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Abstract—The increasing integration of machine learning (ML)
in modern software systems has lead to new challenges as a result
of the shift from human-determined behavior to data-determined
behavior. One of the key relevant challenges concerns concept
drift (CD), i.e., the potential performance degradation due to
changes in the data distribution. CD may severely affect the
quality of the provided services, being also difficult to predict
and detect, as well as costly to address. In this context, we focus
on the evolvability of ML-based systems and the architectural
considerations in addressing this concern. In this paper, we
propose a novel scenario-based framework to support, justify and
underpin architectural design decisions that address evolvability
concerns in ML-based systems. The applicability and relevance
of our framework is outlined through an illustrative example. We
envision our framework to be extended to address other quality
attributes important to ML-based systems and, overall, provide
architectural support for ML operations (MLOps). Finally, we
outline our plan to apply it in a number of industrial case studies,
evaluate it with practitioners, and iteratively refine it.

Index Terms—software architecture, machine learning, design
decisions, quality attributes, evolvability, concept drift

I. INTRODUCTION

A major challenge of software engineering nowadays is
related to serving, monitoring, and evolving machine learning
(ML) models [1]. Software architecture research has con-
tributed with the identification of quality attributes (QAs)
important for ML-based systems [2], [3] and preliminary
catalogs of architectural patterns that address these QAs [4]-
[6]. Despite these efforts, it is still very challenging to oper-
ationalize ML-based systems as a series of well-understood
and balanced architectural design decisions (ADDs) [1].

A common challenge for practitioners is to resolve the per-
formance degradation of ML models, often caused by changes
in the data distribution or errors in the ML pipeline [7]. The
former issue, commonly referred to as concept drift (CD), is
of particular concern to practitioners because it can severely
affect the quality of service, is difficult to detect, and its
resolution can be costly because it often requires infrastructure
for monitoring, evolving, and redeploying ML models [8].

Recent research has emphasized the problem of CD in
operationalized ML models, with a growing consensus that
observability is an essential quality of ML-based systems [2],
[9]. In addition to observability, practitioners are concerned
with when to evolve — i.e., retrain or update — their models, and

with how to evolve them, e.g., what data to include in evolving
their models [10]. We refer to this quality concern as the evolv-
ability of ML-based systems. Despite the insights of recent
research in architectural patterns and tactics for ML-based
systems [4]-[6], limited knowledge is still available on the
ADDs specifically targeting evolvability. Given its prominence
and importance, we believe that the design decisions regarding
evolvability and their rationale should be better understood and
documented. This will improve stakeholder communication,
enable the dissemination of best practices in this emerging
field and, ultimately, make ML-based systems more reliable.

Although evolvability has only recently started to emerge
as a concern in industry, the field of data mining has been
studying the problem of CD for more than two decades,
which resulted in a wide variety of methods for evolving
ML models [11]. These methods can be understood and
categorized according to (i) their applicability in different
cases of CD, and (ii) their trade-offs between evolvability and
other qualities (e.g., resource utilization or inference latency
or explainability). Consequently, addressing evolvability in an
ML-based system requires knowledge about the application
domain and a holistic view of the system and its requirements.

In this paper, we envision a scenario-based framework
to support, justify, and underpin the rationale for making
ADDs that address the evolvability of ML-based systems.

The remaining of this paper is organized as follows. Section
IT introduces our framework and describes its elements. In
Section III we instantiate our framework in an illustrative
case study. The impact and feasibility of our new idea for
documenting the ADD rationale to address evolvability is
discussed in Section IV. Future plans to further evaluate and
refine our framework are outlined in Section V.

II. ARCHITECTURAL DESIGN DECISION FRAMEWORK TO
ADDRESS EVOLVABILITY
Our framework consists of a number of concepts and their
relations, depicted in Fig. 1. We describe each of them in turn.
A. Artefact

The artefact is the (sub-)system that includes the ML model
(usually part of a larger software system) and to which the
evolvability concern applies, e.g., a marketing service that
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Fig. 1. Architectural design decision framework to address evolvability.

uses a churn prediction model or a photo editing service that
uses an object detection model. The utility of the artefact
depends on the underlying ML model. For instance, the
photo editing service’s utility related to providing value-adding
functionalities to its end users depends on the accuracy of
the used object detection model. It is important to consider
the artefact because it provides the context within which
evolvability-related scenarios are determined and tactics are
eventually evaluated. This essentially also allows us to separate
the applicability of evolvability concerns for different sub-
systems, which is important because multiple ML models
in a single system are likely to be subjected to different
degrees of non-stationarity. For example, a change in customer
demographics may cause CD in a recommendation service,
while the autoscaling system remains unaffected as its model
does not utilize customer data.

B. Scenarios

A scenario describes a potential instance of CD occurrence
in the ML model of the artefact. The identification of scenarios
needs to happen by stakeholders that have in-depth knowledge
of the artefact’s domain in order to be able to foresee changes
in the underlying processes (e.g., faults in the data sensing
or increase in the load of incoming requests). Such changes
may result in important variations of the input data streams
of the ML models or the way the outputs are associated with
the inputs, or, put simply, in occurrence of CD. The scenarios
in our framework have a similar role to QA scenarios for the
identification of architecturally significant requirements [12].
The domain knowledge used in the identification of scenarios
is vital for the application of our framework.

C. Scenario Assumptions

Once the scenarios are collected, the characteristics of
CD [13] for each of them need to be determined and sum-
marized as assumptions using the following template:

o Subject. Virtual Drift or Real Drift. The former is a shift
in the distribution of the input data P(z); the latter is
a shift in the conditional probability distribution of the
target variable for a given input P(y|z). Out of the two,
real drift is considered more problematic since it always
leads to performance degradation [11].

o Severity. The degree of change in the data distribution
between the time before and after the change.

e Transition speed. The time from the start of a shift in the
distribution until the distribution becomes stable again.

e Duration. The time between the occurrence of two con-
secutive shifts in the distribution.

o Frequency of reoccurrence. How often a certain event that
causes CD occurs again.

e Relevance. A combination of likelihood and frequency of
occurrence of the scenario relative to the other scenarios.

It is possible to deduce certain characteristics directly from
the scenario description. For example, a change in the demo-
graphic makeup of customers results in virtual drift within a
recommendation model that utilizes demographic information
as input. Conversely, changes in competitive pressure may
result in real drift within a churn prediction model if this is
not adequately represented within the model. However, other
characteristics such as duration, severity, and reocurrence are
less easily deduced at design time and therefore necessitate
the formulation of informed assumptions with regard to these
characteristics. In our framework, Severity, Transition speed,
Duration, Frequency of Reoccurrence, and Relevance are
classified on a three-level ordinal scale (low, medium, or high).

D. Evolvability Profile

Effective design decision rationale ultimately improves de-
cision quality and communication, for which it is important
to have a structured representation of the arguments [14]. To
provide this structure with respect to the assumptions made
about the elicited scenarios, we aggregate these assumptions
into a single profile that provides a visual representation of
the evolvability concern (Fig. 2a). Here, we project the ordinal
characteristics of CD to separate dimensions and represent the
relevance of the scenarios based on the line width. For the
Subject, two separate diagrams need to be created (one for
virtual and one for real drift).

E. Evolvability Tactics

An evolvability tactic is an ADD to deal with CD. Given
an evolvability profile, there may be several candidate tactics
that can address it, but their effectiveness may vary depending
on the characteristics of the CD scenario. Our framework
represents these characteristics as separate dimensions using
the plot of Fig. 2b, where the effectiveness of a tactic in each
dimension and scale is represented as white (ineffective), light
grey (partially effective), or dark grey (fully effective). This
representation corresponds to the architectural knowledge of
evolvability tactics included in the cataloguing process.

Below we list important tactics extracted from the data
mining literature.
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Fig. 2. Representation of the evolvability profile, tactics and mapping. Dime-
nsions have three scales (low, medium, high), starting from the inner quadrant.

1) Online learning: Online learning is an evolvability tactic
that differs from the traditional batch training paradigm — train-
ing models using the entire training set at once, after which the
model remains static — which allows for continuous training of
a single model with new observations [11]. Therefore, online
learning automatically adapts to CD by effectively weighing
the relevance of observations by order of arrival. However,
while it is sufficient in evolving the model during gradual and
non-severe CD, adaptation to severe and abrupt occurrences
of CD is considered slow [15]. Furthermore, the continuous
training can cause the model to forget knowledge acquired in
previous contexts, also known as catastrophic forgetting [16].

2) Sliding window: Sliding window is an evolvability tactic
commonly applied in practice where the model is periodically
(e.g. daily or weekly) retrained from scratch using the latest
observations [7], [11]. In doing so, the model explicitly forgets
knowledge from previous contexts by discarding the oldest
data samples from the training window. A sliding window
tactic can sufficiently adapt to severe CD and fast transitions
between contexts, but is less effective for slow transitions and
cases of reoccurring CD [11]. Moreover, determining the size
of the window can be difficult, as a small window adapts faster
to new contexts while a larger window can provide better
performance when the context is stationary.

3) Detection-based model reconstruction: Detection-based
model reconstruction is an evolvability tactic in which a new
model is reconstructed, either through online learning or batch
learning, after detection of CD [11]. In doing so, this tactic
can be very effective in adapting to severe and abrupt cases of
CD when the model is reconstructed at the right moment [17].
Despite the rather drastic adaptation strategy, which makes it
less applicable for short-lasting and non-severe CD. Model
reconstruction has been used a lot because it is generally
effective in cases where a rapid response to severe CD is
required [11], [15]. A wide variety of algorithms have been
developed for CD detection, the challenge of which is to
identify CD as close to the transition point as possible while
remaining robust against false alarms [18].

4) Detection-based model repository: Detection-based
model repository is an evolvability tactic that specifically
targets reoccurring CD by storing models trained in previous
contexts to retain knowledge [19]-[21]. In general, the appli-
cation of this tactic involves training a model incrementally
until drift is detected and then evaluate whether a previous
model is suitable for the new context. A detection-based model
repository tactic is thus similar to the model reconstruction
tactic, but in addition can handle reoccurring CD very well.

5) Adaptive ensemble: An adaptive ensemble tactic ag-
gregates the predictions of multiple models to adapt to CD,
typically by training models on different slices of the data
stream and dynamically weighting the contribution of each
model based on recent prediction performance [15]. These
models can be trained either periodically or based on detection,
via online learning or sliding windows. Thereby, the adaptive
ensemble can be viewed as an extension of aforementioned
evolvability tactics. However, it is a more general approach
that can adequately handle cases of gradual, abrupt, and
reoccurring CD [22], but is potentially less effective compared
to approaches that specifically target a particular type of CD
(e.g. a model repository for reoccurring CD).

F. Fitting Tactics to the Evolvability Profile

The architectural knowledge of tactics is mapped to the
evolvability profile using the representation depicted in Fig.
2c. This representation provides an effective means of com-
pressing domain knowledge about the evolvability scenarios
and architectural knowledge of corresponding tactics into a
single overview. Based on the overview, the degree of fit for
an evolvability tactic can be determined by the number of
scenario nodes that are covered by the shaded area in the
graph, taking into account the weight of the nodes and shading
level of the areas. This degree of fit can then be determined
for multiple candidate tactics and, together with the visual
overview, be included in the documentation of the rationale.

G. Negative Impact on Quality Attributes

The tactics differ not only in terms of expected fit but also in
architectural assumptions regarding system-level components
and their interactions, which may adversely affect system QAs.
Below we list these assumptions and potentially affected QAs
that should be taken into account when evaluating trade-offs.

1) Online architecture: In online learning, the ML model
is updated incrementally with new observations from a data
stream, as opposed to batch learning where models are trained
on a fixed dataset. However, ML models are often deployed
as stateless prediction services in elastic service-oriented and
microservices architectures [23]. Thereby, the continuous up-
dating of the model’s parameters in online learning effectively
makes the deployed model stateful [24]. This can adversely
affect the elasticity of the ML-based system.

2) Batch architecture: Evolvability tactics that train models
using batch learning, such as the sliding window tactic, neg-
atively affect the systems qualities in several ways. First, the
training latency of the system is potentially affected because



the time needed to retrain a model through batch learning
can be significantly higher than that of online learning [11],
[25]. Second, retraining through batch learning can affect the
system’s resource utilization because of the computational
inefficiency of rebuilding the model from scratch at every
evolution step and the requirement of storing all the training
data into memory [11]. These overheads should be carefully
considered especially in resource-constrained domains, such as
IoT [26]. Furthermore, the need to store previously acquired
samples may also compromise the system’s data privacy in
privacy-sensitive domains, such as healthcare.

3) Ensemble inference: Most methods that deal with CD
are model agnostic and thus generally do not interfere with
the desired model properties. However, the application of an
adaptive ensemble may adversely affect these properties by
altering the inference mechanism of the underlying model.
As such, this tactic may affect the explainability of the ML
model, as it can make the model a black-box that is difficult
to analyze [27]. Furthermore, the inference latency can also
be negatively affected because the number of predictions for
a single request is effectively multiplied by the number of
models maintained in the ensemble [28].

4) Model repository: The system’s resource utilization can
also be negatively affected when a model repository is used
to store multiple models, due to the memory overhead [21].
However, the strain on resources depends on the size of the
ML model. For example, it may be negligible in applications
of decision trees with limited depth, while it can become
problematic for neural networks with millions of parameters.

5) Drift detector: The reliability of the system can be
jeopardized when evolvability tactics are applied that rely
on the detection of CD. In production settings, this com-
ponent is part of the monitoring system of the automated
ML workflow [8]. Currently, it remains difficult to detect
CD accurately and therefore false alarms are inevitable with
automated drift detection mechanisms [29]. Furthermore, CD
can also be detected correctly, but only last for a short period of
time. Thus, any automatic response to a drift detector requires
caution with methods that involve a drastic operation, such as
taking a potentially viable model out of deployment.

III. EXAMPLE OF FRAMEWORK APPLICATION

In this section, we instantiate our framework in a churn pre-
diction case for a marketing service to illustrate its application.

During the development of a new subscription-based Web
service, stakeholders establish a business objective to minimize
customer churn. A core functionality of the system is a
marketing service that offers customers personalized discounts
based on the predicted likelihood for a customer to churn. In
the elicitation process, evolvability is raised as an important
concern because the business operates in a growing and
highly competitive market and, therefore, volatile patterns are
expected in the context of this service that could potentially
deteriorate the performance of the underlying ML model.

Fig. 3 depicts the instantiation of our ADD rationale frame-
work for the illustrative case. We can consider that three

Artefact

Marketing service that utilizes a churn prediction model

¥

¥

¥

Scenario 1
The service design and
its user interface will go
through multiple
iterations, which will
affect the customer
journey and thus the
likelihood for
customers to churn

Scenario 2
Customers are
susceptible to trends
and changing
behaviour, this will
likely change their
needs with regard to
our service provision
over time

Scenario 3
Increasing pressure
from competitors will
lead to attractive
alternatives to our
service, which will
make customers
reconsider their
subscription

Scenario Assumptions
- Real drift

- Medium severity

- Medium duration

- High transition speed
- Low reoccurrence

- High relevance

Scenario Assumptions
- Real drift

- Medium severity

- Long duration

- Low transition speed
- Low reoccurrence

- Low relevance

Scenario Assumptions
- Real drift

- Low severity

- Long duration

- Low transition speed
- Low reoccurrence

- Medium relevance

v

Evolvability Profile

8 —a}—e -0

Scenario 1
Scenario 2
Wscenario 3

[Partial fulfilment]

T
[Strong fulfilment]
h

[Partial fulfilment]

Evolvability Tactic
Sliding window

Evolvability Tactic
Online adaptive ensemble

Evolvability Tactic
Online learning

- Data privacy

- Inference latency

\ m\ ye
D) || &) || (
v v v
Negative Impact on QAs Negative Impact on QAs Negative Impact on QAs
- Resource utilization - Elasticity =
- Training latency - Explainability -y

Fig. 3. Framework instantiation for the churn prediction model.

scenarios are elicited and projected in an evolvability profile,
for which two evolvability tactics are identified that partially
fulfill the profile and one that strongly fulfills it. Despite the
partial fulfilment of the sliding window tactic, it can be chosen
in favour of the other candidate tactics if a negative impact on
elasticity needs to be avoided.

IV. DISCUSSION

Our framework establishes the design decision process to
explicitly and systematically address the evolvability of ML
models, starting from the expectation of CD in the data
distribution and concerns about performance degradation.

A key requirement for our approach is a catalogue of
architectural tactics for evolvability that encodes the architec-
tural knowledge regarding the efficacy of tactics on different
CD cases and their negative impacts on other QAs. Limited
knowledge is currently available in this regard. In this paper,
we derived a preliminary catalogue of tactics from the data
mining literature; this initial set needs to be refined and
extended by deriving tactics from industrial practice and ex-
perience. Furthermore, the evolvability profile, in conjunction
with its corresponding mapping to architectural knowledge of
evolvability tactics, constitutes a fundamental aspect of our



framework in determining the suitability of potential tactics.
The visual representation of this profile that we propose has
the potential to serve as a valuable tool for facilitating com-
munication with stakeholders and making informed trade-offs.
An interesting direction for future research is to extend the
framework to include the derivation of the expected response
measure of candidate tactics for a given evolvability profile,
thereby providing additional support in evaluating trade-offs.
In addition to evolvability, we argue that the framework
can be extended in a straightforward way to address the
observability of ML-based systems, since CD is also relevant
to this important QA [2]. At the same time, we believe a
similar approach to ours can be applied to other key QAs of
ML-based systems, such as explainability and trust. All this
contributes to more and better architectural support for the
emerging discipline of ML operations (MLOps) [7], [8].

V. FUTURE PLANS

The main idea behind our proposal in this paper is that the
course of CD can be predicted and addressed based on domain
knowledge. Starting from this initial hypothesis, we plan to:

(1) Apply our framework in a number of case studies to
(a) evaluate its applicability in practice, (b) extract and
catalogue more evolvability tactics that can be reused
within an application domain. We intend to do this in
the frame of ExtremeXP, a new EU project focusing on
flexible data analytics and ML [30].

Gather empirical data on the effectiveness of the frame-
work in guiding ADDs and its embedding in everyday
architecting practices via a series of interviews with
industry experts from different application domains.
Evolve the framework incrementally by the iteratively
performing steps (1) and (2).

Investigate how a system can continually refine the
evolvability profile and switch between evolvability tac-
tics at runtime based on their cost and benefit [31], [32].
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