
What’s next in my backlog?
Time series analysis of user reviews

Gøran H. Strønstad, Ilias Gerostathopoulos, Emitzá Guzmán
Vrije Universiteit Amsterdam

{g.h.stronstad}@student.vu.nl, {i.g.gerostathopoulos, e.guzmanortega}@vu.nl

Abstract—User reviews contain valuable information for im-
proving a product e.g., bug reports and feature requests. While
large quantities of user reviews for mobile apps are available in
app stores, it is very challenging to manually analyze them due
to their high volume and existing noise. Therefore, there is a
strong need for methods that identify the needle in the haystack,
i.e., identify reviews that are worth looking at and that inform
the product backlogs with issues to fix or new requirements to
consider. Responding to this challenge, we present an approach
that identifies such reviews by automatically detecting anomalies
(unusual peaks) in time series of user reviews. The approach takes
the form of an automatic processing pipeline that ingests user re-
views, aggregates them, and produces reports of which aggregates
may contain valuable information for software evolution. Both
the granularity and sensitivity of the approach can be tuned. With
a best-case accuracy and F1-score of 0.88, we show that time-
based user review aggregates and automatic anomaly detection
serve as a good source of evidence for making estimations as to
whether there are events in app store user reviews that warrant
the attention of app developers.

Index Terms—user reviews, user feedback, data mining,
anomaly detection

I. INTRODUCTION

User reviews represent the voice of users, and a substantial
amount contain valuable information that, if acted upon, have a
high probability (77%) of increasing app ratings. High ratings
are in turn correlated to high download counts, and largely
dictate the success or failure of an app. As such, there is po-
tential for application developers to use app stores as a means
to crowdsource valuable items for their development backlogs
and directly involve their users in the application development.
By leveraging user-feedback posted in app stores, application
developers can increase the overall satisfaction of their users,
ensure user-retention, detect issues as they emerge, and get
suggestions on new features directly from their own users.

App stores are enormous repositories of information both in
the form of natural language and quantitative scores. With a
constant influx of user reviews, popular apps in the Google
Play Store alone receive thousands of reviews every day,
amounting to several millions per year. If we consider that
software applications are in general offered in several app
stores, the numbers of received reviews are much higher.

Previous research has shown both the value of user reviews
to the application development life-cycle [1], and the primary
challenges of user review analysis: noise and volume. Research
(e.g., [2], [3], [4], [5]) has approached these challenges in
various ways, employing natural language processing (NLP)

and data-mining techniques with the goal of filtering, clas-
sifying, summarizing and prioritizing individual user reviews.
These approaches have the drawback that, because of the large
amount of available reviews and their focus on individual
reviews, a large volume of data remains to be (manually)
inspected after its automatic analysis.

Fig. 1: Using time-series analysis for detecting action points
from user reviews for requirements elicitation and software
evolution. Alerts are marked as red dots (right screen) and
added to the backlog (left screen).

We address this challenge by presenting an approach that
further reduces the data to analyze by detecting anomalies on
time series of users reviews features. In short, we aggregate
the reviews by a configurable measure of time granularity
(hourly, daily, weekly, etc.) and use a statistics-based ap-
proach [6] for detecting anomalies (unusual peaks) on time
series of user review features. This approach uses a set of
feature frequencies (e.g., amount of negative reviews, amount
of bug reports and feature requests, number of up-votes) for
deciding if a specific point in time is an anomaly or not.
For the purpose of this paper we configured the approach to
operate with daily granularity. In that context, an anomaly is
a daily aggregate of user reviews whose feature frequencies
indicate that the underlying user reviews may contain valuable
information for application developers or product owners, such
as much wanted feature requests or frequently reported bugs,
that belong in the product backlog due to their relevance.
We refer to these days as alerts, and days marked as non-
anomalous as non-alerts. Figure 1 shows a potential use



User-reviews Preprocessing Sentiment and content
classification
 Anomaly DetectionAggregation Postprocessing

Report

Timestamp User Review
Up-
votes Version

2020-01-01

00:00:50


2020-01-01

00:07:34

John


Lisa

Every time I get an update for
this app it just makes it worse.
My message are not showing
up when I get a notification


Ive been having so much
issuses with my snapchat
lately, all my chats have
disappeared and ive done
everything i can think of to fix
problem. Its getting really old

10


227


10.72.5.0


10.72.5.0

Sally It awesome but sometimes it
freeze💜💜💜

144 10.77.5.02020-12-31

23:58:40

Review

every time get update app make worse
message show get notification


much issue snapshot lately chat disappear
everything think fix problem get really old

awesome sometimes freeze purple heart
purple heart purple heart red heart

ReviewSentiment Content

every time get update app
make worse message show
get notification


much issue snapshot lately
chat disappear everything
think fix problem get really old

Negative

Negative


Bug report


Bug report

awesome sometimes freeze
purple heart purple heart
purple heart red heart

Neutral Bug report

Day Reviews Upvotes
Inter-
actions

Bug
reports

365

rows 488 3589 4077 742020-12-31

665 8497 9162 1542020-01-01

Day Interactions
Point-distance

score

Difference-distance

score

4077 -1.017 -0.96062020-12-31

9162 4.2059 -1.10942020-01-01

Day Reviews
Inter-
actions

Bug

reports

0.08646 1. 0.035232020-12-31

0.05588 0.0260 0.0151002020-01-01

Alert classification

Day Prediction
Probability
(non-Alert, Alert)

non-Alert (0.63100137,
0.36899863)

2020-12-31

Alert (0.01234568,
0.98765432)

2020-01-01

42 dimensions

Fig. 2: The steps of the pipeline. It takes user reviews as input and outputs a report. The rounded boxes are processing-steps,
green arrows show sequential execution of steps, while the dashed arrows shows the output of each step.

case of our approach, in which only the generated alerts are
inspected for the inclusion of issues in the backlog, reducing
the overhead of analyzing all received reviews—and having the
opportunity to apply the aforementioned existing approaches,
e.g., [2], [3], [4], [5], for analyzing individual reviews on the
much smaller subset of alert days.

The main contributions of this paper are (1) an approach
that detects when time series of user reviews contain valu-
able information for requirements elicitation and software
evolution (e.g., issues that should be in the product back-
log), (2) training-data for the classification of time series of
user reviews, including training-data collection and annotation
methodology, (3) an evaluation of the effectiveness of the
approach. To encourage replication and further research we
make our data and developed models available1.

The methodological cornerstone of our work is the (daily)
aggregation of user reviews for the creation of time series of
user reviews. We use the terms user review aggregates, time
series of user reviews and aggregated data-set interchangeably
for the remainder of the paper.

II. APPROACH FOR ANOMALY DETECTION ON TIME
SERIES OF USER REVIEWS

The pipeline of our approach consists of the six steps shown
in Figure 2. The pipeline takes raw reviews (as extracted
from the Google Play Store) for a time period t as input and
produces a list that contains all days in t with the label of
alert or non-alert for each day as output. An alert contains
potential elements for the development backlog of the system
and therefore could require additional inspection from the
development team. We detail each step of the pipeline next.

1https://figshare.com/projects/ADUR/133032

A. Preprocessing

Preprocessing consists of two main steps. First, we clean
the raw user reviews data-set by removing empty reviews
and reviews with short texts (less than 5 words). We do this
because our approach relies heavily on the lexical information
in natural language user reviews.

Second, we normalize the review text by (1) making all
text lowercase, (2) converting emojis into words (“demoji”),
(3) converting numbers into words, (4) removing non-ASCII
characters and single characters, (5) correcting spelling, (6) re-
moving non-English user reviews, (7) removing non-dictionary
words and stop words.

B. Sentiment and content classification

In this step, each review is classified according to its
sentiment as positive, negative or neutral and according to
its content as feature request, bug report, or other. For this
step we relied on the data from earlier work [7]2 and trained
two LinearSVC classifiers, with F1-scores of 0.90 and 0.82,
for the content and sentiment classifiers respectively. Apart
from the preprocessing performed in the previous step, the
review text was also subject to stemming for the content
classifier and lemmatization for the sentiment classifier. We
chose different approaches for removing the inflection in
words for the two classifiers, as there was not one approach
that produced optimal results for both. At the end of this
step, each review had two additional features: sentiment and
content.

2This work contained a labelled dataset of 2560 reviews, we further sampled
and labelled the content and sentiment of 2440 reviews more, for a total of
5000 reviews.



C. Aggregation, creation of time series

Since we aim to classify daily3 collections of user reviews,
we aggregate with daily granularity all the data in the pre-
processed user reviews data-set (see Table I), and create the
aggregated data-set (see Table II). Each day in the aggregated
data-set contains the following features:

• number of reviews;
• number and percentage of negative-rating reviews (rating

3 or less);
• number and percentage of positive-rating reviews (rating

4 or more);
• sum and average of up-votes for negative-rating reviews;
• sum and average of up-votes for positive-rating reviews;
• number of interactions4, i.e., the sum of the number of

reviews and the number of up-votes;
• number and percentage of interactions for negative-rating

reviews;
• number and percentage of interactions for positive-rating

reviews.
In addition, with the purpose of leveraging the sentiment

and content features (see Section II-B) of each review and
associating them with up-votes, each day also contains the
following features:

• number and percentage of negative, positive, and neutral
user reviews (based on sentiment);

• number and percentage of feature requests, bug reports,
and other (based on content category);

• percentage of up-votes of negative, positive, and neutral
user reviews (based on sentiment);

• percentage of up-votes of feature requests, bug reports,
and other (based on content category).

Rating Text Up-votes Date

2 Snapchat at it’s core is a pret... 2019 2020-03-01
3 Im giving it a 3 star rating be... 960 2020-03-02
4 Love this app, use it everyday... 706 2020-03-03
2 Latest update is trash, difficu... 657 2020-03-04
5 It’s a really good app but I’m... 599 2020-03-05

TABLE I: Example of user reviews data-set.

User reviews Interactions Ratings Date Weekday
name

1292 9636 3828 2020-07-11 Saturday

TABLE II: Example of one day of an aggregated data-set with
four of its features.

D. Anomaly detection

The next step is to feed the aggregated data-set to a
statistics-based time series anomaly detection framework
(TADF) [6]. TADF expects a time series as input and calculates

3Our approach is configurable for other time granularities.
4We create this compound feature after observing that days with either high

number of reviews or high sum of up-votes usually call for further analysis.

two scores for each point in the time series: a “point-distance
score”, capturing the distance of a point from the first or third
quartile of the data set, and a “difference-distance score”,
capturing the distance in the data set of the first difference
of the original time series (i.e., the time series generated by
subtracting each point in the original time series from the
previous one). Points whose scores are statistically different
(based on their modified z-scores) are flagged as anomalies by
TADF. TADF can also be configured to automatically select
a seasonality pattern (e.g., weekly/monthly pattern)—then the
scores are computed only based on the data set that a point
belongs to (e.g., for Mondays).

The time series we provide to TADF is that of daily number
of interactions, i.e., number of reviews and number of upvotes
for a day. The intuition for doing so is that days with very
high or very low interactions and also days with very high or
very low changes in interactions from the previous days are
candidates for being anomalies. We did not configure TADF
to use a seasonality pattern since we did not detect any such
pattern in the daily interaction time series. TADF outputs
ten numeric values for each day that denote the degree of
abnormality of the day and are added to the features of that
day (see Table VII).

E. Postprocessing

At this point we have a total of 42 features (see Table VII
for the top 5 and our replication package for all), pertaining to
up-votes, ratings, results of TADF, classification of sentiment,
classification of content, and lastly the weekday name. The
only feature not inherently numerical is the weekday name;
we convert this to an integer between 0 and 6 by using a
label encoder. As the final step before alert classification, the
data undergoes (1) imputing, and (2) scaling. The first replaces
any missing values with the median of the feature, whereas the
second scales all values to floating point numbers in the range
0 to 1. Scaling is simply for normalising the data-values and
it does not change the underlying distribution of the features.

F. Alert classification

We use a Random Forest Classifier to classify days as either
alerts or non-alerts, as it was the best performing classification
algorithm in the context of our problem. To recap, an alert
is when the feature frequencies of a user-review aggregate
indicate that the underlying user reviews may contain valuable
information for software evolution, such as potential items for
the product backlog. In this step the aggregated data-set is
passed to the alert classifier which returns predictions and class
(alert, non-alert) probabilities for each day in the data-set.

G. Report

Following the alert classification, analysts and application
developers can generate reports that provide an overview of
the feature frequencies of the day in question.



III. EVALUATION METHODOLOGY

We performed our evaluation on the output of the (binary)
alert classification problem as this shows the efficacy of the
pipeline in tackling the two main challenges previously men-
tioned: volume and noise. By correctly classifying aggregates
of user reviews containing valuable information for application
developers, the approach can be used as a means to filter out
large amounts of irrelevant reviews. Moreover, it shows that
we are able to deal with a great deal of ambiguity (noise) in
the data, and retrieve meaningful information. Figure 3 gives
an overview of the evaluation steps.

Data collection and preprocessing


Data annotation

truth-set

Training

evaluation
datasets

Sampling
days

Sampling reviews
per day

Extracting issue
per review

Selecting
applications

Selecting
time span

Filtering reviews
metadata

Selecting target
threshold

Addressing
class imbalance

Selecting
classifier

Selecting
features

Hyperparameter
tuning

Evaluation

Selecting repeats for cross-validation Selecting folds for cross-validation

Fig. 3: Evaluation pipeline.

A. Data collection and preprocessing

For our evaluation, we used a readily available Google Play
scraper5 to collect 3,011,174 reviews from four different An-
droid applications: Twitter, Snapchat, Soundcloud, and Reddit.
We chose the Google Play store due to availability of free and
well functioning scraper software, and the applications due to
their popularity and high review counts. We configured the
scraper to exclude non-English reviews and to work its way
back in time until a sufficient (spanning at least a whole year)
number of reviews had been scraped. Statistics on the resulting
raw datasets are depicted in Table III. For each dataset, we first
selected only reviews from a whole year (2020 for Snapchat,
2019 for the rest) and performed several steps to produce our
final evaluation datasets. First, we removed empty or short
reviews. Second, we filtered the metadata for each review,
keeping date, review-text, rating, up-votes (i.e., ”thumbsUp”),
and version and dropping id, userName, userImage, url, and
title. We also dropped replyDate and replyText since none of
the reviews we scraped were replied to: even though user
reviews boards and the user-feedback therein represent a great
resource to developers with respect to software evolution and
issue tracking, any dialogue between customers and developers

5https://github.com/facundoolano/google-play-scraper, MIT licensed

is clearly held outside of the Play Store review-boards (for
the applications in question). The sizes and characteristics of
the resulting datasets used in our evaluation are depicted in
Table IV.

App Size Start date End date Avg. reviews p/day
Snapchat 900K 2019/12/21 2021/06/11 1676
Twitter 1.3M 2010/04/30 2020/03/26 354
Soundcloud 575K 2010/12/21 2020/03/25 170
Reddit 256K 2016/04/07 2020/03/24 177

TABLE III: Raw data-sets.

App Size Avg. Rev. p/day
Snapchat 218K 598
Twitter 81K 222
Soundcloud 27K 75
Reddit 54K 144

TABLE IV: Cleaned, preprocessed data-sets.

B. Data annotation

The goal of this step is to produce a truth-set for the alert
classifier, whose function is to look at a day (aggregated
user reviews) and predict whether or not it contains valuable
information with respect to software evolution that could be
added to the product backlog. For this step, we annotated each
day in the truth-set as alert or non-alert; these labels were
used both for training and evaluating the performance of the
classifier.

To produce the truth-set, we first sampled 40 unique days
from each preprocessed dataset (a total of 160 days for all
four applications). The days are sampled from four distinct
groups of each preprocessed dataset: (a) 10 days where the
interaction count (sum of number of reviews and up-votes)
was the highest (peaks), (b) 10 days where the interaction
count was the lowest (valleys), (c) 10 random days, and (d) 10
days marked by the time series anomaly detection framework.
This served to produce samples that are representative of the
groups. Then, from each of the 40 days, we took a sample
of 100 reviews, stratifying on the rating—thus each sample
has the same distribution of ratings as the underlying user
reviews that day. In addition, we added the top 10 most up-
voted reviews to the sample for a day, as these are important
in determining alerts. As a result, we obtained—for each
application—4400 reviews equally spread across 40 days.

To label those days as alerts or non-alerts we used the
following protocol: We labeled a day as an alert if there
were enough interactions for a specific issue (either a feature
request or a bug report, e.g., “update causes it to crash
every time”, “please add an edit button!”, or “search button
keeps disappearing..”). We defined the condition of having
enough interactions by looking at the interaction count for
each specific issue and by calculating its percentage over the
total amount of interactions in our sample for that day. If the
interaction percentage of the most popular issue exceeded a
given threshold, we labeled the day as an alert. We used nine
different thresholds ranging from 0.1 to 0.9 in our evaluation.



In particular, annotators had to read the reviews of each
day and extract the core issue of each review. We automated
the steps of (i) counting the number of interactions for each
distinct issue found in a day, (ii) calculating the corresponding
percentages, (iii) comparing them to the nine different thresh-
olds. The result is a truth-set where each day has nine different
labels, each label denoting whether or not there was an issue
for the day with enough interactions to exceed the respective
threshold.

Annotators’ agreement In the first annotation phase, three
annotators (the authors) independently labeled all the days
of a single application, i.e., Twitter. All annotators used the
above labeling protocol along with a list of topics (i.e., issues)
identified in the reviews by one of the annotators in a trial
run. This list of topics ensured consistency in labeling, as only
topics from this list could be used. We analyzed the agreement
on the labels provided by the three annotators using Cohen’s
kappa, for each of the nine thresholds. We achieved Cohen’s
kappa values above 0.80 for all thresholds. Disagreements
were worked out among the annotators to settle on a final
consolidated truth-set for the app in question.

In the second annotation phase, given the high agreement
rate, the remaining applications were labeled by a single
annotator. A total of 15,042 reviews were labeled to form our
truth-set of 160 days.

C. Training

We now explain the process we followed when using the
produced truth-set for training and evaluating the last step of
our pipeline, the alert classification. In particular, we detail
how we (i) selected a target threshold value to report on, (ii)
addressed the class imbalance in our truth-set, (iii) selected a
classifier, and (iv) performed feature selection.

1) Selection of target threshold: Given that we had labeled
days according to nine different thresholds, we had to choose
one to report on. To recap, the threshold represents the
minimum percentage of the total amount of interactions that
an individual issue needs to have in a day in order for the day
to be labeled as an alert. Higher threshold means it takes many
more interactions per individual issue for an alert to happen.
On the contrary, lower thresholds need only few interactions-
per-issue for an alert to happen, since e.g., the 10% threshold
requires an issue to accrue only 10% of the total amount of
interactions for a given day. For our evaluation we chose the
50% threshold, which produced a fair number of alerts in our
truth-set (50 out of 160).

2) Addressing class imbalance: The distribution of classes
in our truth-set was skewed, with most labeled days being
non-alerts (110 out of 160 or 68.75%). To address this class
imbalance which can influence the classification results, we
employed SMOTE. After applying SMOTE, we obtained an
even distribution of the two classes, while the truth-set size
increased from 160 to 220 examples. We measured the classi-
fication performance with and without applying SMOTE. For
the original (unbalanced) truth-set, performance is measured
with metrics that take class imbalance into account: balanced

accuracy, weighted precision, weighted recall, and weighted
F1-score.

3) Classifier selection: To select a machine learning model
(classifier) for detecting alerts, we compared seven types of
classifiers, namely Logistic Regression, Decision Tree, Ran-
dom Forest (RF), Extremely Randomized (Extra) Trees, Linear
SVC (Support Vector Classification), Gradient Boosting, and
Extreme Gradient (XG) Boosting, and compared their recall
in predicting the alert/non-alert label per target threshold. We
selected Random Forest as the model for our evaluation as
it had the highest recall score for the threshold we chose to
report on (50%).

4) Feature selection: To investigate which features in our
truth-set contributed the most to the binary prediction, we used
(a) uni-variate feature selection methods, (b) Recursive Feature
Elimination with Cross-Validation (RFECV), and (c) impurity-
based feature selection. Feature importance was calculated
against the target threshold of 50%. For uni-variate feature
selection we used the methods F-test (ANOVA), chi-squared
test, and Mutual information (MI).

D. Evaluation

For our evaluation, we performed ten repeats of 4-fold cross
validation and averaged the resulting scores for each repeat to
get our final scores. All tests were carried out using both the
original – skewed – truth-set and the truth-set where the class
distribution has been balanced using SMOTE. Given the small
size of our truth-set (160 examples or 220 after SMOTE),
dividing the data into four folds implies that the test-set (25%)
is still of considerable size. Choosing ten repeats provides
a cross-validation method that is not too computationally
expensive; it effectively produces ten times more splits than
one-off f-fold cross-validation, hence the mean score is more
truthful since it is based on more values.

IV. RESULTS

In this section we describe (1) concrete examples of the
output of the approach, and (2) results from feature selection
and performance comparison using different feature sub-sets.

To recap, results are based on the performance of the
chosen classifier (i.e., Random Forest—RF) with respect to the
0.5 threshold on the original training-set (160 examples), as
well as on the SMOTE-balanced training-set (220 examples).
Reported scores are the mean values of 10 repeats of 4-fold
(25% testing data) cross-validation; a total of 40 splits of
random combinations of test- and train- data.

The truth-set was created from labeling 40 days from four
different Play Store applications as either alerts or non-alerts.
The concatenated truth-set contains 50 alerts and 110 non-
alerts, whereas the concrete distribution of alerts and non-alerts
for each application is listed below:

• Snapchat - 11 alerts, 29 non-alerts
• Twitter - 10 alerts, 30 non-alerts
• Soundcloud - 14 alerts, 26 non-alerts
• Reddit - 15 alerts, 25 non-alerts



Fig. 4: Alert prediction results plotted together with the manually annotated alerts from a hold-out set of ten data-points from
each application scraped.

Dataset Accuracy Precision Recall F1

Original 0.775 0.826 0.825 0.819
SMOTE 0.880 0.886 0.881 0.877

TABLE V: RF performance at 50% threshold.

A. Concrete output examples

Our approach was able to accurately detect most of the
manually labelled alerts (Table V). Figure 4 shows concrete
examples of detected (and non-detected) alerts by our ap-
proach for all four applications6. Development teams could
use these detected alerts, to further inspect issues reported in
the reviews. For example, for Snapchat an alert is detected
on 2020-07-11 (Figure 4). Table VI shows examples of the
most up-voted reviews for this day and app. These reviews
describe relevant issue reports and feature requests, among
several repeated themes, that could be added to the backlog.
In contrast days without alerts contain much less of these
repeated issue reports or feature requests7.

B. Feature selection

Uni-variate feature selection methods (ANOVA F-test, chi-
squared, and Mutual information) helped us identify static
features that were subsequently removed. As for the results of
the individual methods, ANOVA F-test and chi-squared were
largely in agreement (only slight difference in feature ranking)
while the results of Mutual information were more unique in
that it shared only 2 of the highest- and 6 of the lowest-ranked

6These examples were generated by withholding 10 labelled datapoints
from the specific application and inputting the rest of the labelled data to the
approach for the training of our best performing model

7See replication package.

features of the other two methods. Aside from removing static
features, we made no further alterations to the feature space
based on the results of uni-variate feature selection.

However, the feature space was naturally reduced through
the use of RFECV. The procedure revealed ideal feature
subsets of dimensions 20 and 34 for the original and SMOTE-
balanced truth-sets respectively, which ultimately lead to the
best performance. To give an overview, the feature importances
derived from calculating leaf node impurity index with RF
of the top-5 features are depicted in Table VII8. We can
clearly see that the two most important features are: (1)
pcnt interaction neg: Percentage of interactions for reviews
with rating <= 3, and (2) pcnt upvotes oth: Percentage of
up-votes for reviews with category “Other”.

The performance of the classifier when using all available
features is depicted in Table VIII, line 1. Of the available
features, our assumption is that the interactions feature is
most discriminant with respect to determining alerts, thus we
investigated performance of the classifier when using only this
single feature (Table VIII, line 2). We also investigated the
performance of the classifier using the features from TADF
(diff, value, qd, qd mz, dqd mz) together with the interaction
count (Table VIII, line 3). Lastly, we evaluated the perfor-
mance of the classifier using a feature-space where the least
important features were removed using RFECV (Table VIII,
line 4). These tests were carried out using only default values
for the estimator.

The results from experimenting with various feature sub-
sets show that indeed the interactions feature on its own is
helpful to some degree in determining alerts, but is aided
significantly by the features from TADF. Using all features

8the full feature space is available in our replication package



Rating Review text Up-votes

2 ”Latest update is trash, difficult to use, way to many buttons, and the fact that sometimes when you go to swipe right on user
or group chat, it takes you to map, is annoying. The new multi snap feature is only available to SEE (can be used just cant
see what is sent) for those who get absolutely every update. To those who dont have iPhone, this update is broken and annoying.”

657

5 ”It’s a really good app but I’m not sure if the cameo thing isn’t supposed to be there but please add it in, anyways this app is
amazing and no other App be able to beat it and this is by far my favourite app, keep up the amazing work, also I have an idea,
maybe you could add a feature: share to world, so like if it famous and all you could just click that button and it would be like
share to the whole world if anyone doesn’t want to see if they don’t have to click on it, it’s a good idea though”

599

2 ”Just been updated, and now we can no longer swipe into conversations. Instead takes you to the snap map, I’ve gotten so
used to how it already functioned and it was fine the way it was. Now I’ll accidentally keep swiping into the map instead of
conversations. Also there’s a bar across the bottom of the screen with the 5 tabs and or looks tacky compared to what was
before.”

558

1 ”Ok, I’ve been using the app for years, and today everything was normal and good. Messages on my life,snap map up top,and the
discover/stories on the right. But then OUT OF NOWHERE it downgraded to a weird version where everything is separate. Where
the snap map is on the left and the discover/story pages ARE SEPARATE. What happened!? Please fix this problem ASAP”

396

1 The new UI is disgusting. The functionality of this app is nothing short of garbage. Incredibly unintuitive and the photo/video
editor is one of the worst I’ve ever used. They should be embarrassed to be a publicly traded company.

306

TABLE VI: Examples of the five most upvoted reviews for Snapchat on an alert day. Main issues and feature requests are
highlighted with bold.

Overview of the top 5 feature-space; feature importance (column 5, Importance) is impurity-based.

Index Source Feature Description Importance

1 Aggregation pcnt interaction neg Percentage of interactions for reviews with rating <= 3 0.102358
2 Content Cat. pcnt upvotes oth Percentage of up-votes for reviews with category “Other” 0.095947
3 Aggregation avg upvote count neg reviews Average up-vote count for reviews with rating <= 3 0.073512
4 Sentiment pcnt upvotes pos Percentage of up-votes for reviews with sentiment “Positive” 0.071298
5 Aggregation pcnt upvote neg Percentage of up-votes for reviews with rating <= 3 0.070144

TABLE VII: Feature index, source, name, description and impurity-based importance of 5 top features.

Features Classifier Dataset Accur. Prec. Recall F1

All features RF Default Original 0.756 0.807 0.806 0.800
SMOTE 0.866 0.870 0.868 0.864

Interactions RF Default Original 0.584 0.645 0.638 0.637
SMOTE 0.654 0.658 0.657 0.651

Inter.+TADF RF Default Original 0.638 0.711 0.720 0.703
SMOTE 0.789 0.790 0.790 0.786

RFECV RF Default Original 0.775 0.826 0.825 0.819
SMOTE 0.880 0.886 0.881 0.877

RFECV RF Tuned Original 0.764 0.823 0.820 0.812
SMOTE 0.853 0.857 0.856 0.851

TABLE VIII: Performance scores per feature sub-set and
classifier setting.

available increases performance even more. However, the
best results are obtained using RFECV, which reduces the
complexity of the classification task by eliminating features
from the truth-set. To get the results listed in Table VIII, line 4,
we ran RFECV for both the SMOTE-balanced truth-set and the
imbalanced (original) truth-set; as expected the difference in
alert distribution between the two truth-sets caused the process
to yield different results. For the original truth-set, only 20
features were kept (out of a total of 42), whereas using the
balanced truth-set 34 features were kept. By balancing out the
class distribution using SMOTE, the RFECV procedure had to
retain 14 more features than it did with the original truth-set.

V. THREATS TO VALIDITY

Threats to conclusion validity. When working with machine
learning algorithms such as the RF, we run the risk of the
estimator object over- or under- fitting to the training data.
In this case the resulting model will be poor, and will likely
produce misleading results. To address this threat and to ensure
that our results can be trusted, we use 10 repeats of 4-
fold cross-validation for every experiment, which adds to the
confidence of our results.

Threats to construct validity. The manual labeling procedure
through which the estimator’s training-data is produced, is
liable due to (a) subjectivity on part of the annotator and
(b) lack of clear instructions may cause results to be varied
(unique, uneven) in general. The quality of this procedure ul-
timately affects the quality of the evaluation, as the evaluation
revolves around the predictive capabilities of the classifier.
To address these threats we developed a concise labeling
protocol to consolidate labeling efforts. We also conducted
a preliminary annotation phase where labeling results where
compared, agreement-rates were evaluated, and disputes were
resolved in plenum.

Threats to external validity. We collected a large amount
of data from software applications from four distinct do-
mains: micro-blogging, music streaming, discussion/forum,
and instant messaging. Having applications from a variety of
domains mitigates the threat of excessively homogeneous data.
Nevertheless, future work should evaluate the approach on
reviews from a wider set of applications. In procuring samples
for manual labeling, we mitigated threats to external validity



by first selecting days from four distinct sub-groups of the
population, and then selecting user-review samples where we
stratify on the rating. This ensured that both the days and user-
reviews selected were representative of the data population as
a whole. We ran our evaluation on reviews stemming from a
whole year, we expect similar results as the ones in reported
in these study for time-series running over a longer time or
consisting of data of more recent years.

VI. RELATED WORK

Research on user review mining has grown considerably in
recent years. Among the most studied platforms for automati-
cally processing user feedback are app stores. Previous studies
[8], [9] surveyed the most relevant work in the area. We refer
to them for a more thorough discussion of the vast work in the
area. Research has proposed approaches for classifying, [10]–
[14], grouping, [3], [15]–[18] and prioritizing ,e.g., [3], [15],
[16] user feedback, as well as for extracting software features
mentioned in the feedback [2], [4], [19] and linking it to
other artifacts [20]. Recent work has also studied user feedback
from additional channels, such as Twitter [21]–[23] Facebook
[24] and Reddit [25], [26]. Our approach could also work on
feedback from these channels, with slight modifications on the
list of features.

The focus of previous work has been on performing au-
tomatic analysis at the individual-review level. An exception
on this focus is the work of Gao et. al. [5]. This work
aims to detect issues as they emerge in user-feedback. They
introduce a novel method used to track variations in topics over
time – optimized for the user-feedback in app stores context
where documents are generally shorter and noisier. Similar
to our work, they also employ anomaly detection, but do so
with respect to the evolution of topics in reviews that they
capture, whereas our anomaly detection targets the evolution
of interactions.

VII. CONCLUSION

We present an approach to address the challenge of volume
and noise in user-feedback in app stores; a time-series based
anomaly detection and classification pipeline that can be
tuned to different degrees of granularity and sensitivity. With
the best performing F1 score of 0.88, we demonstrate the
efficacy of our approach in reducing large volumes of user
reviews to their essential parts. Detecting anomalies in the
feature frequencies of time series of user reviews as opposed
to focusing on individual user reviews is a departure from
conventional research in this particular area, and we show
that it is an effective approach for detecting reviews that
contain valuable information for software evolution (e.g., new
requirements and issues that belong in the product backlog).

REFERENCES

[1] M. Khalid, U. Shehzaib, and M. Asif, “A case of mobile app reviews
as a crowdsource.” International Journal of Information Engineering &
Electronic Business, vol. 7, no. 5, 2015.

[2] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining user
opinions in mobile app reviews: A keyword-based approach (t),” in ASE,
2015, pp. 749–759.

[3] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-Miner: Mining
Informative Reviews for Developers from Mobile App Marketplace,” in
ICSE, 2014, pp. 767—-778.

[4] E. Guzman and W. Maalej, “How do Users like this Feature? A fine
grained Sentiment Analysis of App Reviews,” in RE, 2014, pp. 153–
162.

[5] C. Gao and J. Z. et al, “Online app review analysis for identifying
emerging Ïiissues,” ICSE, 2018.

[6] M. R. Alam, I. Gerostathopoulos, C. Prehofer, A. Attanasi, and T. Bures,
“A framework for tunable anomaly detection,” in ICSA, 2019, pp. 201–
210.

[7] E. Guzman, L. Oliveira, Y. Steiner, L. C. Wagner, and M. Glinz, “User
feedback in the app store: a cross-cultural study,” in ICSE, 2018, pp.
13–22.

[8] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” Transactions on Software
Engineering, vol. 43, no. 9, pp. 817–847, 2016.

[9] J. Dabrowski, E. Letier, A. Perini, and A. Susi, “Analysing app reviews
for software engineering: a systematic literature review,” Empirical
Software Engineering, vol. 27, no. 2, pp. 1–63, 2022.

[10] A. Kunaefi and M. Aritsugi, “Characterizing user decision based on
argumentative reviews,” in International Conference on Big Data Com-
puting, Applications and Technologies, 2020, pp. 161–170.

[11] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in mobile
app reviews,” Empirical Software Engineering, vol. 21, no. 3, pp. 1067–
1106, Jun 2016.

[12] E. Guzman, M. El-Halaby, and B. Bruegge, “Ensemble Methods for App
Review Classification: An Approach for Software Evolution,” in ASE,
2015, pp. 771–776.

[13] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
On automatically classifying app reviews,” in RE, 2015, pp. 116–125.

[14] S. Panichella, A. Di Sorbo, E. Guzman, C. Visaggio, G. Canfora, and
H. Gall, “How Can I Improve My App? Classifying User Reviews for
Software Maintenance and Evolution,” in ICSME, 2015, pp. 281 – 290.

[15] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in ICSE, 2016, pp. 14–
24.

[16] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
FSE, 2016, pp. 499–510.

[17] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments:
an approach for software requirements evolution,” in ICSE, 2013, pp.
582–591.

[18] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in MSR, 2013, pp. 41–44.

[19] X. Gu and S. Kim, “”what parts of your apps are loved by users?”,” in
ASE, 2015, pp. 760–770.

[20] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” in ICSE, 2017, pp. 106–117.

[21] E. Guzman, R. Alkadhi, and N. Seyff, “A Needle in a Haystack: What
Do Twitter Users Say about Software?” in RE, 2016, pp. 96–105.

[22] G. Williams and A. Mahmoud, “Mining twitter feeds for software user
requirements,” in RE, 2017, pp. 1–10.

[23] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me: Mining
tweets for requirements and software evolution,” in RE, 2017, pp. 11–20.

[24] E. Oehri and E. Guzman, “Same same but different: Finding similar
user feedback across multiple platforms and languages,” in RE, 2020,
pp. 44–54.

[25] T. Iqbal, M. Khan, K. Taveter, and N. Seyff, “Mining reddit as a new
source for software requirements,” in RE, 2021, pp. 128–138.

[26] L. Olson, E. Guzmán, and F. Kunneman, “Along the margins: Marginal-
ized communities’ ethical concerns about social platforms,” ICSE, 2023.


