application proceeds.

Every Spark aFlux component has a unique internal name
and an associated standalone method implementation for an
analytic operation. Meta-data of this information are main-
tained on the tool level. The code-generator receives the DAG
as input and generates the required static code, e.g. starting
a Spark session, inclusion of Java packages. Then, it checks
the node in the DAG and determines its category. If it is an
input or transformation node, then, it uses the node’s internal
name to determine its associated method implementation. It
calls the method via Java Reflection, passing the data interface
schema and the node’s user-supplied configuration values as
parameters. This process is done iteratively for all nodes in the
DAG until the code generator reaches the leaf nodes, which
indicate actions and terminate the flow. Here, it simply calls
the appropriate method to publish the data and closes the Spark
session. The resulting Java file is compiled into a runnable
Spark application and deployed on a cluster. Based on this
conceptual approach, we have implemented Spark SQL, Spark
ML, Spark Structured Streaming components in aFlux based
on the DataFrame interface and Spark Streaming components
based on the DStream interface.

V. EVALUATION

The evaluation scenario has been designed to capture the
modularity of this approach, code-abstraction from end-user,
automatic handling of boilerplate code as well as interconver-
sion of data between different data interfaces of Spark and ease
of creating quick Spark jobs in the context of IoT. Here we take
an example of taxi fleet management with three use-cases: (i)
producing a machine-learning model to learn traffic conditions,
(ii) applying the model to streaming data to make decisions,
(iii) performing aggregations on streaming data. In all three
use-cases, the case of manually programming them in Java
has been compared with the specification of graphical flows
using Spark components of aFlux. Then, we describe in detail
how various aFlux components abstract the necessary steps

used by programmers while developing a Spark application
from scratch.

The dataset in a traffic scenario consists of information that
was published by a vehicle at the beginning of a new trip.
The dataset contains three elements: time-stamp, latitude and
longitude. The time-stamp records the time at which a new
trip commenced; latitude and longitude identify the geographic
coordinates from where the new trip commenced. The goal
is to devise a machine-learning based rush-hour fleet man-
agement solution to reduce waiting time for customers using
Spark. Machine learning is employed to partition the city into
sectors using historical data. Thus, the model prepared remains
on the disk, which is then applied to real-time streaming
data. Finally, stream aggregations, such as window count and
running count based on event time, are applied to streaming
data to receive real-time updates. The idea is to demonstrate
how users can develop Spark applications for three different
Spark libraries via aFlux vis-a-vis programming the same
solution manually. Development of a Spark application con-
sists of identifying relevant Spark libraries and using relevant
APIs to build the solution. For example, a KMeans Algorithm
is a good choice for identifying trip start hotspots. In our
dataset, <latitude,longitude> can be used as features for
training a KMeans algorithm. The model trained on historical
data should be applied to real-time data. The Pipeline API
from the Spark ML library is a good choice for building a
re-usable model which can persist on external file systems.
Since Spark ML is built on the Spark SQL engine, using
DataFrame API is the natural choice for this application. Spark
libraries, which handle streaming data, support applying per-
sisting models on real-time data and support event-time based
window aggregations on streaming data. Spark Structured
Streaming is a good choice for performing aggregations as
it supports event-time based windowed processing. However,
the programming model of Spark Structured Streaming is
not compatible with Spark machine learning libraries. Hence,
Spark Streaming must be used to apply the created model to
real-time data and Spark Structured Streaming must be used
to perform aggregations. Therefore, we selected: (i) Spark ML
for developing re-usable K-Means Model, (ii) Spark Streaming
for applying model on real-time data and (iii) Spark Structured
Streaming: for applying aggregations on real-time data.

A. Programming in Spark

We now present applications programmed manually in Java.
The Spark application for producing a machine learning model
begins with initializing a Spark session, after which input
data are read using the reader function of Spark session.
The DataFrame API views the data as a table. Hence, the
schema must be supplied by the reader. Listing 1 shows the
relevant code for this step. Then, we apply an ML algorithm
to transform the data and fit a KMeans model to it. We select
the features necessary for training the KMeans algorithm and
use the VectorAssembler API, which creates a field of vector
data-type out of one or more fields present in the DataFrame.
The Pipeline API is used to prepare a data analytics sequence:



VectorAssembler, for data preparation, followed by KMeans,
for data analysis. A model is created and persisted. Listing 2
shows the relevant code that a programmer must write. The
transformed data is visualized using ‘show API’. Finally, the
Spark session is closed. This is approximately 50 lines of Java
code.
/ / r e a d d a t a from e x t e r n a l f i l e sys tem
D a t a s e t<Row> i n p u t D a t a S e t = s p a r k . r e a d ( )
. f o r m a t ( ” csv ” )
. o p t i o n ( ” h e a d e r ” , ” f a l s e ” )
. o p t i o n ( ”mode” , ”DROPMALFORMED” )
. o p t i o n ( ” i n f e r S c h e m a ” , ” f a l s e ” )
. schema ( csvschema )
. l o a d ( ” t r i p−d a t a . c sv ” ) ;

Listing 1. Reading Data using DataFrame API

S t r i n g [ ] i n p u t C o l s = {” l a t i t u d e ” , ” l o n g i t u d e ”};
/ / F e a t u r e E x t r a c t i o n
P i p e l i n e S t a g e myAssembler = new Vec to rAssemb le r ( )
. s e t I n p u t C o l s ( i n p u t C o l s )
. s e t O u t p u t C o l ( ” f e a t u r e s ” ) ;

/ /ML Algor i t hm : a p p l y KMeans a l g o r i t h m
P i p e l i n e S t a g e kmeans = new KMeans ( )
. se tK ( 8 )
. s e t F e a t u r e s C o l ( ” f e a t u r e s ” )
. s e t P r e d i c t i o n C o l ( ” P r e d i c t i o n ” ) ;

/ / Add s t a g e s i n t o a p i p e l i n e
P i p e l i n e S t a g e [ ] s t a g e = {myAssembler , kmeans};
P i p e l i n e m y P i p e l i n e = new P i p e l i n e ( ) . s e t S t a g e s ( s t a g e ) ;

/ / Model f i t t i n g
P i p e l i n e M o d e l model = m y P i p e l i n e . f i t ( i n p u t D a t a S e t ) ;

Listing 2. Applying KMeans Algorithm

For the second use-case, i.e. stream processing, using Spark
Streaming is a bit complicated since the Spark Streaming
library is built on the Spark Core and data interface provided
is from DStreams. Since Spark Core, treats all data as though
it were unstructured data, this involves many steps of data
interface format conversions. The program begins with a Spark
Streaming session, created from a Spark session which re-
quires the duration of a micro-batch as one of the inputs. Next,
streaming data is read from Kafka in the form of <key,value>
pairs and converted into a JavaPairDstream data interface, as
shown in Listing 3. For transformation, applying a model
produced using the Pipeline API on the DStream data interface
is not possible. Hence, we convert DStreams collected over the
micro-batch duration into RDD. Each RDD is transformed into
DataFrame and the created ML model from the first use-case
is applied. The manual code for this step is quite exhaustive
and has not been included due to page limitations. Finally,
we push the results back to Kafka and terminate the Spark
Streaming session. This takes approximately 75 lines of Java
code.
/ / P roduce DStream from Kafka Record
Java Inpu tDSt ream<ConsumerRecord<S t r i n g , S t r i n g>> s t r e a m =
K a f k a U t i l s . c r e a t e D i r e c t S t r e a m ( ssc , L o c a t i o n S t r a t e g i e s . P r e f e r C o n s i s t e n t ( ) ,
C o n s u m e r S t r a t e g i e s .<S t r i n g , S t r i n g>S u b s c r i b e ( t o p i c s , ka fkaParams ) ) ;

J avaPa i rDSt ream<S t r i n g , S t r i n g> i n p u t = s t r e a m . mapToPair (
r e c o r d −> new Tuple2<(r e c o r d . key ( ) , r e c o r d . v a l u e ( ) ) ) ;

JavaDStream<S t r i n g> i n p u t S t r e a m = i n p u t . map ( new Func t ion<Tuple2<S t r i n g , S t r i n g >,
S t r i n g >(){

p u b l i c S t r i n g c a l l (
Tuple2<S t r i n g , S t r i n g> t u p l e 2 ){
re turn t u p l e 2 . 2 ( ) ;}
}) ;

Listing 3. Conversion of Kafka < key, value > pairs to JavaPairDStream

In the final use-case, we perform stream aggregations based
on event-time and windowed over a given duration. Data
is read from Kafka. The Spark Structured Streaming library

Fig. 3. Spark flow in aFlux for produce Machine Learning model

Fig. 4. Spark flow in aFlux for applying model to Streaming data

comes with a built-in Kafka reader, which reads Kafka mes-
sages in JSON format and maps them to the supplied schema.
Then, it is converted to a DataFrame format. Next, windowed
stream aggregations based on event-time are applied to the
streaming data, with a watermark for handling late data. The
results are sent back to Kafka. This takes approximately 45
lines of Java code.

B. Programming via aFlux

In this section, we develop Spark applications for the same
use-cases by creating graphical flows in aFlux and the Spark
application is generated automatically by the mashup tool.
Figure 3 shows the graphical flow for creating a machine
learning model. The first aFlux component in the flow, i.e.
‘FiletoDataFrame’ has a configuration panel where the user
can specify the file type, its location and what fields to read.
This component abstracts away the code necessary to read the
file and to convert it to a DataFrame. The ‘FeatureAssembler’
component selects the fields necessary for model training,
while the ‘KMeans Cluster’ component abstracts the real K-
Means algorithm. ‘PreparePipeline’ is a bridge component
necessary for ensuring the execution order of ‘FeatureAssem-
bler’ and ‘KMeans Cluster’. Finally, the model is prepared
with the ‘Produce Model’ component and the result is saved.
The last aFlux component ‘Spark Execute’ marks the end of
the graphical flow. Its encounter in the flow conveys a special
meaning to the translator i.e. to generate the Spark session
initialization, as well as the termination codes necessary for
the Spark application.

Following exactly the above steps, the graphical flows for
deploying a machine learning model on real-time data is shown
in Figure 4. Here, the first component, ‘KafkatoDStream’ reads
data from Kafka and has the necessary conversion code to
transform the data into DStream. The second component,
‘Apply Model on DStream’ takes the path of a previously
created Machine Learning model and applies it to the input
DStream data-set and the result is moved back to Kafka by
the third component in the flow, ‘DStreamtoKafka’. This com-



Fig. 5. Spark flow in aFlux for streaming aggregations

ponent does the automatic conversion of data from DStreams
to <key,value> format for Kafka.

Similarly, the flow for performing streaming aggregations
on real-time data is shown in Figure 5 where the first com-
ponent, ‘KafkatoStreamDF’ reads <key,value> from Kafka
and converts it into streaming DataFrame automatically. The
second component takes the kind of window-aggregation to be
performed as user-input and applies it to the incoming data-set.
The result is automatically converted to <key,value> format
and pushed to Kafka by the ‘StreamDFtoKafka’ component.

On deployment of the flows, aFlux instantiates an actor for
each of the aFlux components. The actors pass messages to
the next connected actors to build a DAG out of the created
flow and also, each aFlux component is checked for potential
semantic errors, based on its position and the type of data
interface it is using internally. Every node, apart from the
nodes coming in the category of bridge components in the
DAG, represents a Spark operation that has a corresponding
standalone method implementation of the relevant Spark APIs.
The DAG is passed to a code generator, which generates a
complete Spark application, and compiles and deploys it on
the cluster for execution.

C. Discussion

The approach of creating Spark jobs via graphical flows,
as described above, abstracts the code generation from end-
users and handles data interface interconversion automatically.
Automatic semantic checks ensure that the user creates a
semantically valid flow that can be translated into a runnable
Spark application. This enables quick prototyping of Spark
applications, which is not necessarily limited to IoT use-cases.
It lowers the learning curve for Spark users and abstracts
away the complexities, thereby helping users to focus on the
business logic. The goal of this work was to identify the most
suitable data interfaces of Spark that can be modelled in a
flow-based programming paradigm. Declarative APIs based on
Data Frame and DStream were found to be the most suitable,
as they eliminate user-defined functions to bring about data
transformations. They accept compatible input schema and
parameters for the transformational logic embedded within
the API. aFlux components representing Spark operations
have been modelled using APIs from Spark SQL, Spark ML,
Spark Structured Streaming and Spark Streaming libraries.

The approach used to model a Spark application is based
on three distinct and successive processes, i.e. load data,
transform data and finally publish the result. This concept also
enforces semantic requirements of the flow, i.e. if a particular
component is allowed at a particular position or not, and its
compatibility with the preceding input schema. Accordingly,
all aFlux components have been classified either as input,
action or transformational components. Additionally, all the
components in a flow must use the same data interface of
Spark for a semantically valid flow. Once this is ensured, the
user-flow is captured as a DAG where the nodes represent
specific Big Data operations, making use of one or more
Spark APIs. We maintain a standalone method implementation
of the Big Data operations, which takes a data interface
schema and user parameters as inputs and give a modified
data interface schema as output. The code generator takes the
DAG as input and generates a complete Spark application by
generating necessary code, like initializing a Spark session
and then wiring the standalone method implementations using
Java Reflection, while passing the user parameters and the
data interface schema from the preceding node in the DAG
as input. The result is a runnable Spark program, compiled,
packaged and deployed on a Spark cluster. This approach
does not support all Spark libraries and needs interconversion
of data interface format where such operations are required,
e.g. applying a machine learning model produced using the
Pipeline API cannot be applied on real-time data from Kafka
which is typically captured as DStream. Limitations or non-
supportability of Spark operations arise where the selected data
interfaces, i.e. Data Frame and DStream, lack interconversion
compatibility as listed in Table II.

VI. RELATED WORK

We did not find any mashup tool which allows wiring
components to produce a Spark application. However, there
are many different solutions to reduce the challenges in-
volved in using Spark. One of the closest existing solutions
is Lemonade, which aims to provide data engineers with a
platform to develop visual flows for producing Spark appli-
cations in Python [19]. However, its support is limited to
the APIs of MLib library and does not support streaming
analytics. Similarly, Apache Zeppelin provides an interactive
environment for using Spark, instead of writing a complete
Spark application. Zeppelin manages a Spark session within
its run-time environment and interacts with Spark in interactive
mode [20], while consuming code snippets in Python/R.
Nevertheless, to successfully interact with Spark, Zeppelin
still requires programming skills from users since it requires
compilable code. A third solution is Azure, a private cloud
computing service offered by Microsoft, which also offers
Spark as a service. Users can configure a Spark cluster without
requiring any manual installation. Here, Spark can be used
to run interactive queries, visualize data and run machine
learning algorithms [21]. Nevertheless, it expects the user to
have programming expertise. IBM SPSS Modeller provides a
graphical user interface to develop data analytics flows involv-



ing simple statistical algorithms, machine learning algorithms,
data validation algorithms and visualization types [22]. SPSS
Modeller provides machine learning algorithms developed
using Spark MLib library which can be launched on Spark
cluster by simply connecting them as components in a flow.
Although SPSS Modeller is a tool built for non-programmers
to perform data analytics using pre-programmed blocks of
algorithms, it does not support wiring new Spark applications.
Finally, Apache NiFi [23], a tool for creating data pipelines
in the form of visual flows, supports integration with Spark
represented by a GUI component called a Spark processor.
Nevertheless, this processor needs to contain Spark code.
From the perspective of an end-user, NiFi does not reduce
the programming challenges associated with Spark, although
automation via data pipelines is certainly provided.

VII. CONCLUSION

We have discussed the importance of Big Data analytics
in the context of IoT and why enabling Spark programming
from mashup tools is an important contribution. Accordingly,
(i) we thoroughly analysed the Spark ecosystem and found the
declarative APIs based on DataFrame and DStream data inter-
faces to be the most suitable candidates for use in a graphical
flow-based programming paradigm i.e. mashup tools; (ii) we
devised a novel generic approach for programming Spark from
graphical flows. The conceptual approach was implemented
in aFlux, our JVM based mashup tool and evaluated against
three specific Spark operations i.e. creating a machine learning
model, applying a machine learning model to real-time data
and performing streaming aggregations on real-time data. All
these usages were done manually via Java, as well as aFlux.
Ease of use, code-abstraction and automatic data interface
conversion, key in lowering the learning curve of Spark, were
also demonstrated.
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