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Abstract. Artificial Intelligence (AI) in general and Machine Learning
(ML) in particular, have received much attention in recent years also
thanks to current advancements in computational infrastructures. One
prominent example application of ML is given by image recognition ser-
vices that allow to recognize characteristics in images and classify them
accordingly. One question that arises, also in light of current debates that
are fueled with emotions rather than evidence, is to which extent such
ML services can already pass image-based Turing Tests. In other words,
can ML services imitate human (cognitive and creative) tasks to an ex-
tent that their behavior remains indistinguishable from human behavior?
If so, what does this mean from a security perspective? In this paper,
we evaluate a number of publicly available ML services for the degree to
which they can be used to pass image-based Turing Tests. We do so by
applying selected ML services to 10,500 randomly collected CAPTCHAS in-
cluding approximately 100,000 images. We further investigate the degree
to which CAPTCHA solving can become an automated procedure. Our re-
sults strengthen our confidence in that today’s available and ready-to-use
ML services can indeed be used to pass image-based Turing Tests, rising
new questions on the security of systems that rely on this image-based
technology as a security measure.

1 Introduction

Artificial Intelligence (AI) has been coined by pioneers like Alan Turing in the
1950’s [35] and deals ever since with the fundamental effort “to automate in-
tellectual tasks normally performed by humans” [6]. One core area of Al is Ma-
chine Learning (ML) where—in contrast to rather classical instruction-based
programming in which machines process given datasets based on predefined
rules—machines are trained with large datasets to recognize representation pat-
terns in the data and produce the processing rules, thus, they “learn” how to
recognize and classify given phenomena [6].

Thanks to recent advancements in computational infrastructures and the
availability of large datasets that are fundamental to ML, artificial intelligence
has been making long and decisive strides forward from the 1990’s on. These ad-
vancements are made along two main paths: (i) the research in introducing new
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and improving existing ML techniques and methods (e.g., deep learning, convo-
lutional neural networks, Gaussian processes) and (ii) the widespread adoption
of ML techniques and methods in both research and practice. As for the lat-
ter, there exist nowadays many “ML-as-a-service” offerings, which simplify the
access to and the use of powerful ML-enabled functionalities.

A representative example of one such type of offering is given by image recog-
nition services. A number of providers, from large companies such as Amazon,
IBM, Google, and Microsoft, to startups such as Clarify and Cloudsight, offer
paid services allowing other companies or individuals to add advanced image
recognition capabilities to their systems. Such capabilities include, inter alia,
classifying/labeling an arbitrary image with a number of tags at certain confi-
dence levels, determining whether an image contains a given element (object/
person), or finding similar images in a collection.

Fueled by, at least from an application perspective, major advancements in
machine learning, we can witness very optimistic marketing slogans accompany-
ing available services (“build apps that see the world like you do” [7]). Needless
to say, also negative future scenarios on threats potentially imposed by ML are
heavily spread in the public sphere [29]. In fact, today’s public debates are too
often comparable to a hype full of emotions and conventional wisdom rather
than rational debates on basis of concrete evidence on the state of the practice
and reasonable implications this has on security issues. Without any prejudice
and expectations on future applications of Al, one interesting and important
question yet remains: How far we have actually come as of today with current
technologies? In other words, could current ML advancements pass the Turing
Test, i.e., could they imitate human (cognitive and creative) tasks to an extent
that their behavior remains indistinguishable from human behavior?

To the best of our knowledge, there exists little evidence about the extent
to which Machine Learning currently can pass Turing Tests and the implica-
tions this has on topics like security. Indeed, there has been so far no systematic
attempt to validate and compare the effectiveness and applicability of ML tech-
niques in controlled settings.

With this paper, we contribute a curiosity-driven study with the aim to
provide a first step in closing the knowledge gap on the state of ML with respect
to (image-based) Turing Tests. In essence, our goal is to critically evaluate a
number of ML services by the degree to which they can be used to pass Turing
Tests. This shall allow to critically reflect upon the security implications that
current advancements in Al and in ML have.

Turing Tests are embodied in the latest versions of widely used CAPTCHA ser-
vices (e.g., Google’s reCAPTCHA). Image-based CAPTCHAS rely on the assump-
tion that a specific task, in this case that of image recognition, is presumingly
difficult for AI but easy for humans based on their cognitive abilities and experi-
ences. If the capabilities of currently available cloud-based ML services suffice to
solve such problems, creating an automatic solver for image-based CAPTCHAS by
relying on these services would be technically feasible and even economically vi-
able. A consequent question therefore is for us: To which extent do image-based



CAPTCHAs still pose a reliable Turing Test and what are the security implica-
tions?

The reason behind choosing image-based CAPTCHAs as our benchmark is
manifold. First, they provide a neutral ground for comparing the different image
recognition services, as none of these services is tailored to breaking CAPTCHAs,
i.e., to pass the Turing Test based on image recognition. A further reason is
of pragmatic nature: CAPTCHAs are, same as ML services, largely available to
the public facilitating studies, replications, and the public discourse. Finally, we
consider it important that the demonstration facilitates a discussion on a larger
scale since it shall put forward important security considerations for the future of
ML in general, but also of CAPTCHAs in particular. We consider a re-evaluation
of mechanisms such as ones incorporated in the de-facto standard CAPTCHAS
to be important, because of their criticality to the security of many of today’s
systems.

In summary, we make the following main contributions:

— We investigate the effectiveness of in total siz image recognition ML services.

— We design a system capable of accurately solving CAPTCHAs by leveraging
the aforementioned services.

— We discuss the impact and implications on the security of systems relying
on CAPTCHAS.

2 Fundamentals

In the following, we discuss the fundamentals to the extent necessary in context of
our study. More precisely, we first provide information regarding the advances in
ML and how these can be used for image recognition. Next, we briefly introduce
how these image recognition algorithms are embodied in cloud-based services.
Finally, we provide details of the current state of CAPTCHAS.

2.1 Image Recognition via Machine Learning

The ML technology empowering almost all of the image recognition tasks is deep
learning, i.e., learning using information processing architectures with several
layers [12]. One particular architecture, widely-known as convolutional neural
networks (CNNs) [26], has proven very effective in image classification and ob-
ject detection [12]. Its application relies on the existence of large amounts of
annotated image data, from which a classifier is trained by iteratively learning
higher-level features from lower-level ones. CNNs consist of multiple layers of
convolution and pooling. While convolutional layer extracts features from data
samples by moving the convolution filter in a predefined window, pooling layer
takes the results of a convolutional layer as input and extracts the most impor-
tant features. The convolutional filter is used in recognizing distinct objects in
an image, almost invariant of their position. Research in image recognition with
CNNs is fueled by the ImageNet annual competition [31]. Apart from image



recognition, deep learning has been successfully applied in other fields such as
speech and audio recognition, natural language processing, machine translation,
and even malware detection [10,17,23,24].

Although image recognition via the latest machine learning techniques men-
tioned above can produce excellent results, it requires () considerable expertise
in the ML algorithms, (i7) the availability of large datasets for training, and
(#91) the operation of the necessary (typically GPU-enabled) infrastructures. The
use of image recognition services lifts these assumptions.

2.2 ML Image Recognition Services

To provide a quick start in using image recognition for several business needs
(e.g., social media photo tagging, digital asset management, or identification
of common problems in health images), several image recognition as-a-service
offerings have emerged. These are cloud-hosted services that require an image
and provide one or more of the following functionalities: (i) Annotating the
image with a set of labels, according to detected objects, living beings, scenes,
and actions; (i4) Searching for similar images in a repository or in the Web;
(7i1) Categorizing the image according to a predefined taxonomy; (iv) Detecting
and analyzing faces (including identifying age, gender, and/or emotional state)
in the image; (v) Detecting celebrities, landmarks, logos, and/or inappropriate
(violent, adult) content in the image; (vi) Detecting and extracting text in the
image via Optical Character Recognition.

Since 2015, there has been a growth in the number and quality of publicly-
accessible commercial image recognition services [16]. Such services are provided
by large companies such as Amazon [1], IBM [19], Google [14], and Microsoft [28],
but also smaller ones such as Clarifai [7], Cloudsight [9], Imagga [21], scale [33],
Crimson Hexagon [20], Saltlab World [32], Jastec [22], and Cliq Orange [8].

Apart from using their pre-trained ML classifiers in providing the function-
alities listed above, some providers allow the creation of custom classifiers or
“models”, upon provision of labeled datasets. This way, more specific business
needs can be met, for instance, related to the analysis of a particular type of
images. There are also companies that focus exclusively on such custom image
recognition classifiers and APIs, most notably hive.ai [18] and Vize.ai [36].

2.3 CAPTCHA

The idea of discriminating humans from computers by letting them apply sen-
sory and cognitive skills to solve simple problems, which have proven to be ex-
tremely hard for computer software, goes back to 1997 [30]. The term CAPTCHA
(i.e., Completely Automated Public Turing Test To Tell Computers and Humans
Apart) was first introduced by von Ahn et al. in an attempt to create automated
tests that humans could pass and computer programs could not [37]. The main
application of CAPTCHAs has been the detection of bots that perform malevolent
activities such as generating large amounts of emails or accounts, participating
in online polls, or posting messages in popular services.



There exist different types of CAPTCHA challenges, each requiring a human
end-user to perform a specific cognitive task. The most common type requires
the user to identify the characters of a distorted text box (text-based CAPTCHAS).
Other common options include transcribing speech (audio-based CAPTCHAs) and
identifying images that belong to a particular category (image-based CAPTCHAS).
In any case, CAPTCHAS rely on a hard underlying AT problem, in particular, that
of text, speech, or image recognition. As a result, apart from security reasons,
CAPTCHAs are being used also as benchmarks for Al technologies.

There have been several attempts to create automatic solvers of CAPTCHAS
from security researchers. So far, both text-based and audio-based CAPTCHAs
have proven vulnerable to different attacks [3,4]. That is why popular and widely-
used CAPTCHA implementations, such as Google’s reCAPTCHA, are shifting to-
wards image-based CAPTCHAs. In our work, we focus on solving image-based
CAPTCHAs using publicly available ML image recognition services.

3 Study Design

Our overall objective is to better understand the extent to which image-based
CAPTCHASs still pose a reliable Turing test and what are the implications on
security. To this end, we formulate the set of research questions described below
before introducing the data collection and analysis procedures.

3.1 Research Questions

To achieve our overall objective, we first need to understand what the potential
of ML is with respect to image-based CAPTCHAs and accordingly design our
study along three research questions:

RQ1: What is the precision and recall of ML services?

RQ2: What is the absolute accuracy of ML services when considering breaking
CAPTCHAS?

RQ3: What is the sufficient accuracy of ML services when considering breaking
CAPTCHAS?

First, we want to understand what is the precision and recall of given ML
services to recognize the images included in the CAPTCHAs (RQ1). This allows us
to obtain a basic understanding on the general potential of the services. As the
images strongly differ in the content they represent (e.g., a river versus a car),
we want to further understand whether there are differences with respect to the
particularities of the images themselves and what they represent respectively.
Once we understand the general potential of the ML services, we want to ana-
lyze the extent to which they can be used to “break” CAPTCHASs, i.e., how well
available services can be trained to bypass the today’s widespread image-based
Turing tests.



We do so in two steps (RQ2 and RQS3): First, by analyzing the absolute
accuracy of the services in terms of their potential to correctly classify all im-
ages of single CAPTCHAS into correct answers to that CAPTCHA or not. Second,
image-based CAPTCHAs, if used in context of security mechanisms such as lo-
gin mechanisms, usually allow for a specific failure tolerance (e.g., by allowing
to classify one image wrongly). To lay the ground for our second contribution
discussing the impact on security issues, we want to know what the sufficient
accuracy of the services is in breaking CAPTCHAs. Given that this discussion
is based, in parts, on analytical work, we also provide a brief discussion of the
security impact analysis procedure to the extent necessary to reproduce our
work (Section 5).

3.2 Data Collection and Analysis

In the following, we introduce the data collection and the analysis procedures
used in this study.

Data Collection: The raw dataset of our study consists of the images contained
in 10,500 image CAPTCHAs. For our study, we use six image-recognition services
(i.e., Google’s Cloud Vision, IBM’s Watson Visual Recognition, Amazon’s Rekog-
nition, Microsoft’s Computer Vision, Clarify’s Visual Search, and Cloudsight).
The selection of these services is made based on their popularity. To conduct our
study where we compare these image-recognition services, we have to first pre-
pare the data by establishing an oracle (i.e., ground truth) which we use to train
a meta-classifier for each ML service-CAPTCHA category pair. Next, we employ
the services and analyze the results with respect to our research questions.

In brief, to prepare the dataset for our study, we (i) retrieve the images con-
tained in 10,500 CAPTCHAs (99,108 images), (%) manually solve the CAPTCHAs
in the sense of annotating TRUE/FALSE labels to the embedded images, and fi-
nally (#i¢) submit each image to each of the image recognition services, retrieve,
and store the results. In the following, we provide further details for each of the
aforementioned steps.

First, we leverage Google’s reCAPTCHA service [13] to create our corpus of
image CAPTCHAs. For ethical reasons and to not interfere with the traffic of a
legitimate website, we set up a reCAPTCHA challenge on a website created for the
sole purpose of this study. Next, we scrap the contents of the reCAPTCHA chal-
lenges to retrieve the embedded images; we repeat the process 10,500 times. To
automate the process, we utilize Selenium, a software-testing framework for web
applications that has the ability to programatically control a real web browser,
in our case Google Chrome. During each challenge, we store in a MongoDB
database all the information regarding the category of the challenge, (e.g., “Select
all images with street numbers”) and the individual images. Since reCAPTCHA
returns a single image file and the image grid (e.g., “3x3”), we crop the larger
image according to the grid to obtain the individual images. Such an exemplary
cropped image can be seen in Figure 1.



Second, we go through the collected 10,500
challenges and manually solve them by marking
the images that are correct answers to each chal-
lenge with a TRUE flag. It is worth mentioning
here that not all the images have an unambigu-
ous semantics (e.g., a building can have also a
store). Sometimes is equally difficult for a human
to solve a CAPTCHA as it is for an automated sys-
tem. Hence, in cases where the actual semantics
of an image are not completely clear, a majority
vote determines the final solution.

Third, we apply the image-recognition s?ervices Fig.1. An exemplary image
to automatically label each of the collected images {1 .+ was marked as correct an-
with metadata describing this image. As such, we  gwer to the challenge of cat-
leverage the image labeling APIs of the six differ- egory “Select all images with
ent image recognition services we evaluate. Each cars.”

API requires a jpeg-encoded file as input and pro-

vides a JSON-encoded response with metadata in

the form of labels, concepts, classes, tags, or captions. For the remainder of the
paper, we refer to these as keywords. With the exception of Cloudsight, all ser-
vices provide a numeric value capturing the confidence value or score of each
keyword, to which we refer from now on as confidence. We access all services
and save the obtained raw results directly in the database for later analysis.

Finally, in context of the data collection, we issue 99,108 requests per service.
As this exceeded the evaluation quota per service, we opt, where necessary and
possible, for specific (academic) licenses.

Testing and Training Data: To obtain the results described in Section 4, we
split the collected data, i.e., our corpus of 10,500 CAPTCHAs, into two disjunct
sets: a training and a testing set. While the training set is used to create the meta-
classifiers, the testing set is used for evaluating the ML services in the context of
solving CAPTCHA challenges (RQ1 — RQ3%). We perform 10-fold cross-validation
by randomly splitting the collected data into 10 subsamples with data equally
distributed along the different categories. Out of the 10 subsamples, always one
constitutes the testing data (10%) and the rest nine constitute the training data
(90%). We made 10 passes in which we considered the first subsample as testing
data, then the second subsample, then the third, etc. The results reported and
discussed in Section 4 are the average of the results for each pass.

Data Analysis: To answer RQ1, we calculate the precision and recall based on
the manually classified images, as a reference to the ground truth. On the other
hand, to answer RQ2 and RQ3, we need to calculate the accuracy of the ML
services with respect to breaking the CAPTCHAs. Thus, we devise a method to
compare the results of each service with the ground truth of previously manually
labeled images. One key challenge is to build a meta-classifier that predicts, based
on the results of a service, whether each individual image is a correct answer
to its encompassing challenge or not. We build such a meta-classifier for each



service S and for each challenge category C. We implement each meta-classifier
for [S, C] following three main steps: (i) Collect all keywords K retrieved from
S for images belonging to the challenges of C; (ii) For each keyword, find the
confidence threshold T' that yields the highest accuracy in predicting a correct
(TRUE/FALSE) flag for an image; (#i¢) Find the best combination of [K, T] pairs
with the highest accuracy in predicting an accurate answer for a challenge.

At first, we collect all the keywords that are retrieved from S for all the
images that belong to a challenge of category C'. This is straightforward in all
the services except for Microsoft’s, whose response contains both a text with a
confidence and a number of tags. Therefore, we have to select a different strategy
for Microsoft’s service. As such, we chose to extract the keywords for this service
by tokenizing the text and omitting the tags.

Next, for each keyword K, we as-
sume a confidence threshold T'. We go
through all images of C' and corre-
sponding responses from S and mark Table 1. Excer}zt from g(‘enirated dataset
as true positive the cases where the [oF the keyword “automobile” for the AWS
. . service and for the “Select all images with
image is manually labeled as correct cars” challenge cateror
answer to the challenge and (i) K 8 £
. . .- . Threshold Confusion Matrix Accuracy (%)
is found by case-insensitive String —
matching in the response of S and TP TN FP FN

o . . 48 465 1627 3 677 75.46
(i%) thg retrieved conﬁdence.ls equal 19 465 1627 3 o7v 5 46
to or higher than 7. Accordingly, we 50 465 1627 3 677 75.46

51 462 1627 3 680 75.36
c.alculate the Illu.mber of true nega- o5 457 1697 3 085 70 18
tives, false positives, and false nega- 53 451 1627 3 691 74.96

tives. We also calculate the per-case

accuracy by diving the sum of true

positives and true negatives to the total number of images. Technically, we start
with a threshold value of 0 and increase it with a step of 1 up to 100. We apply the
above process for each K in the [S, C] pair. An example of the produced dataset
is depicted in Table 1. As it can be seen, with increasing confidence thresholds
values, accuracies decrease since the comparison becomes stricter. Having this
dataset in place for each K, selecting the “best” confidence threshold is simply a
matter of picking the one with the highest accuracy. In case two or more thresh-
olds have the same accuracy (e.g., 48 — 50 in Table 1), we select the one with
the highest value to avoid potential false positives. Finally, we create a list of
all the keywords along with their best confidence thresholds and the accuracies
that correspond to these thresholds; we sort the list by the accuracies.

As the aforementioned example shows, trying to find the keyword “automo-
bile”, accompanied by a confidence threshold greater than or equal to 50%, in
the response of the AWS service to an image of a “cars” challenge is a promis-
ing way of getting an accurate prediction on whether to select this image as an
answer or not. However, will the prediction improve if we include more [K, T
pairs? If so, what is the optimal number of pairs that should be included?



To investigate these questions, we calculate the number of challenges that
would be accurately solved (without any mistake) when considering only the
head of list. Specifically, we mark as TRUE the images whose responses from
S (i) contain the keyword of the head of the list and (i¢) the accompanying
confidence is greater or equal to the confidence threshold of the head of the list.
In our example, this case is when the response of the AWS service for images
belonging to the “cars” category contains the keyword “automobile” with a
confidence greater or equal to 50%. We then compare the marked images to the
manually labeled ones—a match indicated an accurate solution of the challenge.

We repeat the above process by considering this time the first two items in
the list, then the first three items, and so on. In the end, we are able to determine
the [K, T pairs that yield the most accurate predictions—we call these pairs
“optimal keywords” for the [S, C] pair.

4 Evaluation

In this section, we present the results of our study and structure them according
to the three research questions. In detail, for each question, we first report on
the results and then provide a preliminary (subjective) interpretation. Prior to
that, we give an overview of the datasets and services we used in our study.

4.1 Datasets and Services Used

Our corpus consists of 10,500
CAPTCHAs belonging to seven
different categories. Each cate- 45
gory corresponds to the original
prompt of the challenge such as
“Select all images with house/-
store front/street number”. The
distribution of CAPTCHAS per cat-
egories is depicted in Figure 2.
As can be seen, the two most
popular categories are Store Front
and Street Number, which occupy

Percentage (%)

House Store  Street  River  Street Car Road

40% and 34% of the study data, Front  Number Sign

respectively. The smallest cate- Categories

gory, Road, amounts to 2% of the

study data, in particular to 192 Fig. 2. Distribution (in percentage) of collected
CAPTCHAs. Each CAPTCHA con- CAPTCHAS in categories.

tains 8, 9, or 16 images (CAPTCHA

size) arranged in a grid of 2x4,

3x3 and 4x4, respectively. CAPTCHAs of different sizes are not uniformly dis-
tributed in the categories. Instead, 16-sized CAPTCHASs belong exclusively to the
Street Sign category, 8-sized ones belong exclusively to the Store Front category,
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Fig. 3. Precision of ML services in classifying an image as a correct answer to the
encompassing CAPTCHA challenge.

and 9-sized ones belong exclusively to the one of the other five categories. We
discuss how the different per-category sizes may have influenced the results of
our study in the next sections. It is worth to be mentioned that we could have
normalized the results by artificially enforcing size 8 for all categories, however
we chose to preserve the original CAPTCHA sizes in order to be able to draw
valid conclusions on the ability to break the original cAPTCHAs. The total num-
ber of images we collected and processed was 99,108 (on average 9.44 images per
CAPTCHA).

4.2 RQ1: Precision and Recall of ML Services

To investigate the differences between the performance of ML services in the
different categories, we calculate the precision and recall of each meta-classifier
that corresponds to a service-category pair across all images contained in all
CAPTCHASs of the category. The results are illustrated in Figures 3 and 4.

A first observation from Figure 3 is that, with a single exception that of
Cloudsight in Road, all services yield a precision higher than 70% in all categories,
while the best precision in all categories is higher than 90%. On average, the best
precision (irrespective of the service providing it) is 94%.

Looking at the results of the services across all categories (two rightmost
groups in the Figure 3), average is the mean value of calculated per-category
precisions, while weighted average is the precision calculated on the total number
of images, irrespective of the category of their encompassing CAPTCHAs. Since
some categories contain more CAPTCHAS, these two values are different for each
service, with the weighted average “boosting” the services which score higher



Google mmm— AWS = Clarify ——3
IBM s Microsoft === Cloudsight s

100 =

40 i

Percentage (%)

20 b

House Store Street River Street Car Road AVG Weight.
Front Number Sign AVG

Categories

Fig. 4. Recall of ML services in classifying an image as a correct answer to the encom-
passing CAPTCHA challenge.

in the popular categories of Store Front and Street Number. Yet, both statistics
yield values between 76% and 89%, with small variations among the services.

Figure 4 depicts the recalls of our meta-classifiers corresponding to each
service-category pair. The best recall per category (irrespective of the service
providing it) ranges from 77% to 99% with an average value of 89%. The cate-
gories with the highest recalls are House, Street Number, and River, while the one
with the lowest recalls is Street Sign. With respect to the services, Cloudsight
scores consistently low in all categories (an average of 55%). The rest of the
services score consistently high (more than 80% on average), with the exception
of AWS which scores a mere 43% in Street Number and 50% in Street Sign (and
obtains an average recall of 69%).

Interpretation: Our meta-classifiers yield a consistently high precision. As for
the recall, the low values of Street Sign can be attributed to the following reason.
Images of street signs, contrary to images of other categories such as cars, are
usually fragmented across several individual images. Human cognition should be
able to easily identify fragments of street signs by imagining the missing parts; it
seems that this is challenging for ML algorithms, which miss a number of correct
responses (an increase in false negatives).

4.3 RQ2: Absolute Accuracy of ML Services

Absolute accuracy is the case in which we try to solve CAPTCHAs without tol-
erating a single mistake in the binary classification (selected or not selected) of
the images included in each CAPTCHA. Figure 5 depicts the results for this case.

Similar to the precision and recall case, the second group from the right,
average, is the mean value of calculated per-category accuracies. The right-
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Fig. 5. Absolute accuracy (in percentage) of ML services: solving CAPTCHAs without
any mistake tolerance.

most group, weighted average, is the accuracy calculated on the total number of
CAPTCHAS, irrespective of their category.

The results indicate that for each category there is at least one service that
scores higher than 35%, with House, Street Number and River, having services
that score up to 72%, 75%, and 81%, respectively. Overall, the services score
lower in Store Front, Street Sign, Car, and Road and higher in River. There are
also many differences in the performance of the services in different categories.
For example, Microsoft and Google provide the most accurate services for Road
and Street number, respectively, while Clarifai is the most accurate in House,
River, Street Sign, and Car. AWS scores comparatively high in House and River,
but extremely low (3%) in Street Number. At any rate, on average, Clarifai and
Google, closely followed by IBM and AWS, are the most accurate services, with
an average accuracy of close to 40%.

Interpretation: With the exception of Clarifai and Cloudsight, which are scor-
ing consistently high and low respectively, the high variation in the results of
the other services can be attributed to the difference in the datasets used in
the training of their internal ML classifiers. The reason why some categories
yield lower accuracy could be as follows. A street number, although blurry, is
entirely contained in an image, while a river can be recognized by its character-
istic shape and color. A street sign, however, does not have any characteristic
color and, as explained also in the case of recall, its characteristic shape is often
not identifiable as it is typically not entirely contained in an image. Further, the
low accuracy in the Street Sign category should also be attributed to the larger
CAPTCHA size (16 images per CAPTCHA).
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Fig. 6. Sufficient accuracy (in percentage) of ML services: solving CAPTCHASs by toler-
ating one mistake.

Finally, although the average accuracy of services is not high, note that the
absolute accuracy test is also challenging for humans. That might be also the
reason why CAPTCHA services such as reCAPTCHA typically allow for one mistake
per challenge. In the following, we report our results for this very case.

4.4 RQ3: Sufficient Accuracy of ML Services

Sufficient accuracy describes the case in which we try to solve CAPTCHAs by
tolerating one mistake in the binary classification of images included in each
CAPTCHA. Figure 6 shows the results for this case.

A first observation is that for each category there is at least one service with
a sufficient accuracy of 75% or more; for three categories, the best accuracy is
even 95% or more (River, Street Number, Road). On average, the best accuracy
(irrespective of the service providing it) is 87%. Similarly to the analysis of the
absolute accuracy, Street Sign and Car are the worst performing categories.
We can also observe sharp differences in the performance of services in some
categories: AWS scores a mere 22% in Street Number, where all other services
score more than 70%. In the categories House and Store Front, the services of
Clarifai and of Microsoft stand out as far better than the other services scoring
accuracies of 95% and 85%, respectively.

The two rightmost groups have been calculated as it was the case for the
absolute accuracy. It seems clear that, on average, the three most accurate ser-
vices are the ones offered by IBM, Clarifai, and Google with a weighted average
accuracy 79%, 79%, and 75% respectively. Microsoft scores a weighted average
accuracy of 61%, while Cloudsight and AWS score 54% and 46%, respectively.



Finally, comparing the results of the sufficient accuracy case with the absolute
accuracy, we can observe that in most categories the relative difference between
the services accuracies is preserved, while the absolute values have strongly in-
creased. When looking at the best performing services per category, their accu-
racy across the two cases is increased on average by 30 percentage units, with
a minimum increase of 17 units (Clarify for River) and a maximum of 44 units
(Microsoft for Road).

Interpretation: Similarly to the absolute accuracy case, the sharp variations
in the performance of services across different categories can be explained by
different datasets used in the training of the internal ML classifiers, while differ-
ences between categories can be attributed to both the object containment case
as well as the CAPTCHA size.

5 Security Impact and Implications

The main question that still remains is: Assuming that CAPTCHA systems are
widely used to tell humans from computers apart, are these systems vulnerable
to attacks that utilize modern image recognition services?

5.1 Automated CAPTCHA Solver

To investigate the above question, we implemented an automated program (bot)
which visits websites that contain CAPTCHAs and attempts to automatically
break them, without any human interaction. To do so, the bot performs the
following steps:

Step 1: Visit a website, find and retrieve the iframe which contains the check-
box CAPTCHA, and automatically click it.

Step 2: Extract the individual images contained in the CAPTCHA challenge. If
we have low confidence for this challenge category or if this is a completely new
category for which we do not have any information, press the reload button at
the bottom left of the challenge and retrieve a new challenge (presumably of
different category). If such a case occurs, we additionally store the new images
for further advancing our prediction model.

Step 3: Submit the extracted images to the image recognition service with the
most promising results for the particular challenge category and retrieve the
results (keywords and confidence).

Step 4: Predict whether each image is a correct answer to the challenge using
our meta-classifier for the service-category pair. In particular, check whether at
least one keyword from the service is included in the optimal keywords of the
meta-classifier and the confidence of the included keyword is higher than the
optimal threshold.

Step 5: Use the predictions from the meta-classifier and based on that click
accordingly.



Step 6: Press the VERIFY button on the bottom right corner. In case the chal-
lenge is correctly solved, the bot retrieves an “I’m not a robot” response.

We implemented the above process with Selenium, a browser automation
framework, which is able to render the DOM of a web page, execute JavaScript,
and handle keyboard and mouse events. We implemented the bot in Python; it
consists of less than 200 lines of code. In the rest, we elaborate on the selection of
the optimal service per category as well as the economic viability of our solver.

Optimal Service for Category: Based on our

study results, there is not a single service to rule them

all. However, for each CAPTCHA category, there ex-

ists a service that yields the most promising results, Table 2. Service selection
measured by the accuracy of its meta-classifier de- PEL_CAPTCHA category.

scribed above. In particular, based on the sufficient Challenge _ Service
accuracy results reported in Section 4.4, we created a IS'Itousef . %ﬁlf‘”

) A . . ore fron
mapping between categories and services. When this Street number Google
metric had the same value for more than one services River Clarifai

i X K X i . Street sign Clarifai
(Clarifai and Microsoft in river), we looked into Car Clarifai

Road Microsoft

the absolute accuracy results to determine the opti-
mal service (in this case, Clarifai). Table 2 provides
an overview of the optimal service per CAPTCHA cat-
egory. When considering the optimal categories, our prototype bot implemen-
tation yielded fruitful results in the sense of breaking the CAPTCHAs with the
sufficient accuracies described above.

Economic Feasibility: Since CAPTCHA solving is offered as a paid service in
the underground economy, it is worthwhile briefly assessing also the economic
feasibility of our approach when using an automated solver. All services employ
a pay-as-you-go model and most of them charge a similar amount of money
per request (i.e., for the labeling of a single image). The time this work took
place, the services considered in our study, except Cloudsight, charge from $1 to
$2 per 1000 requests. Cloudsight charges a higher amount, about $50 per 1000
requests. One reason behind this might be that Cloudsight relies not only on
ML algorithms, but also on human labor for image labeling as part of crowd-
sourcing. Nevertheless, since Cloudsight does not appear in the optimal services
group shown in the section before, the operational cost of our CAPTCHA solver,
assuming an average of 10 images per CAPTCHA, would be $0.01 to $0.02.

5.2 What Does This Mean for the Future of CAPTCHASs?

There exist currently millions of websites leveraging CAPTCHAs as protection
mechanism against web spam, online attacks, and automated scripts. The most
resilient type of CAPTCHAs has, so far, been image-based CAPTCHAs. At the
same time, the most widely used implementation of image-based CAPTCHAS is
embodied in Google’s reCAPTCHA service.

Our work shows that it is possible to create an automated solver for reCAPTCHA,
notably without being a machine learning expert, without having access to a large



corpus of images, or setting up and operating any ML infrastructures. In fact,
invoking publicly available services following a pay-as-you-go model would even
be feasible from an economic (underground) perspective as shown above.

Our approach relies on a small upfront effort in manually solving a sufficient
number of challenges from each CAPTCHA category. As an indicator for the nec-
essary effort, the smallest training set we used (for Road category) contained
only 172 cAPTCHAs and provided already an average sufficient accuracy of 56%
across all services. It is reasonable to expect that this will only increase by in-
creasing the number of samples for this category. Since reCAPTCHA contains only
a limited number of categories (during our study, we encountered 16 categories,
out of which we selected the first seven w.r.t number of samples for inclusion),
the manual effort required for keeping the solver up-to-date is not high. After
manually solving a number of challenges per category, the operation of the solver
is fully automated. Importantly, its expected accuracy is as high as 88% (average
of best sufficient accuracies per category from Section 4.4).

From the security perspective, the creation of the automated CAPTCHA solver
signifies a successful generic ML-based attack. Since our attack is based on Cloud
services that are expected to continue to be available, appropriate countermea-
sures should be taken to prevent similar attacks in the future. One possibility
lies in distorting the images so that the ML cannot recognize the objects any-
more with high confidence. The limitation here is, of course, that the images
have to still be recognizable by humans; unfortunately, there is not much room
for further blurring or distorting the reCAPTCHA images for humans. Another
possibility lies in increasing the semantic information necessary to solve the chal-
lenge. Consider, for instance, requesting the user to identify a combination of
specific items or actions, e.g., groups of two to three persons drinking beer. Fi-
nally, CAPTCHAs could rely more on fragmented views of a scene, such as the
Street Sign CAPTCHAs in our study; we observed that these pose a challenge to
ML (low accuracies) but not at all to humans.

In any case, and given the current state of using image-based CAPTCHAS as a
security measure, we conclude that they are insufficient to be kept as the de-facto
standard to prevent automated security attacks.

6 Threats to Validity

The presented study is a curiosity-driven study with many manual and auto-
mated tasks. Inherent to such tasks are a number of threats to validity out of
which we now discuss those that appear to be major ones from our own per-
spective. One major threat to validity concerns the trustworthiness of the used
oracle (ground truth) to train and test the ML services. This ground truth was
defined manually by solving all images and, thus, it affects the internal valid-
ity of the whole study. We tried to minimize the threat by defining the ground
truth dataset in pairs of researchers. Still, we cannot guarantee that we did not
wrongly classify some of the images even though we postulate that it would
negatively affect the accuracy of all the ML services probably in the same way.



Another threat to validity arises from the fact that we do not know the extent
to which the source of the images matter. We took all images from Google to
train all ML services, but argue that the choice of images seems to have a lower
impact as (¢) they resemble regular photos of real-life situations and (ii) the
results do not indicate to perpetually better scores by Google’s ML service. To
the best of our knowledge, we see no clear indicator that the choice of images
for the training and testing dataset has influenced the outcome of the study.

Finally, another threat to validity concerns the external validity and eventu-
ally the conclusion validity. Are we able to draw conclusions that go beyond the
image-recognition services? For instance, can we draw conclusions on the general
field of machine learning? Please note that, again, our study was a curiosity-
driven one and we deliberately (and also opportunistically) chose the services
described in the paper. Although our intention was not to draw any conclusions
beyond the selected services, we can still argue that the effects observed in the
setting described in this paper could be observed in different settings.

7 Related Work

Since the concept of CAPTCHA was first introduced, a lot of research has been
done in this area to create CAPTCHAS that are easy for humans to solve, yet ex-
tremely difficult for machines. The most popular category, since recently, was the
text-based cAPTCHAs. However, modern Optical Character Recognition (OCR)
algorithms were able to solve the presented challenges with pretty high accu-
racy [5,39,40]. The suitability of CAPTCHAs as a means to implement Turing
Tests in a usable manner has since then been discussed for some years now. In
particular, Bursztein et al. [3] introduced a novel approach to solving CAPTCHAs
in a single step that uses machine learning to attack the segmentation and the
recognition problems simultaneously. Baecher et al. [2] analyzed three recent
generations of reCAPTCHA and presented an algorithm that is capable of solv-
ing at least 5% of the challenges generated by these versions. Cruz-Perez et
al. [11] presented a novel approach for automatic segmentation and recognition
of reCAPTCHA in websites which is based on CAPTCHA image preprocessing with
character alignment, morphological segmentation with three-color bar character
encoding, and heuristic recognition.

Therefore, alternatives to text-based CAPTCHAs were considered a neces-
sity. Goswami et al. [15] presented FaceDCAPTCHA, a face detection-based
CAPTCHA, in which four to six distorted face/non-face images are embedded in
a complex background and a user has to correctly mark the center of all the
face images within a defined tolerance. Another alternative is the video-based
CAPTCHA challenges such as NuCAPTCHA. However, Xu et al. [38] presented
flaws in the design of video-based CAPTCHAs by implementing automated at-
tacks based on computer vision techniques as a proof of concept.

Another category of CAPTCHAs discussed in literature is based on audio.
Nevertheless, researchers, once again, were able to break these challenges. For
instance, Kopp et al. [25], pointed out flaws and weak spots of frequently used



solutions and concluded with consequent security risks. Meutzner et al. [27]
suggested to use speech recognition rather than generic classification methods for
better analyzing the security of audio-based reCAPTCHAs. They showed that their
attack, based on an automatic speech recognition system, can defeat reCAPTCHA
with a significantly higher success rate than reported in previous studies.

The closest work to our study is the one from Sivakorn et al. [34]. The authors
propose an attack that uses deep learning technologies to annotate images. They
focus, on trying to automatically break reCAPTCHA challenges and succeed in
roughly 70% of the cases. In particular, they also used Clarifai as their main
service to break a CAPTCHA. However, as we have shown in our work, Clarifai did
not perform equally good in all of the reCAPTCHA challenges. In fact, although
the scope of their work differs in the sense of providing an (also technical) analysis
of CAPTCHAS, their work inspired some technicalities in our own study design
which aims at providing a broader analysis of the suitability of publicly available
ML services to break CAPTCHAs and the security implications this has.

Compared to previous works that attempt to break CAPTCHAs by implement-
ing a specific approach or algorithm, we took a different path. The motivating
question is to understand the extent to which publicly available ML services can
pass image-based Turing Tests and the security implications this has. We are,
thus, leveraging working solutions, which are offered in the form of online image
recognition services, and apply them for CAPTCHA infiltration. Another key dif-
ference with the previous works is that the sole goal of our study is not to break
the CAPTCHA mechanism, but to compare existing services and evaluate their
ability to extract valuable and accurate knowledge from an image. We only use
the CAPTCHA mechanism as benchmark for our comparison. Yet, we also saw
that the overall image recognition technology has advanced to the point that can
be used for malicious purposes as well. To the best of our knowledge, we are the
first to perform such a comparison among different image recognition services.

8 Conclusion

In this study, we wanted to understand the extent to which today’s publicly
available ML services can be used to pass image-based Turing Tests. Thus, we
employed six ML services to a broad set of available CAPTCHAs. Our results
strengthened our confidence in the suitability of available ML services to break
CAPTCHAs and pose a security threat if used automatically. Interestingly, it was
possible to create an automated solver for reCAPTCHAs, notably without prior
expertise in machine learning, without having build up an own large corpus of
images, and without setting up and operating specific ML infrastructures on our
own. This manifests the idea that today’s available and ready-to-use ML services
can indeed be used to pass image-based Turing Tests and rises new questions to
the security of systems that rely on this technology as a security measure.
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