
How do we Evaluate Self-adaptive Software Systems?
A Ten-Year Perspective of SEAMS

Ilias Gerostathopoulos1, Thomas Vogel2, Danny Weyns3, and Patricia Lago1
1Vrije Universiteit Amsterdam, Netherlands, 2Humboldt-Universität zu Berlin, Germany, 3KU Leuven, Belgium

Abstract—With the increase of research in self-adaptive sys-
tems, there is a need to better understand the way research con-
tributions are evaluated. Such insights will support researchers
to better compare new findings when developing new knowledge
for the community. However, so far there is no clear overview
of how evaluations are performed in self-adaptive systems. To
address this gap, we conduct a mapping study. The study focuses
on experimental evaluations published in the last decade at the
prime venue of research in software engineering for self-adaptive
systems—the International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). Results
point out that specifics of self-adaptive systems require special
attention in the experimental process, including the distinction
of the managing system (i.e., the target of evaluation) and the
managed system, the presence of uncertainties that affect the
system behavior and hence need to be taken into account in
data analysis, and the potential of managed systems to be reused
across experiments, beyond replications. To conclude, we offer a
set of suggestions derived from our study that can be used as
input to enhance future experiments in self-adaptive systems.

I. INTRODUCTION

Increasingly, we expect software-intensive systems be able
to change their structure and behavior at runtime to continue
meeting their goals while operating under uncertainty—they
need to be self-adaptive. Self-adaptation is typically realized
via feedback loops that continuously monitor a system and
enact changes to the system. Self-adaptation has been an
active area of research for over 20 years [74], initiated by
IBM’s pioneering vision of autonomic computing [34] and the
seminal work of Oreizy et al. [46] and Garlan et al. [24].

Numerous new approaches focusing on a variety of aspects
of engineering self-adaptive systems (runtime models [59],
modeling languages [70], verification at runtime [8], plan-
ning [47], etc.) have been proposed by the research commu-
nity. To that end, a set of exemplars and reusable artifacts were
developed for use by the self-adaptive systems community.1

Given this substantial body of work in the area, it is important
to obtain a clear view of how contributions have been eval-
uated. While related work has shed light on some aspects of
evaluation, e.g., [6], [50], [56], to the best of our knowledge,
no study has targeted an in-depth analysis and characterization
of the way experimental evaluations have been conducted.

Evaluation is central to self-adaptive systems (as for any
type of software systems), since novel approaches must be as-
sessed based on their contribution [5]. Yet, evaluating contribu-
tions of self-adaptive systems may raise particular challenges
due to the specifics of these systems [13] (e.g., the use of
feedback loops to realize adaptation) and their ability to deal

1Exemplars published at SEAMS: http://self-adaptive.org/exemplars.

with uncertainty during operation [7]. Understanding the state
of the art in conducting evaluations in self-adaptive systems
enables researchers to better compare new findings. Hence, it
is important to provide a systematic overview of evaluations
of self-adaptive systems, which is currently missing.

To fill this gap, we performed a mapping study [51] aimed
to address the question “How do we evaluate self-adaptive
software systems?” We focus on experimental evaluations,
i.e., evaluations that use one or more experiments, since
experiments are the most common evaluation approach used
in self-adaptive systems. Concretely, the study is centered on
(i) the scope of experiments, (ii) the way experiments are
designed and operated, and (iii) the way the results of such
experiments are analyzed, and (iv) packaged.

The remainder of this paper is structured as follows. Sec-
tion II presents background and related work. In Section III,
we summarize the study protocol, including research questions
and process. Section IV presents the results of the study and
answers the research questions. In Section V, we discuss
insights and threats to validity, and we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

A. Basic Concepts of Self-Adaptive Systems and Experiments

This study focuses on what is known as architecture-
based adaptation [24], [37], [46], i.e., a widely applied ap-
proach to realize self-adaptation (see [73] for an overview).
In architecture-based adaptation, a self-adaptive system com-
prises a managed system that is controllable and subject to
adaptation, and a managing system that performs the adapta-
tions of the managed system. The managed system operates
in an environment that is non-controllable. The managing
system forms a feedback loop that is structured according
to the MAPE-K reference model, comprising four functions:
Monitor-Analyze-Plan-Execute that share Knowledge [34]. In
this mapping study, we analyze primary studies from the
perspective of architecture-based adaptation and MAPE-K.

We explain now the basic concepts that we used in the study
design. These concepts are based on the process and basic
artifacts used in controlled experiments [77]. While we rely
on these concepts, we are interested in all papers that apply
an experiment in the broad sense, meaning papers that include
most of the stages of the process of controlled experiments,
explicitly or implicitly. Our particular focus is on technology-
oriented experiments that have systems and software elements
as subject of the study (in contrast to studies with humans).

An experiment starts with an idea for an evaluation, for
instance, evaluate a new runtime analysis technique and com-

http://self-adaptive.org/exemplars


pare it with a state-of-the-art approach. This idea is turned into
a hypothesis.2 The experiment then tests this hypothesis by
studying the effect of manipulating one or more independent
variables of the studied case. The three types of independent
variables are: constants that have a fixed value for the whole
experiment, factors that are expected to have an effect on
the outcome, and blocking factors that may have an effect
but we are not interested in that effect.3 We use the term
experiment configuration to refer to the assignment of values
to the independent variables4 and experiment design to refer
to the set of experiment configurations under study. During an
experiment, the effect on the dependent variables caused by
different experiment configurations (i.e., selected values for
the independent variables) can be measured. Hence, an exper-
iment essentially tests the relationship between the experiment
configurations and the outcome, allowing researchers to draw
conclusions about the cause-effect relationship to which the
approach under study refers for the stated evaluation problem.

The process of an experiment comprises five steps [77]:
(1) experiment scoping defines the goals of the experiment;
(2) experiment planning refines the goals to determine the
experiment design, which includes selecting a context in which
the experiment is carried out, formulating the hypothesis to
be tested, selecting the independent and dependent variables,
selecting subjects, choosing the experiment configurations,
defining how the experiment should be executed and moni-
tored, and evaluating the validity of the results; (3) experiment
operation prepares and executes the experiment, (4) analysis &
interpretation analyzes the data collected from the experiment
and tests the hypothesis, and (5) presentation & packaging
presents the results and makes a replication package available.

B. Focus of our Study
This mapping study aims at understanding how evaluations

of self-adaptive software systems are performed in studies
presented at the International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS).
To focus the review, we performed a preliminary analysis of
the evaluation methods that were applied in the full papers
published at SEAMS between 2011 and 2020. We labelled the
evaluation methods according to the following categories: no
evaluation, showcase, experiment, review, questionnaire, and
proof. A showcase presents results from a single experiment
configuration [77, p. 75]. An experiment, on the other hand,
provides quantitative comparative results for more than one
experiment configuration. A controlled experiment is an ex-
periment that follows a rigorous well-defined process [77]. We
found that more than 65% of the examined studies (82 out of
126 full papers) contained at least one experiment. Since the
majority of studies use experiments for evaluation, we decided
to focus our study on experiments as the evaluation method.

2Instead of hypotheses, researchers may use research questions, or even
informal descriptions to capture the idea of the evaluation.

3If an experiment includes a blocking factor whose values create blocking
groups, the analysis of the main factors (for which the experiment wants to
study the effect) is performed within each blocking group to increase the
experiment’s precision.

4An experiment configuration relaxes Wohlin et al.’s definition of a
treatment being the assignment of a particular value to one factor [77].

C. Related Work

In the field of self-adaptation, several related efforts pay
attention to contributions in the field [14], [26], [38], [40],
[44], [49], but do not provide an in-depth study of evaluation
aspects. Other related studies do consider evaluation aspects,
but they take a specific angle focusing on: claims and evi-
dence in self-adaptive systems [75], [76], quality aspects and
metrics [6], [15], [41], [50], [56], [69], and methodology [1],
[53], [65]. In contrast, our mapping study targets an in-
depth analysis and characterization of the way experimental
evaluations have been designed, conducted, analyzed, and
packaged.

III. SUMMARY OF THE PROTOCOL

Following the guidelines of [51], we conducted the mapping
study with four researchers that jointly developed the protocol.
To ensure validity, the protocol was also reviewed by experts
in self-adaptation and experimental software engineering. We
made the protocol available as part of our replication package.5

A. Research Questions

We formulate the goal of our mapping study by using the
classic Goal-Question-Metric (GQM) approach [68]:

Purpose: Organize and characterize
Issue: how evaluations of self-adaptive software sys-
tems are performed
Object: in research on self-adaptation published at
the 10 most recent SEAMS installments
Viewpoint: from a researcher’s viewpoint.

We detailed this goal into five concrete research questions
that correspond to the five phases of the experiment process.
RQ1: What is the scope of experiments?
RQ2: What is the experimental design?
RQ3: How are experiments operated?
RQ4: How is the experiment data analyzed?
RQ5: How are experiment results packaged?

With RQ1, we aim to understand the purpose and object of
evaluations. With RQ2, we want to obtain in-depth insights in
independent and dependent variables, experiment configura-
tions, and designs. This will shed light on the complexity and
variability of experiments applied for self-adaptive systems.
With RQ3, we want to characterize how experiments on self-
adaptive system are executed, with particular emphasis on
aspects specific to self-adaptive systems such as the distinction
between managed and managing system. With RQ4, we want
to get insights of how experiment results are analyzed (e.g.,
using descriptive or inferential statistics). Finally, with RQ5,
we want to obtain an overview of whether and how experiment
results are made available and packaged for replication.

B. Search Strategy

We examine primary studies published at the main venue
on engineering self-adaptive systems—SEAMS. First, there is
a normative justification for this focus. Studies presented at

5https://doi.org/10.5281/zenodo.4622749

https://doi.org/10.5281/zenodo.4622749


SEAMS provide a representative sample of software engineer-
ing research of self-adaptive systems. Other studies have also
chosen to focus on one specific venue such as ICSE [63], [79].
According to the ACM SIGSOFT Empirical Standards [57],
which are currently under development, this is an acceptable
deviation to perform secondary studies. Second, there is a
qualitative justification. To make a useful and accurate assess-
ment of the features we target in this review, we need relevant
data. Based on our combined experience as active members
of the SEAMS community, we believe that studies presented
at SEAMS provide a source of such relevant data. In light
of these two arguments, we acknowledge that our focus may
create some degree of bias that we further discuss as a threat
to external validity.

C. Inclusion and Exclusion Criteria

We use the following inclusion criteria to select papers:
• IC1: The paper is published at SEAMS between 2011 and

2020 (included). In 2011 SEAMS became a symposium,
which increased the level of the evaluations significantly.

• IC2: The paper empirically evaluates an approach by
using one or more technology-oriented experiments.

We use the following exclusion criteria:
• EC1: The paper is not a full research paper. These papers

typically do not empirically evaluate a new approach.
• EC2: The paper presents a secondary study (e.g., liter-

ature review, survey, mapping study) or an overview of
the field (e.g., taxonomy, roadmap). These papers do not
present and evaluate a novel approach for self-adaptation.

A paper is selected if it meets all of the inclusion criteria
and does not meet any exclusion criterion.

D. Data Items

To answer the research questions, we define a set of data
items to be extracted from the papers, see Table I. Since the
data items refer to a single experiment and a study may contain
more than one experiment, we identify all the experiments
that are included in a study and then extract the data of
each experiment independently. The column “Process Step”
shows that our study covers the whole experiment process (see
Section II-A) and key aspects that are relevant for technology-
oriented experiments as reported at SEAMS.

E. Approach for the Analysis

We tabulate the data that we extract from the primary studies
in spreadsheets for processing. We use descriptive statistics
to structure and present the quantitative aspects of the data,
and comprehensible summaries of the data to answer the
research questions. We present results with plots using simple
numbers and sometimes means and standard deviations to help
understand the results. For the data items F1, F2, F4–F7, and
F13, we collect free text and apply coding [71] to capture
the essence of the answers. As a concluding step, we produce
a schematic overview of the experimental process for self-
adaptive systems, allowing us to identify any difference from
the “traditional” experiment process (see Section II-A).

IV. RESULTS

A. Demographic Information
From a total of 224 papers presented at SEAMS in the

period between 2011 and 2020, we identified 126 full papers
and from those, we selected 82 primary studies (65%) after
applying the inclusion and exclusion criteria, see Fig. 1. The
primary studies reported a total of 140 experiments (1.71 on
average, 0.34 std.). The results show that the relative number
of full papers that use experiments for evaluation increased
from 57% in the period from 2011 to 2015 to 78% in the
period from 2016 to 2020 (with even 100% in 2020). At the
same time, the average number of experiments per primary
study increased from 1.52 in the first period to 1.92 in the
second period. These numbers underpin an increasing level of
mature evaluations in papers published at SEAMS over time.

Co
un

t

0

10

20

30

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

All papers Full papers Primary studies

Fig. 1: Overview of selected primary studies per year.

B. What is the Scope of Experiments?
To answer RQ1, we collected the data about the targets of

the evaluations (F1), and the objectives of evaluations (F2).
Fig. 2 plots the counts for the targets of the evaluations (F1)

reported in the primary studies. In 50 studies (61%), the
evaluation targeted a new integrated adaptation approach that
covers the full feedback look. For instance, Derakhshanmanesh
et al. [16] present an adaptation framework that uses graph-
based models throughout the feedback loop. Next, 16 studies
(20%) evaluated a new learning method. For instance, Duarte
et al. [18] contribute a method for learning linear models
that capture non-deterministic impacts of adaptation. Notably,
the numbers for new learning methods increased from five
in the period from 2011 to 2015 to 11 in the period from
2016 to 2020. The remaining studies focused on evaluating
new approaches for distinct MAPE-K stages. Among these,
11 studies targeted a planning method and ten studies targeted
an analysis method. Only one study targeted a new monitoring
approach [42] and one other study targeted an execution
approach [23]. Independently of the evaluation targets, 79 of
all 140 experiments (56%) reported in the primary studies used
the full feedback loop, while 61 experiments (44%) considered
only a part of the feedback loop in the evaluation.

Fig. 3 shows the results of the evaluation objectives (F2)
used in the experiments. We extracted 165 individual evalu-
ation objectives from the 140 experiments: 116 experiments



TABLE I: Extracted data items.

ID Item Use Process Step Explanation

F1 Target of evaluation RQ1 Experiment scoping The main element that is subject of evaluation, incl. the whole feedback
loop and methods for distinct MAPE-K stages and learning.

F2 Objectives of evaluation RQ1 Experiment scoping The aspects of the proposed approach that are evaluated, mentioned
explicitly or implicitly.

F3 Formulation of evaluation problem RQ2 Experiment planning Captures whether there is an explicit formulation of the evaluation
problem by either research questions or hypotheses.

F4 Constants RQ2 Experiment planning The names of the variables that are constant across the experiment.
F5 Blocking factors RQ2 Experiment planning The names of the variables that are used to create experiment blocks,

but without interesting effect [77, p. 94].
F6 Factors RQ2 Experiment planning The names of the variables that change across experiment configurations.
F7 Dependent variables RQ2 Experiment planning The names of the variables that measure the effect of an experiment

configuration, also called “response variables” [77, p. 74]).
F8 Counts experiment variables RQ2 Experiment planning The number of values of independent and dependent variables used in

experiments (referring to F4, F5, F6, and F7).
F9 Design type RQ2 Experiment planning The design type used in the experiment, following the standard design

types described by Wohlin et al. [77, p. 95].

F10 Managed system name RQ3 Experiment operation The name of the managed system, if any. The managed system may be
a SEAMS artifact, see http://self-adaptive.org/exemplars.

F11 Nature of managed system RQ3 Experiment operation The type of managed system used in the evaluation, incl. model,
simulated/emulated, real implementation, and real-world application.

F12 Data provenance RQ3 Experiment operation Source of data related to the users or the environment of the managed
system, incl. synthetic data, emulated data, and real-world data.

F13 Uncertainty RQ3 Experiment operation The way uncertainty is represented in the experiment. This type of
uncertainty can create the need for self-adaptation.

F14 Type of analysis RQ4 Analysis & interpretation The type of analysis that is performed on the experiment results, incl.
none, exposition (narrative), descriptive statistics, and statistical tests.

F15 Answer to evaluation problem RQ4 Analysis & interpretation Whether there is an explicit answer to research questions or hypotheses.
F16 Threats to Validity RQ4 Analysis & interpretation The types of threats to validity mentioned (in a dedicated sec-

tion/subsection or paragraph), if any.

F17 Results available RQ5 Presentation & packaging Captures whether evaluation results are available (e.g., via a URL).
F18 Degree of reproducibility RQ5 Presentation & packaging Captures whether the implementation of the approach is available or the

full replication package is available (e.g., via a URL).

Co
un

t 
pe

r 
pr

im
ar

y 
st

ud
y

0

10

20

30

40

50

Feedback 
Loop 

Approach

Learning 
Method

Planning 
Method

Analysis 
Method

Monitoring 
Method

Execution 
Method

Fig. 2: Count of evaluation targets (F1) per primary study.

(83%) had one evaluation objective, 23 (16%) had two
objectives, and one had three objectives. The top-reported
evaluation objective is effectiveness that was used 75 times
(45% of 165), followed by learning ability (used 34 times,
21%) and time efficiency (used 24 times, 15%). As examples,
Jamshidi et al. evaluate the effectiveness in terms of the
number of completed robot missions [32], while Nikravesh
et al. evaluate the learning ability by assessing accuracy of
different workload predictors [45]. Sousa et al. evaluate the
time efficiency of planning by measuring the time to find

a valid configuration [64], while Shin et al. evaluate the
scalability of a search-based adaptation approach in terms of
execution time with increasing network size [62].

Fig. 4 maps the evaluation targets (F1) to the objectives (F2).
The results show that effectiveness is used as evaluation
objective for all types of evaluation targets. New feedback loop
approaches are mostly evaluated for effectiveness (46 experi-
ments) and time efficiency (17 experiments). Not surprisingly,
learning ability is the top evaluation objective for new learning
methods (in 31 experiments). Scalability is used as evaluation
criterion for four of the six evaluation targets (not for the single
new proposed execution [23] and monitoring methods [42]).

Answer to RQ1: What is the Scope of Experiments? The
main evaluation target of experiments in self-adaptive systems
is a new integrated feedback loop approach with effectiveness
and time efficiency as main evaluation objectives. Recently, we
observe a rapid increase in experiments that focus on new learning
approaches evaluated for their ability to learn and effectiveness.

C. What is the Experimental Design?

To answer RQ2, we collected data about the formulation of
the evaluation problem (F3), the independent variables (i.e.,
constants (F4), blocking factors (F5), and factors (F6)), the
dependent variables (F7), the counts of values of the different
types of variables (F8), and the design type (F9), see Table I.

http://self-adaptive.org/exemplars


C
ou

nt
 p

er
 e

xp
er

im
en

t

0

20

40

60

80

Effectiveness Learning 
ability

Time 
efficiency

Scalability Robustness Other

Fig. 3: Count of evaluation objectives (F2) per experiment.

46

8

12

2

10

12 1

31

5

1

6

1

12

3 4
2

17

2 3 3

0

5

10

15

20

25

30

35

40

45

50

Feedback Loop
Approach

Analysis Method Planning Method Execution Method Learning Method Monitoring Method

Co
un

t p
er

 e
xp

er
im

en
t

Effectiveness Learning ability Other Robustness Scalability Time efficiency

Fig. 4: Mapping of evaluation targets (F1) to objectives (F2).

Only 28 studies (34%) provide a well-defined formulation
of the evaluation problem (F3), of which 21 (26%) use
research questions and 7 (8%) use hypotheses. For example,
Jamshidi et al. specify three research questions (on accuracy,
effectiveness, and robustness) that guide their evaluation [31],
while Fredericks uses null hypotheses to compare the pro-
posed approach to a baseline (on effectiveness of generating
adversary environments and effectiveness of adaptation) [21].
The remaining 54 primary studies (66%) provide an infor-
mal description of the evaluation problem.6 For example,
Pournaras et al. describe the goal of their evaluation in an
informal way [54]. Remarkably, this result resembles those
of an early survey of primary studies of SEAMS before the
year 2012 [76], suggesting little progress in formulating clearly
defined research problems in studies presented at SEAMS.

Fig. 5 gives an overview of the overall count of independent
variables (F4, F5, F6) in the experiments (see Section II-A for
a description of the different types of independent variables).
From all the experiments reported in the primary studies we
extracted 141 constants (avg. per experiment 1.01, std. 0.95).
“Load profile” is the constant with the highest number of
occurrences (used in 26 experiments, e.g., [17], [20], [29]);
other examples are “number of nodes” [12], “number of sen-
sors” [25] and “learning/optimization hyperparameters” [45],
[48]. From all experiments, we extracted 95 blocking factors

6With informal description we mean the evaluation problem is described
with some general words or is only provided implicitly.

141

95

202

Count of occurrences

Constants

Blocking factors

Factors

0 20 40 60 80 100 120 140 160 180 200

Managing system Managed system Environment Cross-cutting Goals

Fig. 5: Count of independent variables (F4, F5, F6).

(avg. per experiment 0.68, std. 0.91). For example, “deploy-
ment environment” was used to block the analysis of elasticity
configurations in two settings: private and public cloud [28].
Finally, we extracted in total 202 factors (avg. per experiment
1.44, std. 0.85). For example, “assurance approach” in [21]
took two values that correspond to the proposed approach
(genetic algorithm) and a baseline (random search) that are
evaluated against adversarial environments of the system.

The results show that 200 of a total of 438 independent
variables (46%) relate to the managing system. Specifically,
128 of a total of 202 factors (28%) relate to the managing
system, indicating that experiments in self-adaptive systems
target prominently the evaluation of new approaches and
methods of the managing system. On the other hand, 92
independent variables (21%) relate to the managed system
and 63 relate to the environment (14%), the latter are mostly
constants in the experiments. Notably, only 38 independent
variables (9%) relate to system goals (17 of these are factors).
These figures suggest a relatively low interest in considering
the impact of goals in the evaluation of new approaches for
self-adaptive systems. Finally, the group “Cross-cutting” refers
to independent variables that cross-cut at least two elements
of a self-adaptive system (managing system, managed sys-
tem, environment, goals). We extracted 45 such independent
variables (10%). Among these, the most frequent combina-
tion is a variable that cross-cuts managed system and goals
representing a scenario that warrants adaptation. For example,
Shevtsov et al. [60] uses a scenario that is defined by a set of
sensors that need to perform a monitoring task with maximum
measurement accuracy while being exposed to failures.

Fig. 6 shows the results for the dependent variables (F7). We
identified five classes of dependent variables from a total count
of 267 concrete variables used in the experiments (on average,
1.91 variables per experiment; 1.10 std.). The dominant de-
pendent variable is “Time behavior”7 that was used 127 times
(48% of the total count). As an example, the response time of
an online news service (ZNN, a popular SEAMS artifact) was
measured in [2]. Other frequently used dependent variables

7These variables measure a time-related property. The most prominent
variables are response time (31 times used) and processing time (29 times).



127

48

45

25

13

Count of occurrences

Time behaviour

Functional 
appropriateness

Resource 
utilization

Functional 
correctness

Reliability

0 20 40 60 80 100 120 140

Managing system Managed system Both User

Fig. 6: Count of dependent variables (F7). Out of the total of
267 occurrences, 9 belong to smaller categories not depicted.

are “Functional appropriateness”8 (48 times; 18% of the total
count) and “Resource utilization” (45 times; 17% of the total
count). For example, “distance scanned” was used to assess
the functional appropriateness of the proposed solution in [60],
while the number of servers was used to assess the resource
consumption in [28]. Notably, we found only 13 concrete
variables related to “Reliability.”9 For example, packed loss
is used to assess reliability in [67]. The dependent variables
refer mostly to the managed system (146 times, 55% of the
total count) followed by both managing and managed system
(57 times, 21%) and managing system (50 times, 19%).

Table II summarizes the average numbers of different types
of variables (F8) used per experiment.

TABLE II: Average numbers of variables per experiment.

Variable Avg Std

Constants 1.01 0.95
Blocking factors 0.68 0.91
Factors 1.44 0.85
Dependent variables 1.91 1.10

While these numbers give us an insight in the variables
used in the experimental design, we also extracted data about
the use of standard design types (F9) to get a better view
of the concrete design types used in experiments in self-
adaptive systems.10 Fig. 7 shows the results. Out of all 140
experiments, 55 experiments (39%) use a standard design
type. The most frequently used standard design type is “One
factor with more than two values” (32 experiments, 23%).
For example, the experiment design in [9] involves one
factor (“managing system”) with three values corresponding
to using built-in adaptation mechanisms, using architecture-
based adaptation (Rainbow) with default adaptation strategies,

8These dependent variables measure the suitability of a new approach
from a functional viewpoint. Examples are the degree that goals are satisfied
and the degree of financial profit obtained from applying a new approach.

9We counted the variables that explicitly refer to reliability, or are clearly
connected such as packet loss in a network. However, variables of other classes
may indirectly relate to reliability. E.g., a variable that measures functional
correctness may be important to achieve a required level of reliability.

10We use the four standard design types for experimentation in software
engineering described by Wohlin et al. [77, p. 95].

Co
un

t 
pe

r 
ex

pe
rim

en
t

0

25

50

75

100

Other One factor with 
more than two 

values

One factor with 
two values

Two factors 
with two values

More than two 
factors each 

with two values

Fig. 7: Standard design types used in experiments (F9).

and using Rainbow with improved adaptation strategies. Of
the 55 experiments that use a standard design, 49 (35% of
all experiments) use one factor with two or more values.
However, a majority of 85 experiments (61%) do not use a
standard design type. These experiments use a design with
different combinations of factors and values for these factors.
For instance, the experiment by Kistowski et al. to evaluate
load extraction methods has one factor and three blocking
factors, generating a total of 96 experiment configurations [36].

To get further insight in the concrete designs of experiments
in self-adaptive systems, we combined the data collected
for the evaluation objectives (Fig. 3), independent variables
(Fig. 5), and dependent variables (Fig. 6). This allowed us to
identify a number of patterns for different evaluation objectives
that map independent to dependent variables, see Table III.11

The pattern for effectiveness applies two methods of a
managing system combined with constants, and measures the
effect on resource utilization or time behavior of a managed
system (13 instances). For example, Barna et al. [4] evaluate
the effectiveness of mitigating DoS attacks by comparing
two mitigation methods based on measured CPU utilization
and response time of the managed system. The pattern for
scalability applies a single method of a managing system
on different variations of a managed system, and measures
the scalability for time behavior of the managing system or
functional appropriateness of both the managed and managing
system (8 instances). For example, Incerto et al. [30] evaluate
the scalability of an SMT-backed planning approach in terms
of computation time under increasing numbers of servers in
the managed system. The pattern for time efficiency applies
more than two methods of a managing system combined with
constants, and measures the effect on the time behavior of
both managing and managed system or just the managing
system (4 instances). For example, Kumar et al. [39] compare
the time efficiency of four self-adapting service composition
approaches by measuring the planning time. Finally, the pat-
tern for learning ability applies two methods of the managing
system combined with multiple parameter settings of the man-

11As notation to describe a combination of independent variables we use:
“var1 (nvar1 ) × var2 (nvar2 ) × ...”, where var1 is the variable and nvari
is the number of values of vari. We use an asterisk as a wild card for vari.
Note that nvari = 1 if vari is a constant.



TABLE III: Identified patterns for different objectives that map independent to dependent variables.

Objective Independent variables # Dependent variables (top two)

Effectiveness Managing-Method (2) × * (1) 13 Resource utilization [managed], Time behaviour [managed]
Scalability Managing-Method (1) × Managed-Variation (>2) × * (1) 7 Time behaviour [managing], Functional appropriateness [both]
Time efficiency Managing-Method (>2) × * (1) 4 Time behaviour [both], Time behaviour [managing]
Learning ability Managing-Method (2) × Managing-Parameter (>2) × * (1) 3 Time behaviour [managed], Resource utilization [managed]

Pe
rc

en
ta

ge
 o

f 
pr

im
ar

y 
st

ud
ie

s

0%

25%

50%

75%

100%

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

novel managing system method not compared novel managing system method compared

Trend line, slope: 5%

Fig. 8: Percentage of primary studies per year that do (blue)
and do not (red) compare a novel managing system approach
with at least one other approach.

aging system (typically related to learning hyperparameters)
and constants. It measures the effect on the learning ability
(e.g., in terms of accuracy or correlation) for the time behavior
or functional correctness of a managed system (3 instances).
For example, Duarte et al. [18] evaluate the accuracy of two
learning methods that predict response time of the managed
system, configured with different sizes of training data.

To conclude, we measured the percentage of primary studies
that do compare a newly proposed managing system approach
with at least one other approach, which can for instance
be a state-of-the-art approach, primitive adaptation, or the
theoretical optimal. Fig. 8 shows the results over the years.
The graph clearly illustrates that researchers have increas-
ingly compared new contributions with existing approaches
or other baselines. By applying regression on the data, we
identified an average yearly increase of 4.67% (rounded
5%) over the 10 years (from 51.3% in 2011 to 93.3% in
2020). This confirms an increasing maturity in the evalua-
tions of new contributions in self-adaptive systems presented
at SEAMS, which has now reached an excellent level.

Answer to RQ2: What is the Experimental Design? Only one
out of three studies provides a well-defined formulation of the
evaluation problem, mostly using research questions. Experiments
use independent variables for all parts of self-adaptive systems,
with most factors related to the managing system. The dominant
types of dependent variables are time behavior, functional behav-
ior, and resource utilization, typically of managed systems. New
contributions are increasingly compared with other approaches.

D. How are Experiments Operated?

To answer RQ3, we collected data about the managed
system and whether an artifact was used (F10), its nature

Co
un

t 
pe

r 
pr

im
ar

y 
st

ud
y

0

1

2

3

4

ZNN BSN
SWIM*

RDM

Delta
IoT*

RUBiS
DCAS

UNDERSEA*

Fig. 9: Named managed systems (F10) used in at least two
primary studies (43 studies provided no specific name).

(F11), data provenance, i.e., sources of data related to users or
environment (F12), and representations of uncertainty (F13).

Fig. 9 shows the counts of managed systems (F10) that
were used in experiments reported in at least two primary
studies. The managed systems marked with an asterisk are
formally approved SEAMS artifacts. Of the total 82 primary
studies, 39 (46%) provided a clearly described name for
the managed system. The remaining 43 studies provided no
specific name for the managed system. Not surprisingly, ZNN
has been used most frequently, BSN (Body Sensor Network),
SWIM, and RDM (Remote Data Mirroring) are each used in
three studies, and DeltaIoT, RUBiS (Rice University Bidding
System), DCAS (Data Acquisition and Control Service) and
UNDERSEA are each used in two studies. In total, 10 primary
studies used at least one artifact in their evaluation in the
period from 2016 to 2020 (i.e., 26% of the primary studies
in this period).12 This result underpins the usefulness of the
SEAMS artifacts in the evaluation of new contributions.

Fig. 10 shows the different types of managed systems
(F11) used in the primary studies. Thirty-two studies (39%)
used a simulation or emulation of a managed system. For
example, Gerasimou et al. [25] use UNDERSEA, a simulator
of unmanned underwater vehicles. Twenty-one studies (38%)
used a model to represent a managed system. For example,
Incerto et al. [30] represent a three-tier managed system as a
Queuing Network to evaluate performance adaptation. A real
implementation of a managed system was used in 21 studies
(26%). This category includes implemented systems based on
a model of a real application. For example, Barna et al. [3]
use LEGIS, a distributed navigation service based on Google
maps. On the other hand, in eight studies (10%) the managed

12The SEAMS Call for Artifacts was introduced in 2015.



Co
un

t 
pe

r 
pr

im
ar

y 
st

ud
y

0

10

20

30

40

model simulated/emulated real-implementation real-world

Fig. 10: Types of managed systems used per study (F11).

system was a real-world application. This category refers to
systems that have been used in practice with real users (but not
necessarily for the experiments). An example are open-source
mobile apps that are used in [58]. These results show that a
relevant number of experiments rely on real implementations
of managed systems, yet with opportunities to further improve
on the use of real-world systems in experiments.

The results for data provenance (F12) show that a ma-
jority of 99 experiments (71%) use synthetic data to rep-
resent users or the environment. For example, Guerriero
et al. [27] randomly generate consumer transactions, while
Moreno et al. [43] generate server boot latencies from normal
distributions. Twenty-eight experiments (20%) use emulated
data to represent users or the environment. For example, Shin
et al. [62] emulate a data traffic profile specified by their
industry partner to create load on the managed network.

Notably, only a small fraction of the experiments (13, i.e.,
9%) use real-world data to represent users or the environment.
An example is [36] that uses real-world workload traces of
the Internet Traffic Archive, Bibsonomy, and Wikipedia to
extract load profiles. These results show that there is room
for improvement to represent users and the environment more
realistically in experiments of self-adaptive systems.

Fig. 11 shows the results we obtained for the representation
of uncertainty (F13). In total, we extracted 132 representations
of uncertainty used in the experiments of the primary studies.13

We could group these 132 representations in four types. The
most frequently used type is uncertainty in the context that
was used 68 times (52% of all represented uncertainties).
As an example, Jamshidi et al. [32] consider the uncertainty
of having obstacles appearing in the robot’s environment.
Uncertainty in the system was used 35 times (27%).14 For
example, Incerto et al. [30] address uncertainty of the system
in terms of random faults of servers and network links. Only a
few studies considered uncertainty of goals (20 studies, 15%)
and humans (9 studies, 7%). For example, Camara et al. [10]
randomly assign missions to robots, while Tun et al. [66]

13Note that if two experiments of the same primary study used the same
uncertainty representation, this was counted once.

14Uncertainty of the system relates to the managed system, either repre-
sented in the managed system itself or in a runtime model of the managed
system used by the managing system.

Co
un

t 
pe

r 
pr

im
ar

y 
st

ud
y

0

10

20

30

40

Human Context System Goals

Predefined Random Unclear Probabilistic

Fig. 11: Representation of uncertainty per study (F13).

randomly select invitees (users) for sharing files.
Uncertainty in the experiments is mostly represented by pre-

defined values (46% of all uncertainty representations). Such
values can be based on common properties or characteristics
of the represented topic. For example, Zanardi and Capra [78]
consider different predefined adaptation thresholds to model
the uncertainty related to goals. Uncertainties (35%) were
represented by randomly selected values 64 times (e.g., [66]).
Only 12 uncertainties (9%) were represented by probabilisti-
cally selected values (e.g., [35], [43]).

The results of F13 show that uncertainty is commonly
considered in experiments of self-adaptive systems. Yet, the
emphasis is on uncertainty in the context and system. There is
room for improvement by putting more emphasis of represent-
ing uncertainties related to goals and humans in experiments.

Answer to RQ3: How are Experiments Operated? Artifacts are
increasingly used in experiments of self-adaptive systems. The
managed system is mostly simulated or emulated. Yet, one on
three studies uses system implementations, but the number of real-
world systems or prototypes of such systems remains relatively
low. Most data of users and the environment used in experiments
is synthetically generated. Studies commonly consider uncertain-
ties in the context and the system, mostly represented by selected
values (rather than randomly or probabilistically). Uncertainties
related to goals and humans are not frequently considered.

E. How is the Experiment Data Analyzed?

To answer RQ4, we collected data about the types of
analysis applied (F14), the answers provided for the evaluation
problem (F15) and the discussion of treats to validity (F16).

The results for the type of analysis (F14) performed in the
experiments show that a majority of 62 studies (44%) used
some form of exposition or narrative to analyze and discuss
the experiment results. For example, Weisenburger et al. [72]
plot the timeseries of latency and bandwidth obtained by their
approach and the baseline under different settings and discuss
the observed behavior. Fifty-nine studies (42%) used descrip-
tive statistics to show or summarize data in a meaningful way
(e.g., using tables, graphs and charts), which allows identifying
patterns that might emerge from the data. As an example,
Sousa et al. [64] analyze their experiment by calculating
statistics (average, standard deviation, maximum, minimum)



of execution times over 12 runs. Finally, 19 studies (14%) used
statistical tests to analyze the data of the experiment and draw
conclusions. A statistical test provides a systematic mechanism
for making a quantitative decision about the outcome of
an experiment; for instance to determine whether there is
enough evidence to reject a null hypothesis. For example,
Fredericks et al. [22] define a hypothesis to test statistically
whether a difference exists between the result of their proposed
approach and a baseline. We also extracted data about whether
the choice for a statistical test was motivated and found that
only 12 of the 19 studies do so. The results show that a
substantial part of the studies still apply informal approaches
for the analysis of data of experiments. There is room for
applying more rigorous methods of analysis of data obtained
from experiments in self-adaptive systems.

Of the 28 studies that formulated evaluation problems
using either research questions or hypothesis, only 19 (68%)
provided an explicit answer to the evaluation problem. For
example, Chen [11] summarizes the key findings of each of the
specified four research questions, while Fredericks et al. [22]
explain the rejection of the specified null hypothesis based on a
statistical test. The numbers underpin a need for improvement
on reporting research findings from experiments, in particular
providing answers to the research questions under study.

Fig. 12 shows the results for whether and how threats to
validity of experiments (F16) are discussed in primary studies.
In total only 31 primary studies (38% of all primary studies)
provided some discussion of validity threats. Seventeen of
these studies (55% of the 31 studies that discuss validity
threats) provide an informal discussion of validity threats
without referring to any particular types of threats. As an
example, Sousa et al. [64] discuss the limitations of their
experiments in a separate section in an informal way. The most
reported validity threats are internal and external validity, both
discussed in 14 studies (45% of the 31 studies that discuss
validity threats). For example, Jamshidi et al. [33] discuss
internal and external validity and their attempt to mitigate
these threats, and discuss remaining limitations. Of these 14
studies, seven also discuss construct validity. As an illustration,
Kumar et al. [39] mention construct validity threats related
to the employed metric and evaluation methods, and how
they mitigate them. Only one study [55] discusses reliability
pointing out that reproducing the results of the study may
be affected by randomness included in the simulation setup.
Acknowledging and discussing validity threats is key for future
research as they pinpoint potential issues with the experimental
design and the causal relationships and generalization of
results. Hence, there is room for improvement on discussing
validity threats for experiments of self-adaptive systems.

Answer to RQ4: How is the Experiment Data Analyzed? A
small half of the primary studies use an informal approach to
analyze the data obtained from experiments. Another small half
uses descriptive statistics and only a fraction of the studies uses
statistical tests. Only a limited number of the primary studies
provide explicit answers to the research problems they tackle.
Explicitly discussing threats to validity is not common practice
in experimental research of self-adaptive systems.

C
ou

nt
 p

er
 p

rim
ar

y 
st

ud
y

0

5

10

15

20

Informal 
discussion

Internal, 
external

Internal, 
external, 
construct

Internal, 
external, 
construct, 

conclusion

Internal, 
external, 
reliability

Fig. 12: Discussion of threats to validity per study (F16).

F. How are Experiment Results Packaged?

To answer RQ5, we collected data about the availability of
the experimental results (F17), and the degree of reproducibil-
ity (F18) of experiments.

Only 11 of the primary studies (13%) made the evaluation
results of their experiments publicly available (F17). Examples
of studies that provide evaluation results are [30], [62], where
results are made available with a replication package. Making
experiment data public allows for verifying findings and
experimental reuse, and lowers the barriers to meta-studies.15

Hence, there is room for improvement here, but this is a
general problem and applies also to other research fields than
self-adaptive systems (e.g., [52]).

The results we obtained for the degree of reproducibility
(F18) of experiments reported at SEAMS echo those of F17.
Only nine studies (11%) provide a full replication package,
while 14 other studies (17%) provide the code used in exper-
iments. Although it is a foundation of science, replication is
a recurrent issue in empirical software engineering in general
and this applies also to software engineering of self-adaptive
systems. The results of this study show a slight improvement in
terms of reproducibility compared to the results of the earlier
study [76] that looked at research presented at SEAMS before
2012. There, 14% of the studies provided partial material for
repeatability and only 2% provide a full replication package.

All in all, there remains substantial room for further im-
provement on providing replication packages facilitating cross-
validation and comparison across studies.

Answer to RQ5: How are the Experiment Results Packaged?
Only a small fraction of the primary studies make the data
of their experiment publicly available. Similarly, the degree of
reproducibility remains low, only one study on ten offers a full
replication package to the community.

V. DISCUSSION

We start this section with summarizing insights on the
specifics of experiments in self-adaptive systems. Then we of-
fer suggestions to improve future experiments in self-adaptive
systems. Finally, we discuss threats to validity of this study.

15www.elsevier.com/connect/should-research-data-be-publicly-available



A. Experiments in Self-adaptive Systems vs Other Systems

This mapping study provides a number of insights on the
specifics of experiments in self-adaptive systems compared to
other systems. In Fig. 13, we list these insights based on the
five steps of the process of an experiment [77].

Scoping

Planning

Operating

Analysis

Packaging

The target of an experiment in self-adaptive systems is a new method
of one particular part of the system, i.e. the managing system. The
evaluation objectives concern the system as a whole, or a part thereof.

Usually, a method of the managing system (or used by the
managing system such as a learner) is a factor (with the new method
one value, and one or more other competing methods the other values).

Artifacts ease the operation of experiments in self-adaptive systems.
As uncertainties are central in self-adaptive systems they need to be
considered first-class in the operation of an experiment. 

The complexity of self-adaptive systems that often expose stochastic
behavior calls for statistical analysis methods that take into
account the distributions of data.

Managed systems can be reused across experiments in self-
adaptive systems; including them in replication packages would
create a basis for sound long-term research.

Fig. 13: Main insights on the process of experiments.

B. Suggestions for Improving Future Experiments

In what follows, we offer a number of suggestions that
we obtained from this study as impetus to improve future
experiments in self-adaptive systems. Experiments on new
methods for the monitor and execute stages of MAPE-K
feedback loops require attention. Security, privacy, humans in
the loop, and ethical considerations are widely regarded as
key concerns of modern software systems but they are not
well studied in our field, hence they deserve attention. We
can improve on better formulating the evaluation problems
we tackle. We often use different types of design compared
to experiments in traditional software systems; this may either
point to a lack of maturity or the need for designs specific
to experimentation in self-adaptive systems; this deserves
further investigation. We observe an increasing trend in the
use of real-world managed systems; experiments would benefit
from pushing this trend further. Uncertainty is a complex
phenomenon but essential to self-adaptation; there are plenty
of opportunities to enhance on how we represent uncertainties
in experiments. There is substantial room to improve on
the analysis of experimental data; in particular by applying
statistical techniques. Experiments in self-adaptive systems
would benefit from a more rigorous description of different
types of validity threats, and making replication packages
available for the community. We hope that these empirically
grounded suggestions will help the community to improve the
way we evaluate self-adaptive systems in the future.

C. Threats to Validity

While following a systematic approach based on a protocol,
this study has some possible threats to validity.

Internal validity refers to the extent to which a causal
conclusion can be made based on the study. Determining
whether a paper contained an experiment was sometimes not
easy as some information may be implicit. In addition, the

extraction of detailed information about experiments, in partic-
ular identifying different types of variables was also not always
easy. To mitigate this threat, we took the following measures.
(i) All papers where checked for inclusion or exclusion by
at least two researchers. (ii) The primary studies were split
in three parts; for the first part (10% of the studies) data
was extracted in parallel by two researchers and decisions
were made based on consensus; in case of conflicts a third
researcher was consulted to make a decision; for the two other
parts, data was extracted by one researcher and crosschecked
by another (and if needed by a third). (iii) Data analysis was
jointly done by all researchers in collaboration.

External validity refers to the extent to which the findings
can be generalized. By considering only full papers presented
at SEAMS, we obviously can only draw conclusions for this
venue. However, as argued in the summary of the proto-
col (Section III), the papers presented at SEAMS provide
a representative sample of software engineering research of
self-adaptive systems. Furthermore, the draft of the ACM
SIGSOFT Empirical Standards consider focusing on a single
venue an acceptable deviation of performing secondary stud-
ies [57]. Nevertheless, to strengthen the validity of our study,
a broader search for primary studies would enhance validity.

Construct validity refers to the extent to which we obtained
the right measure and whether we defined the right scope
in relation to the topic of our study. There is threat that the
reporting of experiments in some papers may not be of suf-
ficient quality. However, since SEAMS became a symposium
in 2011, we believe that papers that were accepted as full
papers provide a sufficiently good quality of reporting. We
acknowledge that an additional quality check based on the
quality criteria for reporting studies as e.g., used in [19], [61]
may help improving the validity of our results.

Reliability refers to the extent to which we can ensure that
our results are the same if our study would be conducted again.
An obvious threat is a potential bias of the researchers involved
in our study, in particular when collecting and analyzing data
of primary studies. To address this threat, we used a protocol
that we carefully followed. In addition, we have made all the
material of the study available for other researchers.

VI. CONCLUSIONS

This mapping study aimed at answering the question “How
do we evaluate self-adaptive software systems?” with a focus
on technology-oriented experiments presented at SEAMS from
2011 till 2020. Results show that experiments in self-adaptive
systems do follow standard practice on empirical research in
software engineering, but at the same time also have some
specifics that deserve special attention across the stages of the
experimental process. These specifics are essentially based on
characteristics of self-adaptive systems, such as the evaluation
target that is associated with the managing system, and the
presence of uncertainties that require attention in experiment
design and analysis. Our study allowed us to provide a number
of suggestions for improving experimental evaluations of self-
adaptive systems. We hope that these suggestions and the
results obtained from our study trigger reflection in the com-
munity on doing future experiments with even more maturity.



REFERENCES

[1] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos,
Alessandra Gorla, Paola Inverardi, and Thomas Vogel. Software engi-
neering processes for self-adaptive systems. In Software Engineering
for Self-Adaptive Systems II, pages 51–75. Springer, 2013.

[2] Konstantinos Angelopoulos, Vı́tor E. Silva Souza, and João Pimentel.
Requirements and architectural approaches to adaptive software systems:
A comparative study. In International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS. IEEE, 2013.

[3] Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu.
Delivering elastic containerized cloud applications to enable devops. In
12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 65–75. IEEE, 2017.

[4] Cornel Barna, Mark Shtern, Michael Smit, Vassilios Tzerpos, and Marin
Litoiu. Model-based adaptive dos attack mitigation. In 7th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, page 119–128. IEEE, 2012.

[5] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F.
Sweeney, et al. The truth, the whole truth, and nothing but the truth:
A pragmatic guide to assessing empirical evaluations. ACM Trans.
Program. Lang. Syst., 38(4), 2016.

[6] Yuriy Brun. Improving impact of self-adaptation and self-management
research through evaluation methodology. In ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS,
page 1–9. ACM, 2010.

[7] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns. Under-
standing uncertainty in self-adaptive systems. In International Confer-
ence on Autonomic Computing and Self-Organising Systems, 2020.

[8] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli,
and T. Kelly. Engineering trustworthy self-adaptive software with
dynamic assurance cases. IEEE Transactions on Software Engineering,
44(11):1039–1069, 2018.

[9] Javier Cámara, Pedro Correia, Rogério de Lemos, David Garlan, Pedro
Gomes, Bradley Schmerl, and Rafael Ventura. Evolving an adaptive
industrial software system to use architecture-based self-adaptation. In
8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS, page 13–22. IEEE, 2013.

[10] Javier Cámara, Bradley Schmerl, and David Garlan. Software archi-
tecture and task plan co-adaptation for mobile service robots. In 15th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 125–136. ACM, 2020.

[11] Tao Chen. All versus one: An empirical comparison on retrained and
incremental machine learning for modeling performance of adaptable
software. In 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS. IEEE, 2019.

[12] Tao Chen and Rami Bahsoon. Symbiotic and sensitivity-aware ar-
chitecture for globally-optimal benefit in self-adaptive cloud. In 9th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 85–94. ACM, 2014.

[13] B. Cheng et al. Software engineering for self-adaptive systems: A
research roadmap. In Software Engineering for Self-Adaptive Systems,
pages 1–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[14] Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes
Grohmann, Ingrid Nunes, Evangelos Pournaras, and Sven Tomforde. On
learning in collective self-adaptive systems: State of practice and a 3d
framework. In 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. IEEE, 2019.

[15] Amanda Oliveira de Sousa, Carla I. M. Bezerra, Rossana M. C. Andrade,
and José M. S. M. Filho. Quality evaluation of self-adaptive systems:
Challenges and opportunities. In XXXIII Brazilian Symposium on
Software Engineering, SBES 2019, page 213–218. ACM, 2019.

[16] Mahdi Derakhshanmanesh, Mehdi Amoui, Greg O’Grady, Jürgen Ebert,
and Ladan Tahvildari. Graf: Graph-based runtime adaptation framework.
In 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 128–137. ACM, 2011.

[17] Antinisca Di Marco, Paola Inverardi, and Romina Spalazzese. Syn-
thesizing self-adaptive connectors meeting functional and performance
concerns. In 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS. IEEE, 2013.

[18] Francisco Duarte, Richard Gil, Paolo Romano, Antónia Lopes, and Luı́s
Rodrigues. Learning non-deterministic impact models for adaptation.
In 13th International Conference on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 196–205. ACM, 2018.

[19] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software de-
velopment: A systematic review. Information and Software Technology,
50(9):833 – 859, 2008.

[20] Marios Fokaefs, Cornel Barna, and Marin Litoiu. Economics-driven
resource scalability on the cloud. In 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, page 129–139. ACM, 2016.

[21] Erik Fredericks. Automatically hardening a self-adaptive system against
uncertainty. In 11th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. ACM, 2016.

[22] Erik Fredericks, Byron DeVries, and Betty Cheng. Towards run-time
adaptation of test cases for self-adaptive systems in the face of uncer-
tainty. In 9th Intl. Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS. ACM, 2014.

[23] Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong-Linh Truong,
and Schahram Dustdar. On estimating actuation delays in elastic comput-
ing systems. In 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. IEEE, 2013.

[24] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[25] Simos Gerasimou, Radu Calinescu, and Alec Banks. Efficient runtime
quantitative verification using caching, lookahead, and nearly-optimal
reconfiguration. In 9th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS. ACM, 2014.

[26] Eoin M. Grua, Ivano Malavolta, and Patricia Lago. Self-adaptation
in mobile apps: A systematic literature study. In 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, page 51–62. IEEE, 2019.

[27] Michele Guerriero, Damian Andrew Tamburri, and Elisabetta Di Nitto.
Defining, enforcing and checking privacy policies in data-intensive
applications. In 13th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. ACM, 2018.

[28] Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning
Groenda. Bungee: An elasticity benchmark for self-adaptive iaas cloud
environments. In International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS. IEEE, 2015.

[29] Wei-Chih Huang and William J. Knottenbelt. Self-adaptive containers:
Building resource-efficient applications with low programmer overhead.
In 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 123–132. IEEE, 2013.

[30] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. Symbolic perfor-
mance adaptation. In International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. ACM, 2016.

[31] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource
provisioning for cloud-based software. In 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, page 95–104. ACM, 2014.

[32] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Kästner,
and David Garlan. Machine learning meets quantitative planning:
Enabling self-adaptation in autonomous robots. In 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, page 39–50. IEEE, 2019.

[33] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund,
and Prasad Kawthekar. Transfer learning for improving model predic-
tions in highly configurable software. In 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, page 31–41. IEEE, 2017.

[34] Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, (1):41–50, 2003.

[35] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. Le Goues. Managing
uncertainty in self-adaptive systems with plan reuse and stochastic
search. In International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). IEEE/ACM, May 2018.

[36] Jóakim V. Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev,
and Andreas Hotho. Modeling and extracting load intensity profiles.
In 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 109–119. IEEE, 2015.

[37] Jeff Kramer and Jeff Magee. Self-managed systems: An architectural
challenge. In Future of Software Engineering (FOSE), 2007.

[38] Christian Krupitzer, Felix Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. A survey on engineering approaches for self-
adaptive systems. Pervasive Mob. Comput., 17(PB):184–206, 2015.

[39] Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. Datesso:
Self-adapting service composition with debt-aware two levels constraint



reasoning. In 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. ACM, 2020.

[40] Sara Mahdavi-Hezavehi, Vinicius H.S. Durelli, Danny Weyns, and Paris
Avgeriou. A systematic literature review on methods that handle
multiple quality attributes in architecture-based self-adaptive systems.
Information and Software Technology, 90:1–26, 2017.

[41] Julie A. McCann and Markus C. Huebscher. Evaluation issues in
autonomic computing. In Hai Jin, Yi Pan, Nong Xiao, and Jianhua
Sun, editors, Grid and Cooperative Computing - GCC 2004 Workshops,
pages 597–608. Springer, 2004.

[42] Jhonny Mertz and Ingrid Nunes. On the practical feasibility of software
monitoring: A framework for low-impact execution tracing. In 14th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 169–180. IEEE, 2019.

[43] Gabriel A. Moreno, Alessandro V. Papadopoulos, Konstantinos An-
gelopoulos, Javier Cámara, and Bradley Schmerl. Comparing model-
based predictive approaches to self-adaptation: Cobra and pla. In 12th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 42–53. IEEE, 2017.

[44] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-adaptation
for cyber-physical systems: A systematic literature review. In 11th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 75–81. ACM, 2016.

[45] Ali Yadavar Nikravesh, Samuel A. Ajila, and Chung-Horng Lung.
Towards an autonomic auto-scaling prediction system for cloud resource
provisioning. In 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS. IEEE, 2015.

[46] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis He-
imbigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[47] Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan.
Hybrid planning for decision making in self-adaptive systems. In
Giacomo Cabri, Gauthier Picard, and Niranjan Suri, editors, 10th IEEE
International Conference on Self-Adaptive and Self-Organizing Systems,
SASO 2016, Augsburg, Germany, September 12-16, 2016, pages 130–
139. IEEE Computer Society, 2016.

[48] Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes. Run-time
adaptation of mobile applications using genetic algorithms. In 8th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 73–82. IEEE, 2013.

[49] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang.
A systematic survey on the design of self-adaptive software systems
using control engineering approaches. In 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, page 33–42. IEEE, 2012.

[50] Diego Perez-Palacin, Raffaela Mirandola, and José Merseguer. On the
relationships between qos and software adaptability at the architectural
level. Journal of Systems and Software, 87:1–17, 2014.

[51] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines
for conducting systematic mapping studies in software engineering: An
update. Information and Software Technology, 64:1 – 18, 2015.

[52] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana
Freire. A large-scale study about quality and reproducibility of jupyter
notebooks. In 16th International Conference on Mining Software
Repositories, MSR ’19, page 507–517. IEEE, 2019.

[53] Barry Porter, Roberto Filho, and Paul Dean. A survey of methodology
in self-adaptive systems research. In International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages
168–177. IEEE, August 2020.

[54] Evangelos Pournaras, Mark Ballandies, Dinesh Acharya, Manish Thapa,
and Ben-Elias Brandt. Prototyping self-managed interdependent net-
works: Self-healing synergies against cascading failures. ACM, 2018.

[55] Federico Quin, Danny Weyns, Thomas Bamelis, Sarpreet Singh Buttar,
and Sam Michiels. Efficient analysis of large adaptation spaces in self-
adaptive systems using machine learning. In Software Engineering for
Adaptive and Self-Managing Systems, SEAMS. IEEE, 2019.

[56] Claudia Raibulet, Francesca Arcelli Fontana, Rafael Capilla, and Carlos
Carrillo. An overview on quality evaluation of self-adaptive systems. In
Managing Trade-Offs in Adaptable Software Architectures. 2017.

[57] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich,
et al. ACM SIGSOFT Empirical Standards. https://arxiv.org/abs/2010.
03525, 2020. Version 0.1.0, October 07, 2020.

[58] Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. Policy
enforcement with proactive libraries. In 12th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, page 182–192. IEEE, 2017.

[59] Gordon S. Blair, Nelly Bencomo, and Robert France. Models@ run.time.
Computer, 42:22 – 27, 11 2009.

[60] S. Shevtsov, D. Weyns, and M. Maggio. Handling new and changing
requirements with guarantees in self-adaptive systems using simca. In
2017 IEEE/ACM 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pages 12–23, 2017.

[61] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Mag-
gio. Control-theoretical software adaptation: A systematic literature
review. IEEE Trans. on Software Engineering, 44(8):784–810, 2018.

[62] Seung Yeob Shin, Shiva Nejati, Mehrdad Sabetzadeh, Lionel C. Briand,
Chetan Arora, and Frank Zimmer. Dynamic adaptation of software-
defined networks for iot systems: A search-based approach. In 15th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 137–148. ACM, 2020.

[63] Bruno L. Sousa, Mı́vian M. Ferreira, Kecia A. M. Ferreira, and Mariza
A. S. Bigonha. Software engineering evolution: The history told by
icse. In XXXIII Brazilian Symposium on Software Engineering, SBES
’19, page 17–21. ACM, 2019.

[64] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. Extending
dynamic software product lines with temporal constraints. In 12th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, page 129–139. IEEE, 2017.

[65] Stefan Taranu and Jens Tiemann. On assessing self-adaptive systems.
In 8th IEEE International Conference on Pervasive Computing and
Communications Workshops, PERCOM, pages 214–219, 2010.

[66] Thein Tun, Mu Yang, Arosha. K. Bandara, Yijun Yu, Armstrong Nhla-
batsi, Niamul Khan, Khaled Khan, and Bashar Nuseibeh. Requirements
and specifications for adaptive security: Concepts and analysis. In
Software Engineering for Adaptive and Self-Managing Systems, 2018.

[67] Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van
Der Donckt, and Sam Michiels. Applying deep learning to reduce
large adaptation spaces of self-adaptive systems with multiple types of
goals. In Software Engineering for Adaptive and Self-Managing Systems,
SEAMS. ACM, 2020.

[68] Rini Van Solingen, Vic Basili, Gianluigi Caldiera, and H Dieter Rom-
bach. Goal question metric (GQM) approach. Encyclopedia of software
engineering, 2002.

[69] Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien,
and Rubby Casallas. A framework for evaluating quality-driven self-
adaptive software systems. In International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2011.

[70] Thomas Vogel and Holger Giese. Model-driven engineering of self-
adaptive software with EUREMA. ACM Transactions on Autonomous
and Adaptive Systems, 8(4), 2014.

[71] Maike Vollstedt and Sebastian Rezat. An introduction to grounded
theory with a special focus on axial coding and the coding paradigm. In
Compendium for Early Career Researchers in Mathematics Education,
pages 81–100. Springer, 2019.

[72] Pascal Weisenburger, Manisha Luthra, Boris Koldehofe, and Guido Sal-
vaneschi. Quality-aware runtime adaptation in complex event processing.
In 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS, page 140–151. IEEE, 2017.

[73] Danny Weyns. Software engineering of self-adaptive systems. In
Handbook of Software Engineering, pages 399–443. Springer, 2019.

[74] Danny Weyns. Introduction to Self-Adaptive Systems, A Contemporary
Software Engineering Perspective. Wiley, 2020.

[75] Danny Weyns and Tanvir Ahmad. Claims and evidence for architecture-
based self-adaptation: a systematic literature review. In European
Conference on Software Architecture, pages 249–265. Springer, 2013.

[76] Danny Weyns, M Usman Iftikhar, Sam Malek, and Jesper Andersson.
Claims and supporting evidence for self-adaptive systems: A literature
study. In 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 89–98. IEEE, 2012.

[77] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn
Regnell, and Anders Wessln. Experimentation in Software Engineering.
Springer, 2012.

[78] Valentina Zanardi and Licia Capra. Dynamic updating of online
recommender systems via feed-forward controllers. In 6th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, page 11–19. ACM, 2011.

[79] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of
empirical studies in the international conference on software engineer-
ing. In 28th International Conference on Software Engineering, ICSE,
page 341–350. ACM, 2006.

https://arxiv.org/abs/2010.03525
https://arxiv.org/abs/2010.03525

	Introduction
	Background and Related Work
	Basic Concepts of Self-Adaptive Systems and Experiments
	Focus of our Study
	Related Work

	Summary of the Protocol
	Research Questions
	Search Strategy
	Inclusion and Exclusion Criteria
	Data Items
	Approach for the Analysis

	Results
	Demographic Information
	What is the Scope of Experiments?
	What is the Experimental Design?
	How are Experiments Operated?
	How is the Experiment Data Analyzed?
	How are Experiment Results Packaged?

	Discussion
	Experiments in Self-adaptive Systems vs Other Systems
	Suggestions for Improving Future Experiments
	Threats to Validity

	Conclusions
	References

