
SUAVE: An Exemplar for
Self-Adaptive Underwater Vehicles

Gustavo Rezende Silva∗, Juliane Päßler†, Jeroen Zwanepol∗, Elvin Alberts‡∗, S. Lizeth Tapia Tarifa†,
Ilias Gerostathopoulos‡, Einar Broch Johnsen†, Carlos Hernández Corbato∗

∗Technical University of Delft, Delft, The Netherlands
Email: {g.rezendesilva,c.h.corbato}@tudelft.nl

j.m.zwanepol@student.tudelft.nl
†University of Oslo, Oslo, Norway

Email: {julipas,sltarifa,einarj}@ifi.uio.no
‡Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Email: {e.g.alberts,i.g.gerostathopoulos}@vu.nl

Abstract—Once deployed in the real world, autonomous un-
derwater vehicles (AUVs) are out of reach for human supervision
yet need to take decisions to adapt to unstable and unpredictable
environments. To facilitate research on self-adaptive AUVs, this
paper presents SUAVE, an exemplar for two-layered system-level
adaptation of AUVs, which clearly separates the application and
self-adaptation concerns. The exemplar focuses on a mission for
underwater pipeline inspection by a single AUV, implemented as
a ROS 2-based system. This mission must be completed while
simultaneously accounting for uncertainties such as thruster
failures and unfavorable environmental conditions. The paper
discusses how SUAVE can be used with different self-adaptation
frameworks, illustrated by an experiment using the Metacontrol
framework to compare AUV behavior with and without self-
adaptation. The experiment shows that the use of Metacontrol
to adapt the AUV during its mission improves its performance
when measured by the overall time taken to complete the mission
or the length of the inspected pipeline.

Index Terms—exemplar, self-adaptation, robotics, underwater
robots, Metacontrol, SUAVE

I. INTRODUCTION

Autonomous robots are an excellent case for applying self-
adaptation techniques [1]–[7]. These robots face uncertainty in
their operation stemming from both the system (e.g., sensor
failures) and the environment (e.g., different terrains). They
need to complete their missions despite such uncertainty [8]
with minimal or no human supervision [9]. A subclass of
these robots, autonomous underwater vehicles (AUVs) [10]
which are used for, e.g., subsea observation, are particularly
challenging: once they have been deployed in the real world,
they need to take both low-level (e.g., increase thruster power)
and high-level (e.g., dive deeper) adaptive decisions without
any human supervision.

Self-adaptive systems can be implemented as two-layered
systems consisting of a managed and a managing subsys-
tem [11]. The managed subsystem handles the domain con-
cerns, while the managing subsystem implements the adapta-

This work was supported by the European Union’s Horizon 2020 Frame-
work Programme through the MSCA network REMARO (Grant Agreement
No 956200).

tion logic and exploits functional alternatives of the managed
subsystem to handle the self-adaptation process.

This paper proposes the exemplar SUAVE1 to facilitate
research in the challenging domain of self-adaptive AUVs and
to allow the comparison of different self-adaptation strategies.
SUAVE is based on ROS 2 – one of the most widely adopted
robotics software frameworks [12]. This ensures that the sys-
tem built for SUAVE can (i) run directly on real robots and not
only in simulation environments, (ii) serve as a basis for other
adaptive robotic missions, and (iii) be easily extended with
new functionalities and adaptation concerns. The exemplar is
publicly available at https://github.com/kas-lab/suave.

The exemplar focuses on the scenario of pipeline inspection
for a single AUV. The AUV’s mission is to first search for a
pipeline on the seabed, then follow and inspect the pipeline.
The functionalities required to accomplish this mission are
implemented in the managed subsystem of SUAVE. During
the execution, of the mission, two types of uncertainties are
considered: component failures in the form of thruster failures
(e.g., due to debris getting stuck in a thruster) and changes
in the environmental conditions in the form of changes in the
water visibility (e.g., due to currents disturbing sediment from
the seabed). While the first uncertainty may impact the robot’s
motion by making it move unexpectedly, the second impacts
the efficiency of the pipeline search and detection by forcing
the robot to be closer to the seabed to detect the pipeline in
case of poor water visibility, which results in a smaller field
of view while searching.

The exemplar enables the development of a managing
subsystem to address the previous uncertainties. The managing
subsystem should be able to monitor the current runtime cir-
cumstances, recover the AUV’s thrusters in case of a thruster
failure, and adjust the AUV’s path generation algorithm to
account for changes in water visibility.

To illustrate the use of adaptation frameworks in SUAVE,
the managing subsystem was implemented with Metacon-

1Self-adaptive Underwater Autonomous Vehicle Exemplar.

https://github.com/kas-lab/suave

trol [13], [14], a framework that enables self-adaptation in
robotic systems and promotes the reuse of the adaptation
logic by exploiting a model of the managed subsystem at
runtime. Metacontrol’s strength lies in the separation between
the application and adaptation concerns, i.e., in the separa-
tion between the robot’s operation and the logic of when
and how to adapt. This separation of concerns allows the
adaptation logic to be reused in a straightforward way in
different applications. However, it is important to highlight
that even though SUAVE is equipped with a Metacontrol-
based adaptation logic, the exemplar can also be used without
Metacontrol, which in addition allows for comparing other
approaches to Metacontrol-based ones.

In summary, the contributions of this paper are:
• a self-adaptation exemplar for AUVs using ROS 2 that can

be equipped with different adaptation logics, enables the
comparison of different self-adaptation strategies, forms
a basis for other adaptive robotic missions, and can run
both on real robots and in simulation environments; and

• a Metacontol-based adaptation logic formulation that can
serve as a baseline for future research and as a benchmark
for self-adaptation strategies, and is easily reusable for
other robotic and non-robotic applications.

Paper outline. Section II presents related work, after which
Section III further details the use case and the overall archi-
tecture. The managed subsystem is described in Section IV,
while Section V discusses the managing subsystem and how
Metacontrol is applied to the use case. Section VI briefly
explains how the exemplar can be reused and extended, and
Section VII presents and discusses the results of applying
Metacontrol. Finally, Section VIII concludes the paper.

II. RELATED WORK

The UNDERSEA exemplar by Gerasimou et al. [7] pro-
vides an AUV simulation in which the robot performs self-
adaptation to deal with uncertainties such as sensor failures
and changing goals. SUAVE is related to UNDERSEA as both
address the domain of self-adaptive AUVs. However, a key
difference is the underlying libraries used to develop software
for the robot. UNDERSEA uses MOOS-IvP while SUAVE
uses ROS 2, a more widely used framework that is considered
state of the art in the robotics research community, which
contributes to the reusability and extensibility of SUAVE.

There have been previous exemplars that do use ROS,
in particular, the Body Sensor Network by Gil et al. [15].
However, its application differs significantly from SUAVE as
it concerns health monitoring through a series of sensors rather
than a robot vehicle fulfilling a mission autonomously.

Cheng et al. proposed AC-ROS [6], a framework which
uses assurance cases to endow a ROS-based system with self-
adaptive capabilities. Specifically, it concerns an ‘EvoRally’
vehicle, a terrestrial robot tasked with patrolling an envi-
ronment as its mission, while meeting requirements such as
energy efficiency. The authors do not provide the source code
of the proposed system, which means it does not serve as an
exemplar as SUAVE does.

The paper by Bozhinoski et al. [14] concerns an earlier
iteration of using MROS for runtime adaptation similar to this
paper. Their work revolves around two cases, a manipulator
robot with a “pick and place” task and a mobile robot
navigating around obstacles on a factory floor. Both of the use
cases show a need to deal with uncertainties, e.g., with a safety
concern by disabling one of the pick and place arms. When
compared to SUAVE, the key differences are the migration
from ROS to ROS 2, as well as the use case being an AUV
rather than a manipulator or mobile terrestrial robot.

III. PIPELINE INSPECTION EXEMPLAR

This section describes the use case and system architecture,
the two system layers are detailed in Sections IV and V.

A. Use case description

The use case in this exemplar is about an AUV inspecting
pipelines located on a seabed. Its mission consists of two
sequential tasks, (T1) searching for the pipeline, then (T2) si-
multaneously following and inspecting the pipeline.

When performing its mission, the AUV is subject to
two sources of uncertainty that could trigger self-adaptation:
(U1) thruster failures and (U2) changes in water visibility.
U1 arises from the possibility of the AUV’s thrusters failing
at runtime, which may cause the AUV to move unexpectedly.
This is relevant for both T1 and T2. To overcome U1, the
managed subsystem of the AUV contains functional alter-
natives. When one or more thrusters fail, it is possible to
enter a recovery state in which the thrusters are recovered.
U2 influences the maximum distance at which the AUV can
visually perceive objects. This is relevant for T1, higher water
visibility allows the AUV to search for the pipeline at higher
altitudes, resulting in a larger field of view and the possibility
of discovering the pipeline faster. On the other hand, if the
water visibility is low, the AUV has to move closer to the
seabed to search for the pipeline, which limits its field of
view and therefore may lead to a longer time to discover the
pipeline. Thus, changing the altitude of the AUV provides
functional alternatives for dealing with U2.

This exemplar focuses on the problem of overcoming U1
and U2 using a self-adaptation logic, implemented by a
managing subsystem, that can be extended and reused for
other sources of uncertainty. The managing subsystem shall
overcome U1 by recovering the failed thrusters at runtime, and
U2 by adapting the maximum altitude for the path generator
algorithm according to the measured water visibility. Thus, by
reacting to U1 and U2, the managing subsystem increases the
reliability and performance of the system.

For the feasibility of the exemplar, the use case was sim-
plified while still allowing for a worthwhile application of
self-adaptation to an AUV. It is important to highlight that
a realistic operation of an AUV used for pipeline inspection
would include steps that are related to pre-dive, launching and
recovery, human interaction, and intermediary missions that
are necessary to enable the inspection. Furthermore, there are

several sources of uncertainty not considered here, including
ocean dynamics, sensor failures, and battery duration.

B. System Architecture

To accomplish the mission described in Section III-A,
the managed subsystem requires the functions represented
in Fig. 1. T1 requires the functions Control Motion,
Maintain Motion, Localization, Detect Pipeline,
Generate Search Path, and Coordinate Mission,
while T2 requires the functions Control Motion,
Maintain Motion, Localization, Detect Pipeline,
Follow Pipeline, Inspect Pipeline, and Coordinate

Mission. During runtime, the functions must be activated
and deactivated according to the task being performed.

Coordinate
Mission

Managed
Subsystem

Generate
Search Path Localization Maintain MotionControl Motion

Detect Pipeline Follow Pipeline Inspect Pipeline

Fig. 1. Managed Subsystem’s Functional Hierarchy

To overcome the uncertainties U1 and U2, a managing sub-
system requires the functionalities to monitor the environment
and the managed subsystem’s internal state, reason about it,
and execute the managed subsystem’s reconfiguration.

The required functions of the managed and managing sub-
systems are realized as depicted in Fig. 2. The managed sub-
system is detailed in Section IV and the managing subsystem
in Section V. It is important to mention that managed sub-
system functions Control Motion and Localization are
achieved by ArduSub, and the function Inspect Pipeline

is not realized since the actual inspection of the pipeline is not
the focus of this work. It is also important to highlight that
this exemplar implements the function to reason about the
managing subsystem with Metacontrol to provide a baseline
for future research. However, it can be replaced with other
solutions, as long as they are compatible with the monitor and
execute interfaces, as described in Section VI.

IV. MANAGED SUBSYSTEM

The managed subsystem is implemented as a ROS 2-
based system and is depicted in Fig. 2. The only non-ROS
2 component is ArduSub2, which is an open-source autopilot
for underwater vehicles. In this application it is used to
solve the functions Control Motion and Localization3.
The MAVROS package works as a bridge between ArduSub

and the ROS 2 components. The Detect Pipeline node
detects the pipeline and informs Follow Pipeline and
the Coordinate Mission node about its position4. The
Coordinate Mission node coordinates the tasks’ execution

2https://www.ardusub.com/
3It is assumed that the AUV has appropriate sensors for localization
4A mock perception system is used.

mavros
topics & services

flight dynamics
model protocol

ArduSub SITL

MAVlink

MAVROS

pipeline detection
topics & services

Detect Pipeline

/task/request &
/task/cancel

Coordinate
Mission

gazebo
transport Ardusub Gazebo

Plugin

gazebo topics

Managing Subsystem

Managed Subsystem

ROS Nodes

ROS LifeCycle
Nodes

Environment

ROS Topics
and Services
Specific
Protocols

Maintain MotionGenerate Search
PathFollow Pipeline

MROS Reasoner

Analyze & Plan & KB

Execute

Mode Manager

System Modes
Bridge

system modes
services

Monitor

Water Visibility
Observer

Thrusters Monitor

/diagnostics /mros/request_configuration

reconfigure

/mros/objective

Adaptation Goal
Bridge

Gazebo

Fig. 2. System Architecture

and sets the adaptation goals. Note that the function Inspect

Pipeline is not implemented, since the actual inspection
of the pipeline is not the focus of this work. However, the
exemplar can easily be extended with this functionality by
adding a new node that implements the pipeline inspection.
Follow Pipeline, Generate Search Path, and

Maintain Motion are lifecycle nodes, which means that
they have internal states, such as active and inactive, and
it is possible to switch between these states at runtime.
Furthermore, the System Modes package [16] extends the
state active with additional modes, e.g., active.low altitude.

To adapt the managed subsystem, the managing subsystem
adapts the lifecycle nodes by changing their states. This is done
by the Mode Manager node, which is used off-the-shelf from
the System Modes package. The states available for Generate
Search Path are deactivated, low altitude, medium
altitude, and high altitude. Subsequently, the states
available for Follow Pipeline are deactivated and
activated, while the states for Maintain Motion are
deactivated, and recover thrusters.

To enable other developers of self-adaptive systems to use
this exemplar and compare different approaches, a Gazebo-
based 5 simulation of a pipeline inspection environment and
a model of the AUV is provided. The BlueROV26 robot
was selected as the AUV for the exemplar because (i) it is
compatible with ArduSub; (ii) it is easily integrated with

5https://gazebosim.org/home
6https://bluerobotics.com/store/rov/bluerov2/

https://www.ardusub.com/
https://gazebosim.org/home
https://bluerobotics.com/store/rov/bluerov2/

Function
Design

Function

Component

Objective

Function
Grounding

solves

requires

is of type

solves

is of type

Quality
Attribute

Design Time Runtime

required

measured
expected

Fig. 3. A simplified representation of the TOMASys elements

Gazebo via plugins; and (iii) the robot has a low price
compared to other available AUVs, making it more accessible
to researchers to reproduce the exemplar with a real robot.

V. MANAGING SUBSYSTEM

The managing subsystem exploits functional alternatives of
the managed subsystem to enable adaptation and thereby in-
crease system reliability. Metacontrol is used as an example of
how a managing subsystem can be implemented. This section
introduces Metacontrol and shows how the adaptation problem
can be formulated and implemented with Metacontrol.

A. Metacontrol Background

Metacontrol uses the MAPE-K feedback loop [17], [18] to
implement self-adaptation. It Monitors the managed subsystem
during runtime, Analyzes whether the system meets its require-
ments, Plans a new configuration if the system does not meet
the requirements, and then Executes the reconfiguration of the
managed subsystem. All this is done using a shared Knowledge
Base to which each step refers. In Metacontrol, the knowledge
base conforms to the TOMASys (Teleological and Ontological
Metamodel for Autonomous Systems) metamodel [13].

A simplified version of the TOMASys metamodel is dis-
played in Fig. 3. TOMASys uses functions F to represent
the functionalities of the system, e.g., generating a search
path for the AUV. The architectural variants that imple-
ment these requirements are captured by function designs
FD(F, C,QAexp). To distinguish during runtime which func-
tion design is most suited in a given situation, a set QAexp of
expected quality attributes is associated with it. An expected
quality attribute value reflects how well a function design is
supposed to fulfill the function F it solves. Furthermore, a
function design requires a set C of components of the managed
subsystem to solve F . A component C(SC) is a piece of
hardware or software, e.g., a sensor or a path-planning al-
gorithm, respectively. The status SC of a component indicates
its availability, i.e., whether it is functioning or not.

An objective O(F, SO,QAreq) is a runtime instantiation of
a function F , e.g., generating a search path with a minimum
required water visibility, whose status SO reflects whether the
objective is currently achieved. Furthermore, the set QAreq

of required quality attributes specifies which quality attribute
value the objective requires in order to work properly.

An objective O is solved by a function grounding
FG(O,FD, SFG,QAmeas), which represents the function
design FD that is currently used to solve the objective. Its
status SFG reflects whether the function grounding is currently
able to achieve the objective. The set QAmeas of measured
quality attributes reflects how well the function grounding
currently fulfills O and is computed using sensor data.

B. Metacontrol Formulation

The functions, architectural variants, and quality attributes
required to solve the tasks (T1) Search Pipeline and (T2)
Inspect Pipeline, described in Section III, are modeled con-
forming to the TOMASys metamodel. Table I specifies the
functions (F1) maintain motion, (F2) generate search path,
and (F3) follow pipeline, while Table II describes the quality
attributes (QA1) water visibility, and (QA2) performance.
Functions F1 and F2 are required to achieve T1, whereas T2
is achieved by F1 and F3. The function designs that solve
these functions are specified in Table III. The set of required
components is empty for function designs FD2−FD6 because
they do not require any components that are susceptible to
adaptation, or used in the reasoning process.

Since the objectives and function groundings are instantiated
during runtime, they are not specified here. An objective for
function F2 is for example to generate a search path with no
required quality attribute, which is defined as O2(F2, ok,∅) in
the notation introduced above. A possible function grounding
for this objective is FG2(O2, FD4, ok, {QAmeas

1 = 1.1}).
The MAPE-K loop steps in this exemplar are formulated

as follows. The monitor step is responsible for measuring
QAmeas

1 and for monitoring the state of the six thrusters.
The analyze step uses Horn rules to reason about the

knowledge base. One example rule that analyzes whether the
measured water visibility QAmeas

1 still satisfies the expected
water visibility QAexp

1 of the grounded function design is
displayed in Fig. 4. Note that it is written in terms of the
notation introduced in Section V-A. Line 1 expresses that the
rule reasons about a function grounding FG that solves an
objective O, is of type FD, has a status SFG and an associated
set of measured quality attributes QAmeas. Furthermore, the
function design FD solves the function F , has a set of
required components C and an associated set of expected
quality attributes QAexp. Note that it is implicitly assumed
that FG is well-formed, i.e., that the function of which O is a
type of is the same as the function that FD solves. Since this
rule should analyze the water visibility, Line 2 ensures that
QAmeas

1 is an element of the set QAmeas and that QAexp
1

is an element of the set QAexp, i.e., that both FG and FD
are related to water visibility. Finally, if the measured value
of QA1 is less than its expected value associated with the

TABLE I
THE TOMASYS FUNCTIONS USED FOR THE EXEMPLAR

Function Name Requirement
F1 maintain motion Maintain the motion of the robot
F2 generate search path Generate a path to search for the pipeline
F3 follow pipeline Follow and inspect the pipeline

TABLE II
THE TOMASYS QUALITY ATTRIBUTES USED FOR THE EXEMPLAR

QA Name Unit Description
QA1 water visibility [0,∞) Reflects the maximum altitude (in

meters) from which the AUV can
perceive the seabed

QA2 performance [0, 1] Reflects how efficient the current
search strategy is

TABLE III
THE TOMASYS FUNCTION DESIGNS USED FOR THE EXEMPLAR

Function Design Name Description
FD1(F1, {thruster x | x =
1, . . . , 6}, {QAexp

2 = 1})
all thrusters Uses all thrusters

FD2(F1,∅, {QAexp
2 =

0.5})
recover thrusters Recovers the thrusters

that are in failure
FD3(F2,∅, {QAexp

1 = 0.5,
QAexp

2 = 0.25})
spiral low Produces a spiral search

path with low altitude
FD4(F2,∅, {QAexp

1 = 1,
QAexp

2 = 0.5})
spiral medium Produces a spiral search

path with medium alti-
tude

FD5(F2,∅, {QAexp
1 = 2,

QAexp
2 = 1})

spiral high Produces a spiral search
path with high altitude

FD6(F3,∅,∅) follow pipeline Follows the pipeline

FG
(
O,FD, SFG,QAmeas

)
∧ FD(F, C,QAexp) (1)

∧ QAmeas
1 ∈ QAmeas ∧ QAexp

1 ∈ QAexp (2)
∧ QAmeas

1 < QAexp
1 (3)

⇒ SFG = error (4)

Fig. 4. Rule to analyze whether the measured water visibility QAmeas
1 still

satisfies the expected water visibility QAexp
1 of the grounded function design

grounded function design, see Line 3, then the status of the
function grounding is set to error, see Line 4.

In the planning step, the function designs with QAexp
1

higher than QAmeas
1 are filtered out as the visibility they

would expect is not measured, afterward the remaining func-
tion design with the highest expected search performance
(QAexp

2) is selected as the desired configuration. The selected
configuration is then carried out in the execute step.

C. Metacontrol Implementation

As depicted in Fig. 2, the monitor step is implemented
with the Water Visibility Observer and the Thruster

Monitor nodes. They are used for measuring QA1 and
monitoring the status of the six thrusters thruster x where
x ∈ {1, . . . , 6}, respectively. To simplify the system and avoid
the addition of unnecessary nodes, instead of adding water
visibility to the Gazebo simulator, the Water Visibility

Observer simulates water visibility measurements with a
sine function, and instead of probing the managed subsystem
to identify thruster failures the Thruster Monitor sim-
ulates the thruster failures events. Since the monitor step
is mocked up, and its probes and intermediary nodes that
would be required to provide the probes are not implemented,
they are not included in Fig. 2. Both nodes publish their
data into the /diagnostics topic with the ROS 2 default
DiagnosticArray message type.

The knowledge base (KB), the analyze and plan step are
implemented using MROS 7 [19], a ROS 2-based Metacontrol
implementation, as the MROS Reasoner node. The KB is
implemented with the Ontology Web Language (OWL) [20],
the Horn rules used for the analyze step with the Semantic
Web Rule Language (SWRL) [21], and the reasoning is done
with Pellet8. The MROS Reasoner receives water visibility
measurements (QAmeas

1) and thruster status information from
the monitor step, then decides whether adaptation is required,
and, in this case, selects a desired configuration which it sends
to the execute step (see Section V-B for more details). The
MROS Reasoner initially does not have objectives, so it does
not perform adaptation. The adaptation reasoning only starts
when the Coordinate Mission node sends new objectives,
such as O2(F2, null,∅), via the Adaptation Goal Bridge.
New objectives do not have a status yet.

The execute step uses the System Modes’ Mode

Manager to adapt the managed subsystem, and the
System Modes Bridge bridges the Mode Manager with
the MROS Reasoner. When a reconfiguration is needed,
the MROS Reasoner requests the new configuration via the
/mros/request_configuration service to the System

Modes Bridge.Then the System Modes Bridge forwards
the request to the Mode Manager using the correct service
names, depending on the lifecycle node being adapted. The
services used by the Mode Manager are listed in Table IV,
and the available modes are listed in Table V.

VI. EXTENDING AND CONNECTING MANAGING
SUBSYSTEMS

With the described system implementation, the only
Metacontrol-specific nodes of the system are the
MROS Reasoner, the System Modes Bridge, and the
Adaptation Goal Bridge. All other nodes of the system
can be reused with different managing subsystems. The only
requirement to connect a managing subsystem to the managed
subsystem is to ensure that the managing subsystem adheres
to the provided monitor and execute ROS 2 interfaces. As
described in the previous section, the monitor interface is
the ROS 2 topic /diagnostics, and the execute interfaces
are listed in Table IV. To show that changing the managing
subsystem is possible, a managing subsystem that randomly
picks a configuration was also implemented.

Since the system is implemented with a modular design, it
can be extended with additional functionalities and adaptation

7https://github.com/meta-control/mc mros reasoner
8https://github.com/stardog-union/pellet

https://github.com/meta-control/mc_mros_reasoner
https://github.com/stardog-union/pellet

TABLE IV
AVAILABLE SYSTEM MODES’ SERVICES

Node Service
f generate search path /f generate search path/change mode
f follow pipeline /f follow pipeline/change mode
f maintain motion /f maintain motion/change mode

TABLE V
AVAILABLE MODES

Node Mode Lifecycle state
f generate search path fd spiral high active
f generate search path fd spiral medium active
f generate search path fd spiral low active
f generate search path fd unground inactive
f follow pipeline fd follow pipeline active
f follow pipeline fd unground inactive
f maintain motion fd all thrusters inactive
f maintain motion fd recover thrusters active

scenarios by adding new lifecycle nodes and updating the sys-
tem modes’ configuration file accordingly. The implemented
functionalities can be replaced with different implementations
as long as they adhere to the same interfaces; e.g., the
Pipeline Detection node could be replaced by a node that
actually performs perception instead of a mock-up.

VII. EVALUATION

To evaluate the performance of different managing subsys-
tems using this exemplar, the mission described in Section III
was implemented. The mission consists of the AUV perform-
ing T1 and T2 while subject to U1 and U2 until a user-
provided time limit is reached. To evaluate the mission, the
following metrics were used: the search time, the amount of
time elapsed from the beginning of the search until the pipeline
is found, and the total distance inspected of the pipeline.

To provide a baseline for the exemplar, the mission is
performed with two different managing subsystems and with
no managing subsystem, using a fixed configuration. The man-
aging subsystems are the Metacontrol-based implementation
detailed in Section V and a random managing subsystem that
selects configurations arbitrarily.

Since the system is non-deterministic due to characteristics
of Gazebo, ArduSub, and the interaction between them, no
run of the simulation is exactly the same. Thus, the mission
execution and metrics collection are automated with a runner
to allow multiple runs to be easily performed.

This section briefly describes how to configure the exemplar,
and the results of running the exemplar. Further details may
be found in the exemplar repository.

A. Configuring the exemplar

In SUAVE, the AUV’s mission execution can be varied
by changing the parameters of the system. In the Water

Visibility Observer, the available parameters are the
water visibility minimum and maximum values, periodicity,
and initial phase shift. In the Thrusters Monitor, the
available parameter is a list with thruster events indicating
which thruster fails and when. In the Coordinate Mission,

TABLE VI
MISSION RESULTS

Managing
subsystem

Number
of runs

Search time (s) Distance inspected (m)
Mean Std Mean Std

None 20 187.85 42.40 31.40 13.00
Random 20 180.15 82.05 3.88 3.19
Metacontrol 20 106.95 39.46 51.15 12.01

the mission time limit can be set. In the random manager, the
adaptation periodicity can be set, and when using no manager,
the default states for the lifecycle nodes can be set. In addition,
the runner is parametrized with the number of runs to execute,
and which managing subsystem to select. All parameters are
adjusted using configuration files packaged in the exemplar.

B. Results

The mission was executed with a time limit of 300 seconds,
water visibility periodicity of 80 seconds, minimum and max-
imum values of 1.25 and 3.75, no phase shift, and thruster
1 failing after 35 seconds from the start of the mission. The
results are shown in Table VI. It can be noticed that with the
Metacontrol managing subsystem both mean search time9 is
lower, and the distance inspected is higher. This indicates that,
in this exemplar, Metacontrol improves the performance of
the system, and outperforms the random managing subsystem
and the system without a managing subsystem. In addition,
the standard deviation (Std) of the search time is lower
for Metacontrol, indicating that it is more consistent when
searching for the pipeline. The Std of the random manager
for the distance inspected is lower, however, its mean value is
also low, indicating that the random manager is consistent in
not inspecting the pipeline. The results shown can be used as
a baseline for comparing different managing subsystems.

VIII. CONCLUSION

This work describes SUAVE, a ROS 2-based exemplar for
self-adaptive underwater vehicles used for pipeline inspection.
Due to its modular design, SUAVE enables different managing
subsystems to be applied to the system without the need to
modify the managed subsystem, the monitor nodes, and the
executing mechanism. In addition, the system can be easily
extended with new functionalities and adaptation scenarios
by adding new nodes. Furthermore, this paper provides a
baseline for comparing the performance of different managing
subsystems, and it shows that the addition of a Metacontrol-
based managing subsystem increases the performance of the
system in comparison to not using any managing subsystem
or one that chooses configurations arbitrary.

In future work, SUAVE can be extended with: more metrics
for a more in-depth evaluation; more tasks (e.g., docking),
functionalities (e.g. a de facto perception system), and compo-
nents (e.g. sonars) for more realistic missions; more adaptation
scenarios, e.g., adapting to changes in the water currents, and
adapting the thruster configuration matrix when a thruster can
not be recovered.

9When the pipeline is not found, the time limit is used as the search time

REFERENCES

[1] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic,
G. Sukhatme, and B. Petrus, “Architecture-driven self-adaptation and
self-management in robotics systems,” in 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pp. 142–
151, 2009.

[2] J. Cámara, B. Schmerl, and D. Garlan, “Software architecture and
task plan co-adaptation for mobile service robots,” in Proceedings of
the IEEE/ACM 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, (Seoul Republic of Korea),
pp. 125–136, ACM, June 2020.

[3] Y.-S. Park, H.-M. Koo, and I.-Y. Ko, “A task-based and resource-
aware approach to dynamically generate optimal software ar-
chitecture for intelligent service robots,” Software: Practice and
Experience, vol. 42, no. 5, pp. 519–541, 2012. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.1074.

[4] Y.-J. Shin, L. Liu, S. Hyun, and D.-H. Bae, “Platooning LEGOs: An
Open Physical Exemplar for Engineering Self-Adaptive Cyber-Physical
Systems-of-Systems,” in 2021 International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS), pp. 231–
237, May 2021. ISSN: 2157-2321.

[5] M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione,
S. Garcı́a, R. Caldas, T. J. von Oertzen, M. Wimmer, L. Berardinelli,
M. Rossi, M. M. Bersani, and G. S. Rodrigues, “RoboMAX: Robotic
Mission Adaptation eXemplars,” in 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 245–251, May 2021. ISSN: 2157-2321.

[6] B. H. C. Cheng, R. J. Clark, J. E. Fleck, M. A. Langford, and P. K.
McKinley, “Ac-ros: Assurance case driven adaptation for the robot
operating system,” in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
MODELS ’20, (New York, NY, USA), p. 102–113, Association for
Computing Machinery, 2020.

[7] S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns, “UNDERSEA:
An exemplar for engineering self-adaptive unmanned underwater ve-
hicles,” in 2017 IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 83–
89, 2017.

[8] M. Ludvigsen, “Collaborating robots sample the primary production in
the ocean,” Science Robotics, vol. 6, no. 50, p. eabf4317, 2021.

[9] H. Huang, E. Messina, R. Wade, R. English, B. Novak, and J. Albus,
“Autonomy measures for robots,” in Proceedings of the 2004 ASME
International Mechanical Engineering Congress & Exposition, Anaheim,
California, pp. 1–7, 2004.

[10] R. B. Wynn, V. A. Huvenne, T. P. Le Bas, B. J. Murton, D. P. Connelly,
B. J. Bett, H. A. Ruhl, K. J. Morris, J. Peakall, D. R. Parsons, E. J.
Sumner, S. E. Darby, R. M. Dorrell, and J. E. Hunt, “Autonomous
underwater vehicles (auvs): Their past, present and future contributions
to the advancement of marine geoscience,” Marine Geology, vol. 352,
pp. 451–468, 2014. 50th Anniversary Special Issue.

[11] D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary
Software Engineering Perspective. John Wiley & Sons, 2020.

[12] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[13] C. H. Corbato, Model-based self-awareness patterns for autonomy. PhD
thesis, Universidad Politécnica de Madrid, 2013.

[14] D. Bozhinoski, M. G. Oviedo, N. H. Garcia, H. Deshpande, G. van der
Hoorn, J. Tjerngren, A. Wasowski, and C. H. Corbato, “MROS: runtime
adaptation for robot control architectures,” Advanced Robotics, vol. 36,
no. 11, pp. 502–518, 2022.

[15] E. B. Gil, R. Caldas, A. Rodrigues, G. L. G. da Silva, G. N. Rodrigues,
and P. Pelliccione, “Body sensor network: A self-adaptive system
exemplar in the healthcare domain,” in 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 224–230, 2021.

[16] A. Nordmann, R. Lange, and F. M. Rico, “System modes-digestible
system (re-) configuration for robotics,” in 2021 IEEE/ACM 3rd Interna-
tional Workshop on Robotics Software Engineering (RoSE), pp. 19–24,
IEEE, 2021.

[17] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. M. Kienle,
M. Litoiu, H. A. Müller, M. Pezzè, and M. Shaw, “Engineering self-
adaptive systems through feedback loops,” in Software Engineering for
Self-Adaptive Systems, vol. 5525 of Lecture Notes in Computer Science,
pp. 48–70, Springer, 2009.

[18] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[19] D. Bozhinoski, M. G. Oviedo, N. H. Garcia, H. Deshpande, G. van der
Hoorn, J. Tjerngren, A. Wasowski, and C. H. Corbato, “MROS: runtime
adaptation for robot control architectures,” Adv. Robotics, vol. 36, no. 11,
pp. 502–518, 2022.

[20] G. Antoniou and F. van Harmelen, “Web ontology language: OWL,” in
Handbook on Ontologies (S. Staab and R. Studer, eds.), International
Handbooks on Information Systems, pp. 67–92, Springer, 2004.

[21] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean, et al., “SWRL: A semantic web rule language combining
OWL and RuleML,” W3C Member submission, vol. 21, no. 79, pp. 1–
31, 2004.

	Introduction
	Related work
	Pipeline inspection exemplar
	Use case description
	System Architecture

	Managed Subsystem
	Managing Subsystem
	Metacontrol Background
	Metacontrol Formulation
	Metacontrol Implementation

	Extending and connecting managing subsystems
	Evaluation
	Configuring the exemplar
	Results

	Conclusion
	References

