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1. Introduction 

Smart Cyber-Physical Systems (sCPS) are complex distributed decentralized systems of cooperating mobile and 
stationary devices, which closely interact with the physical environment. Examples of sCPS include smart home/office, 
smart cities, smart traffic, smart manufacturing, etc. The mobility aspect of sCPS, their openness, and potential open-
endness bring about a high level of dynamicity to the system. Therefore, traditional software development techniques 
have shown not to be very suitable for developing such systems. Instead, novel approaches and techniques (e.g., [1], 
[2], [3]) have been proposed to address the related issues of sCPS software development. 

Specifics of sCPS include the need for powerful means for dealing with environmental uncertainty, the necessity of 
coping with resource constrains, the strong emphasis on dependability, as well as architectural dynamicity and 
adaptation/reconfiguration. Since large sCPS are inherently composed of a number of components, applying software 
component models in sCPS software design is a natural choice, preferably those supporting adaptation at the 
architectural level – at least via component modes as a fundamental means for this purpose. Nevertheless, such 
component models should reflect the sCPS specifics mentioned above. An approach further in this direction is 
component ensembles introduced in the scope of the EU FP7 ASCENS project1. As a follow up of our participation in 
it, we have proposed several methods for dealing with uncertainty at the architectural level, such as meta-adaptation 
strategies [10], and architectural homeostasis [11]. Nevertheless, based on several experiments with architectural 
specifications, we have realized that the specifics of sCPS should also be addressed at the lower level of the transition 
guards – the conditions, written in a logic, in the control flow influencing dynamic architectural reconfiguration. In 
particular, the expression power of the employed logic should allow for handling uncertainty in the data sensed from 
the environment. The aim here is to make it possible to take a conservative (safe) decision when the data are noisy 
and/or incomplete. 

Problem statement. Overall, in this paper, we assume that environmental uncertainty comes from the fact that data 
from the environment cannot be observed directly without noise and that a precise model of the environment cannot 
be obtained (“Sensing” uncertainty source in [12], “Uncertainty due to noise” in [13]). These two assumptions make it 
difficult to apply existing architectural approaches to adaptation, which often rely on the fact that an adequate model 
of the environment is available and that there are prior assumptions about the distribution of the data (e.g., in the form 
of base probabilities or a prior distribution). On the other hand, approaches that focus on sensing and diagnosis in 
architecture-based adaptive systems ([14]–[16]) do not specifically address the problem of making transition guards 

                                                   
1 http://ascens-ist.eu/ 
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robust in the face of noisy data. Finally, even though statistical methods and tests are generally well-known, it is 
typically hard for non-experts in statistics to apply them in engineering adaptive systems.    

 Goal. To tackle the problem, we propose a dedicated confidence-based logic (CB logic), which, by employing trends 
and historical observations, allows us to express the degree of confidence of a future event occurrences; it does this by 
making probabilistic conclusions about a system’s environment. Conceptually, the historical observations are modeled 
by time series; CB logic provides a number of operators over the time series that simplify the filtering, resampling, and 
statistics-backed comparisons of time series, making the application of multiple statistical procedures easy for non-
experts. We showcase CB logic on architecture-based self-adaptation in sCPS software – namely its application in 
transition guards controlling component modes and component ensembles. In detail, we rely on the DEECo component 
model [17], where architectural transitions are based on these concepts.  

The paper is a substantially extended and generalized version of [18]; the modifications are primarily related to (a) an 
extension to the logic proposed in [18], (b) employment of the logic in transition guards in component ensembles, (c) 
a novel running example, experimental evaluation, an additional case study, and related work, (d) discussion about 
verification of transition guard conditions and about tuning the threshold values in transition guards. 

The paper is structured as follows. In Section 2, we present a running example that is used as a motivation and for 
explanation and evaluation of novel concepts. In Section 3, we summarize the main idea of our approach to handling 
uncertainty in transition guards, whereas Section 4 brings up the core concepts and semantics of CB logic. In Section 
5, we discuss several related issues in more detail, verification of transition guards and completeness and correctness 
in particular. Section 6 is devoted to experimental evaluation, whereas Section 7 discusses the related work, and, finally, 
Section 8 sums up the contribution of the paper. 

2. Running Example and Transition Guards in Component Modes and Ensembles 

2.1. RoboCup Rescue Simulations 
As a motivation example, we present a scenario from the RoboCup Rescue Simulations (RCRS)2. In essence, RCRS 
targets the evaluation of rescue activities in a city after a disaster (such as an earthquake). In particular, there are (i) 
people injured inside the building ruins that need to be disengaged from the ruins and brought to a hospital, and (ii) 
buildings on fire to be extinguished. Since these events can be found all over the city, the undertaken rescue actions 
have to be highly coordinated. This represents the major challenge in this scenario. A natural way to tackle it is to see 
RCRS as an sCPS, a distributed and decentralized system of dynamically cooperating components (agents in the RCRS 
terminology). 

Conceptually, RCRS introduces stationary agents (fire stations, police offices, hydrants, and ambulance centers) and 
platoon agents (fire brigades, police forces, and ambulance teams). To determine the location of agents, RCRS provides 
a map with streets, intersections, and buildings.  Each agent has a dedicated task in the scenario. For instance, fire 
brigades are responsible for extinguishing fires, while police forces remove blocking debris off the streets to allow for 
the passing of other agents. Ambulance teams, as expected, are in charge of unburdening injured people and bringing 
them to refuges – special buildings collecting people before they are taken to a hospital (which is not a part of the 
scenario, though). An important aspect of this scenario is that the platoon agents have limited information about the 
overall situation, being able just to observe the situation in the nearest neighborhood. Thus, they need to be coordinated 
with other platoon agents to complement them on their tasks, not to compete with them.  

The challenge is how to describe the behavior of the RCRS agents in the presence of uncertainty inherent to the 
environment. In particular, sensing under uncertainty (i.e., noisy or imprecise readings) will impact the way the agents 
make decisions at run-time about transitions among their actions and about how to cooperate. 

 

                                                   
2 http://roborescue.sourceforge.net/ 
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2.2. Modeling the example as components with modes and ensembles  
The RCRS scenario can be modeled using the DEECo component model [9]. In DEECo, agents are modeled as 
components that operate under different modes and form ensembles (cooperation groups). A fragment of the scenario, 
specified in a Domain Specific Language (DSL) akin to the one of DEECo, is in Figure 1. 

Components. A component is, as traditionally, defined by its state, activities, and communication contracts. The state is 
given by a list of data fields (knowledge in DEECo). The activities are modeled as processes (tasks). These are periodic 
or event-triggered (such as a mode transition) and typically involve sensing, computation, modification of knowledge, 
and actuating—not necessarily in that order. A communication contract is based on the concept of a component role 
which lists the knowledge fields that reflect the specific parts of the component’s functionality that participate in its 
communication with other components. A component may feature several roles – their list is specified in the component 
type definition. For instance, FireBrigade features RefillConsumerRole and FireBrigadeRole. The mechanism of 
component instantiation and its processes’ periodic/triggered activation is beyond the scope of this paper (and not 
important for its message).  

Figure 1. A fragment of RCRS components in DSL. The CB logic operators are typed in italic. 

62.   function isWaterLevel(relation, W, TIME_WINDOW): 
63.     switch relation: 
64.       case above: 
65.         return above(water, W, TIME_WINDOW) 
66.    case below: 
67.      return below(water, W, TIME_WINDOW) 
68.  
69.   process refillProc in mode refill 
70.     if isWaterLevel(above, Wmax, TIME_WINDOW): 
71.       if burningBuildings.size > 0: 
72.         mode = moveToFire 
73.       else 
74.         mode = search 
75.     else 
76.       refill() 
77.   
78.   process moveToFireProc in mode moveToFire 
79.     if existsBurning(Tempmin, TIME_WINDOW): 
80.       mode = extinguish 
81.     else 
82.       // Sorted burning buildings as in 
83.       // extinguishProc 
84.       move(burningBuildings.last) 
85.  
86.   process moveToRefillProc in mode moveToRefill  
87.   . . . 
88.   process searchProc in mode search 
89.     if existsBurning(Tempmin, TIME_WINDOW): 
90.       mode = extinguish 
91.     else 
92.       move() 
93.  
94.   process extinguishProc in mode extinguish 
95.     if isWaterLevel(below, Wmin, TIME_WINDOW): 
96.       mode = moveToRefill 
97.     elif not existsBurning(Tempmin, TIME_WINDOW): 
98.       mode = search 
99.     else 
100.       sort(burningBuildings, 
101.         (building1, building2) => compare( 
102.        afv(occupancyHistory(building1, week), day, 0), 
103.        afv(occupancyHistory(building2, week), day, 0))) 
104.       building = burningBuildings.last 
105.       extinguish(building) 
106.       if below(fireSensor(building), 
107.                PUT_OUT_TEMPERATURE, 
108.                TIME_WINDOW): 
109.         burningBuildings.remove(building) 
110.         building = closest(burningBuildings) 
111.      
112.   process recovery in mode default 
113.   . . . 

 

1. role RefillProviderRole: 
2.   mode, id, position, freeStand 
3.  
4. role RefillConsumerRole 
5.   mode, id, water, position, refillTarget 
6.  
7. role FireBrigadeRole: 
8.   mode, id, water, position, helpTarget, 
9.   helpingFireBrigades, burningBuildings 
10.  
11. component type Hydrant features 
12.     RefillProviderRole 
13.   knowledge: 
14.     mode {vacant, occupied} 
15.     id 
16.     position 
17.     freeStands 
18.   ... 
19.  
20. component type FireStation features 
21.     RefillProviderRole 
22.   knowledge: 
23.     mode {vacant, occupied} 
24.     id 
25.     position 
26.     freeStands 
27.   ... 
28.  
29. component type FireBrigade features 
30.     RefillConsumerRole, FireBrigadeRole 
31.   knowledge: 
32.     mode {refill, search, extinguish, 
33.           moveToFire, moveToRefill} 
34.     id 
35.     water 
36.     position, 
37.     refillTarget 
38.     helpTarget, 
39.     helpingFireBrigades, 
40.     burningBuildings, 
41.     closestBurningBuilding 
42.     buildingsInRange 
43.      
44.   function existsBurning(temperature,  
45.    timeWindow): 
46.     for building in buildingsInRange: 
47.         if above(fireSensor(building), 
48.                  temperature, 
49.                  timeWindow): 
50.           burningBuildings.add(building) 
51.       closestBurningBuilding = 
52.           closest(burningBuildings) 
53.     return not burningBuildings.isEmpty() 

Deleted: Figure 1
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In support of self-adaptation, a component’s activities are controlled by its active mode, which is represented by one of 
the mode values specified in the component’s knowledge (mode denotes the knowledge field that keeps the active mode 
of the component). The active mode (i) determines the process(es) currently active in the component, and (ii) can 
influence the component’s membership in an ensemble, since mode testing may appear in a membership condition. For 
instance, in Figure 1, the activities of FireBrigade are defined by six processes, each of them being executed in a 
specific active mode; e.g., refillProc is executed when the active mode is refill. For simplicity, Figure 1 illustrates 
the situation in which each process is executed in exactly one active mode; in general, a process can be executed in 
multiple modes. 

To describe mode switching (modification of active mode values), the component type specification is associated with 
a mode state machine at design time. In Figure 2, there is the mode-state machine of FireBrigade. During development, 
the mode switching functionality is directly encoded in the processes of a component. The FireBrigade instance onsets 
activities in the search mode, aiming at finding a building on fire to be extinguished. If the FireBrigade finds such a 
building, it moves to the fire (moveToFire mode), and once it is close to the scene, it starts extinguishing (extinguish 
mode). If the FireBrigade gets low on water while extinguishing (checked via the below predicate explained in Section 
3.1), it moves to a refill point (mode MoveToRefill), and finally refills its tank (refill mode). After the fire has been 
put out, the FireBrigade starts searching for another building on fire or seeks a refill point, etc.  

Ensembles. The members of an ensemble instance are dynamically determined by a periodical evaluation of its 
membership condition – transition guard. There are two types of ensembles in the example in Figure 3: (i) the 
TargetFireZoneEnsemble grouping several FireBrigade instances to coordinate their activities close to a fire zone, 
114. ensemble type RefillStationEnsemble 
115.   roles 
116.     RefillProviderRole coord 
117.     RefillConsumerRole memb 
118.   membership condition 
119.     vacant == coord.mode &&  
120.                        distance(coord.position, memb.position) <distance(memb.refillTarget, memb.position) 
121.   knowledge exchange 
122.     memb.refillTarget = coord.position 
123.  
124. ensemble type TargetFireZoneEnsemble 
125.   roles 
126.     FireBrigadeRole coord 
127.     FireBrigadeRole memb 
128.   condition 
129.     //member is close and fire is spreading 
130.     coord.helpingFireBrigades.size() < MAX_HELP_CNT && 
131.       extinguish == coord.mode && (search == memb.mode || moveToFire == memb.mode) && 
132.       distance(coord.position,memb.position) < T_D &&  
133.       fabove(burningBuildings.size,THRESHOLD, TIME_WINDOW, currentTime + observationStep) 
134.   knowledge exchange 
135.     memb.helpTarget = coord.position 
136.     coord.helpingFireBrigades.add(memb.id) 

Figure 3. A fragment of RCRS ensembles in DSL. The CB logic operators are typed in italic. 

Figure 2. Mode state machine of FireBrigade. Wmax is a water level above which the 
tank is considered full;  Wmin is a water level below which the tank is considered 

empty; I is the time interval (scenario specific) of the time series in use.  



5 

 

and (ii) the RefillStationEnsemble which communicates information on the nearest refill place between a refill 
consumer (FireBrigade)  and a refill provider (FireStation or Hydrant). Each ensemble instance has its coordinator 
component and a set of member components. Specifically, any component instance featuring the role 
RefillProviderRole triggers instantiation of an ensemble of the type RefillStationEnsemble (becoming thus its 
coordinator) and the component instances featuring the role RefillConsumerRole and satisfying the membership 
condition of RefillStationEnsemble will become the members of this ensemble instance. As an aside, the membership 
condition of an ensemble may require its member components or coordinator to be in a particular active mode. For 
example, in TargetFireZoneEnsemble the active mode of member components is required to be either search or 
moveToFire (tested by moveToFire == memb.mode || search == memb.mode). The coordinator periodically triggers 
knowledge exchange among its knowledge and the knowledge of the members. As to a TargetFireZoneEnsemble 
instance, its coordinator is the first FireBrigade being on the scene; it then coordinates the activities of the member 
FireBrigade instances. Again, a detailed description of ensemble instantiation and knowledge exchange is beyond the 
scope of this paper (and not important for the message it aims to deliver).   

Self-adaptation. Both component ensembles and component modes are mechanisms of architectural self-adaptation; 
these mechanisms are based on the evaluation of transition guards (i.e., the membership conditions and conditions 
labeling transitions of mode state machines) [11]. Conceptually, each membership condition and each mode state 
machine defines a self-adaptation strategy in the sense of [19]. These strategies follow the MAPE-K loop [20], in which 
variables in component knowledge that appear in the transition guards are Monitored, their values then Analyzed, the 
corresponding actions are Planned, and finally Executed. The membership condition strategy is applied by the run-time 
framework by periodically evaluating its membership condition (M and A phases of MAPE-K) and the consequent 
modification of components’ membership in the ensemble (P and E phases); consequently, this causes a dynamic 
modification to the current software architecture). The mode switching strategy is applied by both the components 
themselves (M and A phases) and the run-time framework (P and E phases). In particular, each component monitors the 
data needed for evaluating mode transitions, evaluates the relevant transition guards, and outputs the new mode to be 
applied. The run-time framework applies the new mode by activating the associated processes, which changes the current 
software architecture.   

3. Handling uncertainty in transition guards – the essence of the approach 

3.1. Employing times series via CB logic 

Coping with uncertainty directly in transition guards needs to consider the fact that when a transition guard is evaluated, 
the result can depend on the changes in the environment. These changes are detected in components by sensor readings; 
e.g., by a sensor measuring the water level in the tank, sensor detecting fires, etc. Since the accuracy of sensors is limited 
and the actual readings may be influenced by additional factors (wind, darkness, sudden obstacles in the line of direct 
sight, etc.), the related data noise has to be echoed in a well-thought-out way in the transition guards.  A cornerstone of 
our approach to deal with this kind of uncertainty is the ability to consider the historical development of observed 
knowledge values. This is important not only to filter out temporary disturbances but also to predict trends in the 
observed data. To this end, we use time series instead of single-valued data (as would be the case in the traditional 
approach to expressing transition guard conditions). On top of the time series, we provide several operators (forming the 
core of CB logic) to perform statistical reasoning and to construct expressions that can be used in transition guards.  

For example, in Figure 1, lines 47 and 65, such an operator – above(…)  is used. In general, above(x, y, w) means that 
with 95% confidence the current value of x is greater than y, evaluated over the past time interval of length w. Thus, the 
construct above(fireSensor(building), temperature, timeWindow) means that with 95% confidence the value 
of the fire sensor reading for building is greater than temperature based on the linear regression over the readings in 
timeWindow. Employing similarity in data patterns, in Figure 1,  lines 102-103, the operator afv(A,s,f) returns the value x 
forecasted in time now + f  by the ARIMA model (given the time series A, and using a seasonal pattern of size s). Thus, 
the construct afv(occupancyHistory(building1, week), day, 0) provides an estimate of the current occupancy of 
building1 based on the history of this value over the last month. Precise definitions of all CB logic operators are in 
Section 4. 

3.2. Default mode method 
A way to cope with uncertainty in mode transition guards when data for employing time series are not available is to 
introduce a default active mode (represented by the mode value default). Thus, technically similar to exception 
handling, it is assumed that in any state of the mode state machine, there is a transition to the default mode guarded by 
the conjunction of negated guards of all the other transitions from the state. This is specified implicitly, so that not 
directly visible from the state machine diagram. Nevertheless, in Section 4.1, we show a way to analyze the cases when 
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the default mode is applied, since this may be a source of potential errors in design that may demonstrate themselves as 
late as at run-time. 

3.3. The proposed approach in a nutshell 

In our running example, we have seen how uncertainty on the events happening in the environment is captured in 
components and ensembles in DEECo – in essence, this is done by employing specific operators of CB logic in its self-
adaptation transition guards. Our approach is that these operators are defined upon time series and allow, with defined 
confidence, to make decisions in the transition guards based on the historical development of sensor-observed (noisy) 
data, and even predict the development of their future values. This is achieved via combining CB logic operators in 
concise language constructs (e.g., below()) that allow even non-experts in statistics to easily perform filtering, 
resampling, and statistically backed comparisons in time series. Moreover, it should be emphasized that these operators 
are also provided with variants of a higher level of abstraction to support the ease of use of these operations even further. 

From the self-adaptation perspective, these operators are applied in the Monitoring and Analysis phases on the MAPE-
K loop. Even though in this section we rely on ensembles and mode-state machines as the basic modeling formalisms, 
the use of CB logic operators is not limited to these DEECo self-adaptation concepts. Rather, they can be applied in any 
self-adaptive system where statistical reasoning on noisy data are appropriate to employ in the Monitoring and Analysis 
phases of the MAPE-K loop.  

Nevertheless, CB logic is applicable in state machines’ transition guards in general, wherever the need for addressing 
uncertainty occurs and related data, forming time series, are available. 

4. Confidence-Based logic  

In this section, we describe the Confidence-Based (CB) logic, which forms the backbone of our uncertainty-handling 
approach. 

4.1. Definitions 

Formally, we define CB logic as a many-sorted logic in the following way:  

Variables 𝐴 = 𝐴#,… , 𝐴&; 	𝐵; 	𝐶, … are time series. We denote 𝑇(𝐴) = 𝑇(𝐴#), … , 𝑇(𝐴&) the series of time when 
𝐴#,… , 𝐴& was sampled.  

In addition to the standard logical connectives, we add the following operators that return a time series: 

Selection and resampling 

• Selection 𝐴. …𝐴/ denoting a sequence consisting of elements 𝐴. through 𝐴/ . This can also be one element time series 
–  e.g., 𝐴# denotes a time series where only the first element has been preserved. 

• Selection [𝐴]2#23 = 𝐴4 …𝐴5 such that 𝑙 = min	{𝑖|𝑇(𝐴.) ≥ 𝑡1} and conversely 𝑟 = max	{𝑖|𝑇(𝐴.) ≤ 𝑡2}. We call this 
selection an (𝑡1, 𝑡2) window over 𝐴. 

• Selection [𝐴|Φ] denoting a sub-series containing only those 𝐴. for which Φ(𝐴.) is true. 

• Resampling 𝐴~	𝑇(𝐵) of a time series 𝐴	 to sample times 𝑇(𝐵) by linear interpolation. 

• Resampling 𝐴~H	𝑇(𝐵) of a time series 𝐴	 to sample times 𝑇(𝐵) by using the closest previous value. 

Operators over time series 

• Basic arithmetic over time series (assumes that 𝑇(𝐴) = 𝑇(𝐵), and 𝑐 ∈ ℝ): 

o 𝑐𝐴 – multiplication of each element by a constant 

o 𝐴 + 𝑐 – addition of a constant 

o 𝐴 + 𝐵, 𝐴 − 𝐵 – element-wise addition/subtraction 

o 𝐴 ∙ 𝐵 – element-wise product 

• =  – equality of two time series 

 Operators that return a scalar 

• min	(𝐴) – returns the minimum value of the time series 𝐴 
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• max	(𝐴) – returns the maximum value of the time series 𝐴  

Operators that return a cumulative distribution function 𝐹  

• 𝑚𝑒𝑎𝑛(𝐴) – distribution used for comparing the sample mean of 𝐴. 

Technically (in the light of Section 4.4), it is a distribution of sample means of the time series elements under the 
hypothesis that the mean is the sample mean of	𝐴. The resulting distribution serves as a plug-in distribution used for 
evaluation of ≤T,… relational operators (defined below) by means of hypothesis testing. The quantiles of this 
distribution are used to establish p-values for the test. For 𝑚𝑒𝑎𝑛(𝐴), we assume that the samples are i.i.d. random 
variables with a normal distribution 𝑚𝑒𝑎𝑛(𝐴) is thus a shifted and scaled Student's t-distribution (see Section 4.4). 
Note that 𝐴 in this case, and in the rest of the section, is potentially a window over a time series 𝐴, above denoted as 
[𝐴]U

V.   

Linear regression operators  

• 𝑙𝑟𝑎(𝐴) – distribution used for comparing the value of intercept 𝛼X in linear regression 𝛼X + 𝛽Z𝑡 fitted to the time 
series 𝐴 via ordinary least squares (OLS)3. 

Technically, it is a distribution of intercepts 𝛼X under the hypothesis that the true intercept is the one estimated by 
OLS. 

• 𝑙𝑟𝑏(𝐴) – distribution used for comparing the slope 𝛽Z . Technically, it is a distribution of slopes 𝛽Z  under the 
hypothesis that the true slope is the one estimated by OLS. 

• 𝑙𝑟(𝐴, 𝑡) – distribution of 𝑦 = 𝛼X + 𝛽Z𝑡 as above. (Note that since 𝛼X and 𝛽Z  are random variables, 𝑦 is a random 
variable as well.) 

Traditional relational operators over scalars 

• 𝑥 ≤ 𝑦, 𝑥 = 𝑦, … – if scalar 𝑥 is less than 𝑦, equal to 𝑦, etc. 

Relational operators over the distribution functions realized by statistical testing 

• 𝐹 ≤T 𝑐, 𝐹# ≤T 𝐹3 – if the null hypothesis 𝑋 ≤ 𝑐 or 𝑋# ≤ 𝑋3 respectively cannot be rejected at confidence level 
𝛾, where 𝑋, 𝑋#,𝑋3 are random variables with distributions 𝐹, 𝐹#, 𝐹3 respectively. 

• 𝐹 <T 𝑐, 𝐹# <T 𝐹3 – if the null hypothesis 𝑋 ≥ 𝑐 or 𝑋# ≥ 𝑋3 respectively can be rejected at confidence level 𝛾, 
where 𝑋, 𝑋#, 𝑋3  are as above. 

• ≥T and >T are defined correspondingly. 

• =T is defined as ≤T &	 ≥T  

Additionally, we include the standard logical operators &,∨,¬. 

4.2. Examples 

With this apparatus in hand, we can express transition guards such as: 

• 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝]&fgh#ij&fg ) <i.lm 20 – with confidence 95% the expected value of temperature 𝑡𝑚𝑝 in the past 10 
seconds has been lower than 20 degrees. Note that 𝑡𝑚𝑝 is the original time series 𝐴, [𝑡𝑚𝑝]&fgh#ij&fg  is its (now-
10s, now) window,  𝑀 = 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝]&fgh#ij&fg ) is the distribution of the sample mean of the window, and 
𝑀 <i.lm 20 denotes that the null hypothesis 𝑀 ≥ 20 can be rejected at confidence level 0.95. 

• 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐵~𝑇(𝐴)]&fgh#ij&fg ) − 20 <i.lm 𝑚𝑒𝑎𝑛([𝑡𝑚𝑝𝐴]&fgh#ij&fg ) – with confidence 95% the expected value 
of temperature 𝑡𝑚𝑝𝐴 has been in the last 10 seconds at least by 20 degrees lower than the expected value of 
𝑡𝑚𝑝𝐵. Note that 𝑡𝑚𝑝𝐵 is first resampled to sample times of 𝑇(𝐴) by linear interpolation. 

This assumes that within the 10-seconds window, the temperature is constant, and the measurement is subject to a 
normally distributed error with constant mean and variance. If it is assumed that the samples within the window have a 

                                                   
3The ordinary least squares (OLS) estimation for 𝑦 = 𝛼X + 𝛽Z𝑡 is given by 𝛽Z =

∑ (2qh2)(VqhV)
r
qst

∑ u2qh2v
wr

qst
,  𝛼X = 𝑦 − 𝛽Z𝑡. 
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linear trend, the comparison can be executed based on statistics of confidence intervals obtained from the linear 
regression. 

• 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤) <i.lm 100 – with confidence 95%, the current expected value of the water level is less 
than 100 liters evaluated over the past 10 seconds. 

The 𝑙𝑟 operator can also be exploited to predict values in the near future based on the current linear trend. Of course, 
care has to be taken in interpreting the confidence level of the extrapolation as the confidence speaks only about the 
current trend, not about its accuracy in predicting the future. 

• 𝑙𝑟([𝑤𝑎𝑡]&fghzij&fg , 𝑛𝑜𝑤 + 120𝑠) >i.lm 100 – based on the trend observed in the past minute, the value of the 
water level after 120 seconds from now will be, with the confidence of 95%, over 100 liters. 

Generally, the 𝑡	parameter of 𝑙𝑟(𝐴, 𝑡) can be arbitrary; however, it is necessary to remember that the variance of the 
prediction grows with the distance of 𝑡 from the mean of 𝑇(𝐴). The confidence bounds around 𝛼X + 𝛽Z𝑡 form the usual 
“hourglass” shape. This means that the statistical test used in the comparison will be the strongest roughly in the middle 
of the window and will get weaker towards the boundaries of the window (see Section 4.4 where these underlying 
mathematical formulas are given). 

The 𝑚𝑒𝑎𝑛 and 𝑙𝑟 operators can also be exploited to approximately describe that a value is increasing/decreasing: 

• 𝑚𝑒𝑎𝑛([𝑤𝑎𝑡]&fgh#ij&fg ) <i.lm 𝑚𝑒𝑎𝑛([𝑤𝑎𝑡]&fgh|ij&fghzij) 

• 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤 − 10𝑠) <i.lm 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤)  

However, the use of 𝑚𝑒𝑎𝑛 is often incorrect as it assumes no trends in the observation window. The use of 𝑙𝑟 is correct, 
but does not permit to easily reason about the rate of decrease/increase. Better control is achieved by 𝑙𝑟𝑎 and 𝑙𝑟𝑏, which 
expose the distribution of the linear regression coefficients 

• 𝑙𝑟𝑏([𝑤𝑎𝑡]&fgh#ij&fg ) <i.lm− 1 means that with confidence 95%, the water level decreases faster than 𝑓(𝑡) =
−𝑡. 

4.3. Difference from traditional semantics of relational operators 
Note that the statistical nature of the relational operators brings a few unexpected features. In particular, it does not hold 
that: 

a) 𝐹# ≤T 𝐹3	&	𝐹3 ≤T 𝐹~ ⟹ 𝐹# ≤T 𝐹~ 

b) 𝐹 ≤T 𝑐#	&	𝑐3 ≤T 𝐹	&	𝑐# ≤ 𝑐3 ⟹	 𝑐# = 𝑐3	 

The violation of (a) is caused by the fact that while the distance between 𝐹#, 𝐹3 and 𝐹3, 𝐹~ was small enough to prevent 
the hypothesis test from rejecting (i.e., ≤T is true), the distance between 𝐹#, 𝐹~ may be big enough to allow the test to 
reject, thus evaluating ≤T to false. 

The violation of (b) has a similar cause – 𝑐#, 𝑐3 are close to the mean of 𝐹; thus, no rejection takes place. However, 𝑐# 
may lie below the mean of 𝐹 while 𝑐3 may be above it (though 𝐹 ≤T 𝑐#	&	𝑐3 ≤T 𝐹). 

The violation of (b) nevertheless leads to an elegant way of expressing uncertainty: 

• 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤) <i.lm 100 – “provably low water level, drive to the hydrant” 

• 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤) >i.lm 100 – “provably sufficient water level, move to fire” 

• 𝑙𝑟([𝑤𝑎𝑡]&fgh#ij&fg , 𝑛𝑜𝑤) =i.lm 100 – “nothing definite can be said about the water level, monitor area around” 

Note that this is a rather significant difference from the traditional semantics of relational operators with real-valued 
quantities. There the likelihood that a real-valued observation is exactly equal to a certain quantity is extremely low (in 
fact, it is 0). In our interpretation, the equality 𝐹 =i.lm 100 means “it cannot be shown by a statistical test with enough 
confidence that a mean is strictly higher or strictly lower”. Thus, the mean is not compared exactly to the number 100, 
but to a confidence interval around 100. The confidence interval widens with an increasing variance of samples. 
Consequently, the likelihood that 𝐹 =i.lm 100 may be rather high. 

4.4. Evaluation of the relational operators 
The interpretation we use for 𝐹 ≤T 𝑐 and related operators rely on checking whether the value 𝑐 lies within the 
confidence bounds given by 𝐹, i.e., the 1 − 𝛾 and 𝛾 quantiles of 𝐹.   
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Recall that 𝐹 denotes here the distribution of the statistical quantity under the hypothesis that the true mean is the sample 
mean. In the case of the 𝑚𝑒𝑎𝑛(𝐴) operator, it is a distribution of �̅� + 𝑠𝑇/√𝑛, where 𝑇 is a random variable with 
Student’s t-distribution with |𝐴| − 1 degrees of freedom, �̅� is the sample mean of 𝐴 and 𝑠3 is a sample variance of 𝐴.  

In case of the 𝑙𝑟𝑏(𝐴) operator, assuming the model 𝛼 + 𝛽𝑡 + 𝜖 and normality of the error terms 𝜖, the 𝑙𝑟𝑏(𝐴) is a 
distribution of 𝛽Z + 𝑠��𝑡, where 𝛽Z  is the ordinary least square estimate of the slope, 𝑠��  is the standard error of the estimator 
𝛽Z , and 𝑡 has Student’s t-distribution of |𝐴| − 2 degrees of freedom. A similar relation holds for the distribution of 
intercept 𝛼X returned by 𝑙𝑟𝑎(𝐴) and the prediction 𝛼X + 𝛽Z𝑡 returned by 𝑙𝑟(𝐴, 𝑡). 

The actual test 𝐹 ≤T 𝑐 is interpreted as: 

𝐹 ≤T 𝑐			 ⟺ 			𝐹(2𝜇 − 𝑐) ≤ 𝛾 

where 𝜇 is the mean of 𝐹 and 𝐹(𝑡) denotes the cumulative distribution function of 𝐹. 

The expression 2𝜇 − 𝑐 is derived from the fact that we shift 𝐹 such that its mean is 𝑐, which is the null hypothesis. This 
yields a distribution 𝐹 − 𝜇 + 𝑐. We then reject the null hypothesis if 𝜇 is greater than the 𝛾 quantile of 𝐹 − 𝜇 + 𝑐. With 
a few trivial rearrangements, we arrive at the 𝐹(2𝜇 − 𝑐) ≤ 𝛾. 

The test 𝐹# ≤T 𝐹3 is interpreted as: 

𝐹# ≤T 𝐹3 			⟺ 			 (𝐹# − 𝐹3)(2𝜇# − 2𝜇3) ≤ 𝛾 

where 𝜇#, 𝜇3 denote the means of 𝐹#, 𝐹3 respectively; (𝐹# − 𝐹3) denotes the distribution of subtraction of random 
variables 𝑋# − 𝑋3 where random 𝑋#~𝐹# and 𝑋3~𝐹3. 

The expression is derived in a similar way as above. We shift each of the two distribution to have mean 0 and subtract 
them: 𝐹# − 𝜇# − 𝐹3 + 𝜇3. This forms a distribution for the null hypothesis that the mean of 𝐹# − 𝐹3 is less or equal to 0. 
We reject if 𝜇# − 𝜇3 is greater than the 𝛾 quantile of 𝐹# − 𝜇# − 𝐹3 + 𝜇3. 

4.5. Forecasting the future by ARIMA 

For recurrent events, where linear regression may not be an appropriate approximation, we provide more fitting handling 
in terms of ARIMA models [21]. ARIMA stands for AutoRegressive Integrated Moving Average and is one of the 
statistical methods for time series analysis. Its primary purpose is to forecast future values of a given time series. A 
necessary condition is that the data has to exhibit certain regularity in terms of recurring sequences of values of the same 
length. Those sequences are referred to as windows. Corresponding values in different windows are not required to be 
exactly the same – they can exhibit linear movement in time (called trend) as well as changes to variation inside a 
particular window. When choosing an appropriate length of the window – which can be rather challenging in some cases 
– ARIMA can provide a precise forecast of a future value with a known confidence level. To support this form of 
forecasting in our approach, we provide the following operators: 

• 𝑎𝑓𝑣(𝐴, 𝑠, 𝑓)	–	returns	the	value	forecasted	by	the	ARIMA	model	given	the	time	series	𝐴,	using	a	seasonal	
pattern	of	size	𝑠,	and	forecasting	the	future	value	of	𝑥	in	time	𝑛𝑜𝑤	 + 	𝑓.	

• 𝑎𝑓𝑐(𝐴, 𝑠, 𝑓)	–	returns	the	confidence	of	the	forecast	of	the	future	value	of	𝑥	in	time	𝑛𝑜𝑤	 + 	𝑓.	

• 𝑎𝑓𝑑(𝐴, 𝑠, 𝑓)	–	returns	the	distribution	of	the	value	in	time	𝑛𝑜𝑤	 + 	𝑓	forecasted	by	the	ARIMA	model	given	
the	time	series	𝐴,	using	a	seasonal	pattern	of	size	𝑠.	

4.6. Short-hand notation 
To simplify the application of the operators defined above, we provide a short-hand notation for the most common cases. 
These include the above and below operators we have already seen in Figure 1. 

• 𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]&fghg&fg , 𝑛𝑜𝑤) <i.lm 𝑦 … with confidence 0.95%, the current value of 𝑥 is less than 
𝑦. It assumes that there is a linear trend (potentially a zero trend) in 𝑥 over the past time interval of length 𝑤. 

• 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤) ⟺ 𝑙𝑟([𝑥]&fghg&fg , 𝑛𝑜𝑤) >i.lm 𝑦 … similar as above with 𝑥 greater than 𝑦. 

• 𝑓𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]&fghg&fg , 𝑛𝑜𝑤 + 𝑓) <i.lm 𝑦 … the future value of 𝑥 in time 𝑓 from now is expected 
to be less than 𝑦.  

• 𝑓𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑤, 𝑓) ⟺ 𝑙𝑟([𝑥]&fghg&fg , 𝑛𝑜𝑤 + 𝑓) >i.lm 𝑦 … similar as above with the future 𝑥 greater than 𝑦.  

Similarly, we provide short-hand notation for min/max: 
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• 𝑚𝑎𝑥𝑓𝑏𝑒𝑙𝑜𝑤(𝑥, 𝑦, 𝑓) ⟺ maxu[𝑥]&fg
&fg ¡v < 𝑦 … the maximum of the time series over the next time 𝑓 is less 

than 𝑦 

• 𝑚𝑖𝑛𝑓𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦, 𝑓) ⟺ minu[𝑥]&fg
&fg ¡v > 𝑦 … similar as above with minimum future 𝑥 less than 𝑦. 

5. Discussion 

In this section, we will discuss in more detail the issues already raised in the previous sections. Specifically, these are 
(i) verification of completeness of transition guards in mode-switching state machine, (ii) automated learning of 
particular parameters for transition guards, and (iii) options for more robust statistics to deal with outliers.  

5.1. Verification of mode transition guards 
When designing the modes switching state machine of a component, an important aspect is the completeness of the 
mode transition guards. If none of the conditions guarding the outgoing transition of a particular state are satisfied, the 
default mode is chosen; note here, that its guard (implicitly formed as a conjunction of negated guards of all the other 
transitions) is satisfied only if there is no other guard satisfied. This brings two consequences: (1) the default mode guard 
can be unsatisfiable, which corresponds to the case where the other guards in the state machine completely cover the 
option space, and, on the other hand, (2) satisfying the default mode guard can serve as an alarm that the designer has 
missed an option that should be covered explicitly by a mode transition. An example of (1) can be the situation, where 
two explicit mode transitions are guarded by conditions 𝑥 ≠ 1 and 𝑥 ≠ 2, respectively. This results in the transition 
guard of the default mode containing the (clearly unsatisfiable) subexpression (𝑥 = 1) ∧ (𝑥 = 2).  Note that this is an 
expected situation, 
 

¬[u(𝑚𝑜𝑑𝑒 = 𝑆𝐸𝐴𝑅𝐶𝐻) ∧ (𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑇𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v ∨ 
u(𝑚𝑜𝑑𝑒 = 𝑆𝐸𝐴𝑅𝐶𝐻) ∧ (¬𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑇𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊	)	)v ∨ 

°(𝑚𝑜𝑑𝑒 = 𝑅𝐸𝐹𝐼𝐿𝐿) ∧ u𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑎𝑏𝑜𝑣𝑒,𝑊𝑀𝐴𝑋,𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v ∧ (𝑏𝑢𝑟𝑛𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒 = 	0)³ ∨ 

°(𝑚𝑜𝑑𝑒 = 𝑅𝐸𝐹𝐼𝐿𝐿) ∧ u𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑎𝑏𝑜𝑣𝑒,𝑊𝑀𝐴𝑋,𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v ∧ (¬𝑏𝑢𝑟𝑛𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒 = 0)³ ∨	

°(𝑚𝑜𝑑𝑒 = 𝑅𝐸𝐹𝐼𝐿𝐿) ∧ u¬𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑎𝑏𝑜𝑣𝑒,𝑊𝑀𝐴𝑋,𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³ ∨	

°(𝑚𝑜𝑑𝑒 = 𝑀𝑂𝑉𝐸𝑇𝑂𝐹𝐼𝑅𝐸) ∧ u𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑡𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³ ∨	

°(𝑚𝑜𝑑𝑒 = 𝑀𝑂𝑉𝐸𝑇𝑂𝐹𝐼𝑅𝐸) ∧ u¬𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑡𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³ ∨	

°(𝑚𝑜𝑑𝑒 = 𝐸𝑋𝑇𝐼𝑁𝐺𝑈𝐼𝑆𝐻) ∧ u𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑏𝑒𝑙𝑜𝑤,WMIN, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³ ∨	

°(𝑚𝑜𝑑𝑒 = 𝐸𝑋𝑇𝐼𝑁𝐺𝑈𝐼𝑆𝐻) ∧ u¬𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑏𝑒𝑙𝑜𝑤,WMIN, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v ∧

										u¬𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑇𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³ ∨  

°(𝑚𝑜𝑑𝑒 = 𝐸𝑋𝑇𝐼𝑁𝐺𝑈𝐼𝑆𝐻) ∧ u¬𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙(𝑏𝑒𝑙𝑜𝑤,WMIN, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v ∧

										u𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔(𝑇𝑒𝑚𝑝, 𝑇𝐼𝑀𝐸_𝑊𝐼𝑁𝐷𝑂𝑊)v³] 

since, assuming 𝑥 being a scalar variable always taking a value, 𝑥 is always different from either 1 or 2 or both. In Figure 
4, the formula used for verification of the uncovered cases for the example in Section 2.2 is listed. Each line of the 
formula is a transition guard used for mode switching in Figure 2, while the disjunction of the guards is negated to 
discover uncovered cases. In the formula, 𝑚𝑜𝑑𝑒 and 𝑏𝑢𝑟𝑛𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒	are treated as integer variables, while 
𝑆𝐸𝐴𝑅𝐶𝐻, 𝑅𝐸𝐹𝐼𝐿𝐿, and other capitalized strings are integer constants. Operators, such as 𝑖𝑠𝑊𝑎𝑡𝑒𝑟𝐿𝑒𝑣𝑒𝑙 and 
𝑒𝑥𝑖𝑠𝑡𝑠𝐵𝑢𝑟𝑛𝑖𝑛𝑔, are treated as independent Boolean variables for each given combination of parameters (there is just 
one combination for each operator in our example). A call to an SMT solver (we employ the Z3 SMT solver [22]) 
provides a set of satisfying assignments, each corresponding to an uncovered combination of the variables’ values. It is 
then up to the system designer to decide which of them are intentionally left out to be covered by the default mode, and 
which of them have been omitted by mistake. We believe that such a check can reveal unforeseen situations since the 
number of the variable values’ combinations in complex systems can be enormous. To cope with a high number of found 
variable assignments, grouping them by the mode and further filtering (based on domain knowledge and a particular 
application) can significantly help handling them. As to our example, the SMT call resulted in 7 uncovered variable 

Figure 4: Part of the formula for mode switching verification (corresponding to Fig. 1). 
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values’ combinations, all of them corresponding to missing options in the default mode. Since the default mode is not 
specified, we can conclude that our specification is complete in terms of the guard specification. 

Note that even though the default-mode guards can be filtered out in an automatic way, it is still beyond the abilities 
of automated formal methods to decide about a particular situation whether it is a real flaw or a spurious one. As to the 
limits of the SMT solver, we assume that the sizes of formulae to verify are by orders of magnitude less than what the 
solver can handle (typically tens of thousands of variables); hence, this is not an issue here. 

5.2. Thresholds tuning  

Setting up optimal threshold values (e.g., distance to a building to start its extinguishing) within the mode switching 
and ensemble membership condition specification may be a tricky task, especially because of the system complexity. 
Below we describe a method based on simulation to tackle the problem. The method consists of two steps: (1) run-time 
data about the system behavior are collected, and (2) the specification is modified according to an optimization goal 
and then, together with the run-time data, is used for simulation. 

As an example, consider that the distance to a burning building (involved in transition guard to the extinguish mode) 
is to be optimized. We would like to set the threshold distance value as far as possible while still having a reasonable 
efficiency of the extinguishing process, i.e., to ensure that the stream of water hits its target. In general, it is clear that 
optimal values strongly depend on the current environment state, e.g., on the visibility conditions and fire intensity; 
that is why run-time data on the current environment conditions have to be employed. 

The simulation approach (see also Section 6) may not yield good results due to unforeseen modifications of the 
environment factors since this approach requires a relatively precise model of the environment taking account the 
physical laws governing these factors; therefore, a purely run-time solution turns out to be a more viable way in many 
cases. 

In practice, multiple simulation runs need to take place with different settings of threshold values. The results of these 
simulations are to be evaluated to determine how a particular threshold value influences the performance of the system. 
In order to find an optimal value of a variable, an algorithm searching the space of sensible values is to be employed, 
e.g., simulated annealing. These simulations can be repeated for all the variables of interest, and, finally, the system 
setup with these values is to be tested again.  

Some threshold values may be context-dependent, e.g., the value that increases system performance may reduce its 
robustness. Thus, the choice of particular values depends on the context and system goal. For instance, setting the 
distance threshold value to a building on fire depends on the wind speed – the stronger the wind, the closer the fire 
brigade has to be to reach the fire with a stream of water. On the other hand, if multiple fire brigades are extinguishing 
the same fire, it is necessary to balance their distance to the fire to achieve their appropriate coordination. 

5.3. Quantile-based interpretation 

The operators	𝑚𝑒𝑎𝑛, 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟 all give a distribution of a mean value. This is a typical use-case as the mean is 
well understood by practitioners. One, however, has to be aware of the fact that the mean is typically rather sensitive 
to outliers. The computation of the mean can be thus preceded with some form of outlier detection and exclusion. Care 
has to be taken because the definition of an outlier is purely domain-specific and requires a good understanding of 
outliers’ cause. This is because the removal of outliers inherently changes the sample mean and the variance of the 
mean, which influences the results of the statistical tests used for the relational operators. Typically, this renders the 
test overconfident and increases the number of false positives. 

An alternative to filtering outliers is to use a statistical value that is inherently robust to outliers. In particular, the 
median is a favorite choice. Also, generalizing the median to an arbitrary quantile has a nice advantage of giving the 
ability to reason about extremal values – e.g., with confidence 𝛾, 90% of the measurements fall below a given threshold. 

Nevertheless, in general, the use of median or quantiles comes with a relatively high computational cost. Though there 
exist relatively simple non-parametric tests for comparing the median of a set of i.i.d. observations (i.e., an operator in 
assumptions similar to 𝑚𝑒𝑎𝑛), the quantile regression (i.e., yielding operators similar to 𝑙𝑟𝑎, 𝑙𝑟𝑏, and 𝑙𝑟) is much more 
complex. It turns out that its parameters 𝛼X,  𝛽Z  cannot be computed directly by a formula as in the case of ordinary least-
squares, but such computation requires minimization, for instance, by means of linear programming.  
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5.4. Completeness and correctness 
Our work is a set of operators and functions within propositional logic, designed in such a way that each term used in 
our formulas is either true or false. Since propositional logic is both complete and sound, so is our CB logic. As for the 
choice of statistical functions and the other operators we provide, we do not aim at completeness here. We rather 
consider our approach as open to additional statistical functions and tests (e.g., median and test over median). We 
selected a diverse set of the most important functions – covering means, linear regression, and ARIMA. Nevertheless, 
the CB logic library allows for incorporating other statistical functions, where it is possible to provide distribution F 
that can be used in hypothesis testing using operators ≥γ,>γ, etc. (as described in Section 4). 

6. Evaluation  
6.1. Research questions and experimental results 

To evaluate our approach, we have applied it to the RCRS scenario described in Section 2. We set out several variants 
of the RCRS scenario with the intention to obtain an indication of whether employing CB logic operators in transition 
guards has the potential to improve system utility (explained below). In essence, the experiments with these scenarios 
were carried out with the aim to answer the following research question: 

 Does the use of CB logic in system design improve system utility w.r.t. to the baseline where decisions are based only 
on current readings (i.e., without the use of statistics (CB logic operators))?  

In order to respond to this question, the 
variants of the RCRS scenario (Figure 5) 
include (1) the baseline (no employment of 
statistics), and using (2) simple moving 
average, (3) ARIMA, (4) linear regression, 
and (5) combination of linear regression and 
ARIMA. The experiments with these 
scenarios are to be compared to each other 
with a focus on if/how each of these 
improves system utility. 

A key part of the RCRS scenario is 
FireBrigade. Key fragments of its “fully 
flagged” specification (corresponding to 

Scenario 5) are in Figure 1 and Figure 2. This fully autonomous component decides on its actions based on the sensor 
readings and modifies its behavior accordingly. Information about nearby buildings that are on fire is gathered using 
sensors that inherently provide uncertain data. For instance, the readings from thermographic cameras are affected by 
the distance to the building being observed, by the visibility conditions (dust, smoke, mist, …), and by the obstacles in 
direct sight between the camera and the building. This uncertain data can affect the immediate reaction of the 
FireBrigade so that it could perform a spurious mode transition. Furthermore, when FireBrigade is choosing which 
of the buildings on fire to extinguish, the key criterion considered is to save as many lives as possible; this requires 
predicting the number of people present in a building (another source of uncertainty). This is done by considering the 
type of building (commercial/residential) and the time and day of the week—commercial buildings are populated 
mainly in business hours and residential buildings conversely. The system utility is measured by the fraction of intact 
buildings to all buildings (the higher the fraction, the better). 

To reflect this perspective, FireBrigade decisions in Scenario 1 are driven just by the “raw” values of sensor readings. 
Consequently, transition guards’ evaluations are prone to spurious architectural transitions due to random readings 
outliers. In Scenario 2, raw reading values are replaced by the average of the latest 3 values to smoothen the output 
value (simple moving average). Scenario 3 differs from the baseline by predicting the actual occupation of buildings 
via the ARIMA afv operator. Scenario 4 utilizes linear regression CB operators in transition guards to gauge data 
provided by sensors.  

Scenario above below afv notes 

1 no no no Baseline - Raw readings 

2 no no no Simple moving average of 
last 3 readings 

3 no no yes ARIMA 

4 yes yes no Linear regression 

5 yes yes yes Linear regression + ARIMA 

 
Figure 5. Scenarios and operators considered in the evaluation. 

Deleted: Figure 5

Deleted: Figure 1

Deleted: Figure 2
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Accessible at GitHub, the implementations of these 
scenarios are based on a simulation realized by the 
customized RoboCup server4 and on partially tailored 
RoboCup agents5. Figure 6 shows the results of the 
simulation runs (100 runs per Scenario). Here the 
efficiency of fire brigades in extinguishing fires (the system 
utility) is assessed via the score of an RCRS run, which is 
measured as the fraction of intact buildings to all buildings 
at the end of the run.  Overall, they clearly show that using 
time series and CB logic in transition guards’ evaluations 
improves system utility. Besides, they also indicate that the 
ARIMA model predicting building occupation values 
based on the time series of past values further improves 
system utility. 

As to the research question, we answer it in the following 
way: By comparing the first and the second boxplot of 
Figure 6, we see that the use of moving average in the 
evaluation of mode transitions improves the system utility 
only marginally. The comparison of the first and the third 
boxplots indicates that the use of ARIMA CB operators 
also improves the system utility only slightly. On the other 
hand, the use of linear regression CB operators results in a 
considerable improvement of the system utility (the fourth 
boxplot). Finally, the comparison of the fourth and fifth 
boxplots shows that a combination of linear regression and 
ARIMA CB operators (Scenario 5) brings only marginal 
improvement with respect to Scenario 4 (linear regression 
only). Thus, in summary, the application of ARIMA 
improves system utility marginally, whilst linear 
regression has a substantial effect. A combination of it with 
ARIMA yields an additional improvement. 

To support our claims, we performed two-tailed t-test (at 
significance level 0.05) for each pair of simulation results. 
The computed p-value for each pair of simulation results is 

in Figure 7, while taking into account that individual simulation runs are independent. The p-value confirms the non-
directional hypothesis that there is a significant statistical difference between scenarios 1/2/3 and 4/5.  
6.2.  Details on the experiments, note on CB logic implementation, and threats to validity,  

Details on the experiments: To get stable results, as already mentioned, we simulated each scenario 100 times. Each 
simulation run had a duration of 600 steps (the standard RCRS simulation runs take 300 steps). The RCRS simulator’s 
build-in standard score function was used to assess the results of simulations (score 1 means all the buildings in the 
city are not damaged, while 0 means the worst case). As an aside, in an RCRS simulation, a building can be damaged 
by fire or by water. However, the latter could happen when a fire brigade takes a false positive decision (extinguishing 
a building that is not on fire) – this potentially worsens the score; ignoring a burning building has a similar consequence.  

The scene of scenarios is simulated by the Kobe2013 map that represents a part (1.5. km2) of the city Kobe in Japan 
during an earthquake. On the scene, there are twelve mobile fire brigades, having available 18 hydrants and a single 
fire station, which are located at fixed places in all the experiments. A hydrant can serve just a single fire brigade at a 
time, while the fire station can serve arbitrarily many. The water tank of a fire brigade can store 50,000 units of water 
which can be filled in at the fire station by 7,000 water units per simulation step and at a hydrant by 5,000 water units 
per simulation step.  

Building fires are ignited randomly featuring a Poisson distribution with a lambda value of 0.3 (“to ensure enough 
fires”) and spread depending on changing wind conditions. Each fire brigade is equipped with its fire sensor, which 

                                                   
4 https://github.com/d3scomp/rcrs-server/tree/extended_modes 
5 https://github.com/d3scomp/rcrs-adapting-firefighters/tree/extended_modes 

Scenario 2 3 4 5 
1 0.424017 0.186357 5.48E-44 3.49E-46 
2   0.523249 2.35E-44 1.89E-46 
3     3.25E-39 8.24E-42 
4       0.079561 

 Figure 6. Results for 100 runs of each simulated scenario 
described in Figure 5.  System utility (“score”)  is measured 

as the fraction of intact buildings to all buildings (the higher, 
the better).  

 Figure 7. Calculated p-values for pairs of simulated 
scenarios. Statistically significant results (p-value< 0.05) in 

bold. 
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detects a fire with a probability depending on the distance from an observed building. If the distance is closer than a 
low threshold (8,000 distance units, defined by the RCRS simulator), the fire is detected with full certainty. If the 
distance is greater than a high threshold (40,000 distance units), the fire is not detected all (this is the limit of fire 
detectability in the simulator). Based on these two thresholds, a sensing probability is calculated (in the range from 0 
to 1) linearly dependent on the actual distance and then subjected to Gaussian noise with a standard deviation of 0.1 
(this is to simulate the inherent inaccuracies of the thermographic camera of the sensor). The final probability is used 
to determine whether a fire is detected.  On top of this, even when a building is not on fire, the fire sensor might detect 
one (this may happen, e.g., when a building with a glass facade reflects the sun directly into the camera). This 
consequently triggers a false positive decision (in the simulation, this happens with the probability of 0.2).  

Finally, the operators of CB logic feature a configurable window size. The exact configuration of these is highly 
application-dependent. In our simulations, we used a fixed window size of 8 last values for the CB operators and of 
one-week-long data for the ARIMA ones. 

Note on implementation: In the simulation, we use the implementation of the key operators of CB logic (mean, lra, lrb, 
lr), which we also provide as a Java library tailored towards being used in sCPS projects (there also exists a C++ 
version of this library). The library offers a simple API for collecting data as time series and evaluating the relational 
operators over these key operators via statistical testing. The library also provides a means to train an ARIMA model 
and use it for value predictions. 

Threads to validity: We performed an evaluation of how CB logic improves system utility on a single use-case only. 
Even though one cannot generalize from this, it has the value of showing that CB logic has the potential to help. 
Nevertheless, we aimed at mitigating the problem by selecting a case that serves as a widely acknowledged benchmark 
for multi-agent systems (and thus for adaptation involving multiple parties).  
6.3. Additional case study 
We have applied our proposed CB logic operators in a second case study from the cloud computing domain. In this 
case study, the focus is on the scheduling of services belonging to multiple applications to cloud servers in an optimal 
way. The optimization problem is, in general, multi-objective and considers both the minimization of cloud deployment 
costs (by using the provisioned servers to their full capacity), the load balancing between different servers in a cloud 
data center, and the satisfaction of performance requirements of certain services. In the context of the AFarCloud EU 
project6, we focus on latency-critical applications in the farming sector such as analysis of images from drones that 
monitor soil, crop, cattle, and operation of tractors. In such a setting, the image recognition service in the cloud has a 
latency requirement that needs to be guaranteed, in order for the application to be at all usable and to provide real-time 
or at least time-bounded feedback to an operator even when complex data processing tasks are performed in the cloud.  

To ensure that the cloud 
deployment cost is kept to a 
minimum and all near real-
time guarantees of services are 
satisfied even in the face of 
continually changing 
conditions (changes in the 
background load, current 
utilization), we use a self-
adaptation loop (Figure 8) 
structured according to the 
MAPE-K loop. The loop is 
embodied in an Adaptation 
Manager, which hosts the 
Knowledge (includes the 
database of measured data). 
We support two types of 
adaptation (re-planning in 
cloud terms): (i) emergency 
adaptation, which is simple 
but must be fast. We do this by 

                                                   
6 http://www.afarcloud.eu 

 Figure 8. MAPE-K loop of the cloud computing case study. 
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keeping a server aside and relocating/scaling the services if they seem to start failing to cope with the load; (ii) long-
term adaptation, which potentially involves re-deployment of all services and requires complex planning phase (that 
involves a CSP problem solver) that is very resource-intensive and easily takes minutes to complete. We want to 
execute the long-term adaptation only when really necessary. Concretely, our adaptation loop consists of the following 
phases: 

• Monitoring. Both the properties of servers (CPU, RAM, I/O utilization) and the performance of individual 
services are monitored. Technically, in our case study, we focus on Kubernetes (K8s) cloud for the scheduling 
of services packaged as Docker containers and hence rely on K8s cloud monitoring facilities. All the monitored 
time series data are sent to the Adaptation Manager.  

• Analysis. A number of adaptation triggers are applied to the collected data to determine whether any service or 
resource requirement is violated or expected to be violated. In such a case, the Adaptation Manager triggers an 
adaptation process (explained in the Planning phase). Due to complex interactions of applications deployed on 
a single server, network issues, or monitoring anomalies, the measured CPU and RAM, as well as service 
latencies may fluctuate and create sensing uncertainty. Hence, we apply the CB logic operators to deal with this 
uncertainty by gathering a number of data points and applying statistical tests and identifying existing trends on 
their values. The application of the CB logic operators in this phase also provides a basis for proactive adaptation 
explained below.  

• Planning. In this phase, the data collected in the Monitoring phase along with the service performance are used 
for adaptation. Technically, in this phase, a CSP solver may be invoked, in cases of a long-term adaptation to 
derive a feasible deployment, i.e. a deployment in which all the service requirements are satisfied.   

• Execution. In this phase, the identified deployment is compared to the current one. For every change in the 
configuration, a number of actions have to be performed to change the state of the cloud accordingly. Based on 
that comparison, the Adaptation Manager selects and executes a number of actions to be performed on the K8s 
cloud, on the network, and on the running services (e.g., start a server, remove it, etc.).  

In this case study, we have used the CB logic operators to provide probabilistic guarantees and re-plan only if we 
cannot show (by the statistical tests) that the average latency or CPU, RAM, or I/O load is below a particular threshold 
over a certain time window. Concretely, we have used CB logic to specify the following adaptation triggers:  

1. "𝑎𝑏𝑜𝑣𝑒(𝐶𝑃𝑈4f»¼, 0.7, 5	𝑚𝑖𝑛𝑠)": For each server, if the CPU load is higher than 80% consistently the past 5 
minutes, an adaptation is triggered. We used similar triggers for the RAM and I/O utilization metrics.   

2. "𝑛𝑜𝑡	𝑚𝑎𝑥𝑓𝑏𝑒𝑙𝑜𝑤(𝐶𝑃𝑈4f»¼, 0.9, 10	𝑚𝑖𝑛𝑠)": For each server, if the maximum value of its predicted (via linear 
regression) load over the next 10 minutes is not less or equal to 90%, a trigger is issued. Again, similar triggers 
were specified for the RAM and I/O utilization metrics.  

3. "𝑛𝑜𝑡	𝑏𝑒𝑙𝑜𝑤(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑉, 𝑇)": For certain services, a trigger of this form was specified to bound the value of 
observed latency to a maximum value above which an adaptation should be triggered. The concrete values of 
V and T depend on the service being deployed. For the image recognition service, we used V=100ms and 
T=1min. 

4. afv(RPM,	24	hours,	10	min) > 10 ∗ 𝑐𝑢𝑟𝑟𝑒𝑐𝑡_𝑅𝑃𝑀 and afc(requests,	24	hours,	10	min) ≥ 95%: For each 
service, we keep a record of the number of requests per minute (RPM) issued. Such requests tend to have a 
daily pattern. This trigger was put in place to trigger an adaptation in anticipation of a high predicted increase 
in the RPM, which could result in increased service latencies due to high load.  

In this case study, the mean-based triggers (1 and 3) pertain to the emergency adaptation case, while the forecasting-
based triggers (2 and 4) pertain to the long-term adaptation case. Overall, in this real-life case study, there are not many 
adaptation triggers. Still, when we first attempted to express them inline, we observed that their specification quickly 
becomes large and error-prone. When we then used CB logic for the specification of adaptation triggers, such 
specification became more comprehensible, intuitive, and easy to maintain.   

7. Related work 

In this section, we first focus on related work in handling uncertainty in self-adaptation and data streaming systems, 
and secondly on the different types of logics that might have been used in our approach. 
7.1. Handling uncertainty in self-adaptation and data streams  
To our knowledge, there are no other approaches that do not need initial (base) probabilities or a model of the system 
to be available upfront in architecture-based self-adaptation. Nevertheless, there are a number of works that are closely 
related to our approach and/or also employ statistical methods for handling uncertainty and managing variability – a 
recurring requirement in software engineering on capturing context dynamicity and reflecting its effect on system 
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behavior. A systematic literature review in this is provided in [23], including run-time variability in self-adaptive 
systems. We compare our method to the state-of-the-art in self-adaptive systems, and for this purpose partially follow 
the classification in [12] for uncertainty sources options: 

Changes in adaptation mechanisms. A well-known approach to capture uncertainties in self-adaptation is the language 
Stitch [19]. One of Stitch’s basic concepts is tactics. It defines a condition over the architecture state, an action that has 
to be performed if the condition holds, and, finally, its effect that is the condition, which should hold after applying the 
action. Tactics are used in strategies, which describe dynamic adaptation processes. Compared to modes, Stitch offers 
a more fine-grained adaptation of an architecture, which, however, may not always be ideal for sCPS due to potentially 
limited hardware resources of embedded systems. Compared to our method, Stitch does not allow reasoning about 
history/future and time series in conditions. Probabilities are in Stitch used only in strategies to describe the likelihood 
that a condition will evaluate to true and subsequently employed in selecting a strategy to be executed.  

Based on Stich, the Rainbow framework [23] relies on the MAPE-K model and captures different kinds of uncertainties, 
such as in sensing and effecting. The uncertainties are represented with different models, such as ranges or different 
kinds of distributions. For instance, the readings of a temperature sensor have physical limitations that are represented 
as a range, and any reading should fall in that range, whilst errors in readings are represented by the normal distribution 
function. The set of provided functions includes the normal distribution, linear function, and exponential distribution. 
Nevertheless, history/future and time series in architecture-based adaptation are not considered.  

Focusing on the requirements in self-adaptive systems and building on KAOS goal-oriented models [24], FLAG (Fuzzy 
Live Adaptive Goals for Self-adaptive systems) introduces the notions of fuzzy goals and adaptive goals [25], [26]. As 
opposed to crisp goals whose fulfillment is Boolean, fuzzy goals have a degree of satisfaction in the [0,1] range and 
are formulated in a fuzzy temporal language [25]. Using the fuzzy operators of the language, one can express properties 
such as “a variable is almost always zero”, “something holds almost until a certain point”, or “a variable has a value 
less than zero with the exception of five cases”. Finally, adaptive goals in FLAGS describe countermeasures that should 
be triggered when a fuzzy or crisp goal is violated. Similar to FLAGS, our approach tries to handle uncertainty at the 
level of adaptation mechanisms and aims at providing non-experts with the ability to express rich adaptation conditions. 
Contrary to FLAGS though, we do not model the adaptation logic via goals but via modes, and we do not capture 
uncertainty in conditions via fuzzy logic operators but via CB operators that apply statistical methods.  

Finally, POISED is another approach that has tried to handle uncertainty in self-adaptive systems [27]. POISED 
provides a holistic framework for reasoning under uncertainty, both external (due to the environment variability and 
sensor noisiness, which is also our focus) and internal (due to the unpredictable effects of adaptation actions). Similar 
to our approach, POISED works with probability distributions of the sensed data, acknowledging that their statistical 
characteristics should not be ignored. However, contrary to our approach, POISED does not rely on statistical tests but 
on fuzzy mathematics and possibility theory to quantify the overall uncertainty in the models.  

Sensing and Effecting. In [28], the authors target almost-sure reachability in stochastic multi-mode systems (SMMS); 
their approach is demonstrated on an example of a robot/autonomous vehicle that is trying to follow a path with 
arbitrary precision. The idea is to add bounded stochastic uncertainties with modes and consider tolerance in a control 
strategy (e.g., a path-follow algorithm that depends on arbitrary precision because of noisy sensors). Nevertheless, our 
method has a fine-grained representation of handling uncertainties over transitions guards. Moreover, the method in 
the paper does not consider a confidence level in accessing uncertainties. It rather keeps the robot/vehicle in a safe area 
in a neighborhood of the target point, which is associated with a probability distribution without giving the ability to 
determine the required confidence level.  

As to learning the limits, an approach for adaptation of sensor networks used for modeling the behavior of a fire 
prediction system is presented in [29]. It is based on predictive analysis of historical data, i.e., time series of data 
measured by sensors. The goal is to proactively adapt parameters of the sensor network (e.g., rate of measurements and 
data reporting) depending on the situation. For instance, the system sets a higher rate of taking measurements in case 
of a possible forthcoming dangerous situation. For the actual prediction, the authors use the Multi-Layer Perception 
(MLP) model and employ the KNIME tool7. Even though the prediction depends on historical data and trends, it does 
not involve a confidence level that deals with fluctuations, nor does it consider the human presence in decision making. 

A dynamic adaptation at run-time is discussed in [30]. To avoid issues with oscillations of context measures, the authors 
suggest using an event processing engine, namely Esper8. Esper offers a SQL-based event processing language, which 
                                                   
7 http://www.knime.org/ 
8 http://www.espertech.com/products/esper.php 
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allows for defining queries on run-time events with time windows and aggregation functions (like min, max, average). 
However, the analysis via linear regression and/or predictions of future events is not supported. A similar method is 
presented in [31], where the authors describe a self-adaptation approach. Processing of events, which are collected in 
a system, is described using an XML-based language that (as in the method above) allows for specifying time windows, 
aggregation functions, etc. Nevertheless, no predictions about the future are considered. 

In our work [32], a linear state-space model is associated with component knowledge fields. The approach aims at 
capturing the uncertainty in knowledge caused by delays during data exchange in decentralized systems. This model is 
used to make predictions about maximal and minimal possible values of the actual unobserved knowledge. These 
predictions are used to make proactive mode switching.  

CLARO [33] is a comprehensive approach for modeling and processing uncertain data streams. Similar to our 
approach, it tackles the uncertainty explicitly and allows evaluating the validity of predicates based on given 
uncertainty. Contrary to our approach, CLARO is based on the inference of the distribution of samples. It builds and 
algebra over the distributions. Though this is a more general approach, it also is prone to require more samples to 
reliably determine the uncertainty. On the other hand, our approach relies on distributions of aggregates (e.g., the 
mean), at which it assumes the normality (which follows even for not entirely normal observations from the Central 
Limit Theorem). By assuming the normal model, it requires fewer data to make accurate predictions.  

In [34], the authors report on a method and tools for adaptation of an augmented reality application to balance its 
demand on resources (CPU, etc.) plus operation latency and the resources available. The adaptation method is based 
upon evaluating historical data in logs via a variant of linear regression - recursive least-squares regression with 
exponential decay. The purpose of the adaptation is to scarify the fidelity of results as least as possible. Nevertheless, 
the level of confidence is not explicitly evaluated. 
7.2. Other logics 
In the following, we provide a discussion of several alternative approaches to tackle uncertainty as to the underlying 
logics [35]. In particular, we focus on their differences compared to BP logic that make them inconvenient or even 
impossible to use for transition guards. 

Probabilistic logic [36] generalizes the interpretation of logic sentences, i.e., combinations of elementary formulas. 
Even though it can capture probabilities of composed formulas, the elementary formulas are always evaluated just to 
true or false. The resulting probability is computed based on the knowledge of the number of options forming the 
complete set, i.e., all the combinations of the true valuations of particular elements. The logic also does not support 
reasoning about history (generally data series), which is theoretically possible, e.g., by introducing versioning of 
variables, but that would be a bit cumbersome. 

Logic for uncertain probabilities (i.e., Subjective Logic) [37] [38] [39] is centered around the term belief referring to a 
subjective perception of an observer assessing the level of truth for elementary and composed elements. The aim of the 
logic is to capture the fact that different observers can assign different trueness values to the same elements, thus 
making the logic closer to the real world. In this approach, the concept of super states (containing all or just some of 
the options out of which at most one elementary state is true) plays a central role. The observer then assigns various 
values to the elements, reflecting his/her/its perception of trueness levels. Then, for example, the combinations of the 
most probable (elementary) states can be chosen for further exploration. Similar to the probabilistic logic, the logic for 
uncertain probabilities does not directly support history, although it does allow for capturing several observations of 
an event in time (which would model a time series with just values true/false) with different trueness values. 

A similar approach is taken by fuzzy logic[40] [41] [42], where the variables do not take just the binary values (true, 
false), but any real number in the [0,1] interval, reflecting how much true the variable is considered (1 is equal to true, 
while 0 to false). This, to some extent, also reflects the real world. For instance, in the control domain, the authors in 
[43] target mission-critical systems and present fuzzy controller in the self-adaptation loop, so the rules are modified, 
whilst in [44] involved fuzzy logic in the controller of a robot in such a way that it adapts by modifying both the rules 
and the scale factors. Another example is presented in [45], where the paper presents a combination of Petri-Nets with 
fuzzy rules to accomplish self-adaptation.  The logic defines the logical operators of conjunction, disjunction, and 
negation as the minimum, maximum, and complement to one, respectively, to cope with the real valuations. Although 
this logic could be taken as a base for our work, we would not be able to apply the statistical reasoning to it, which is 
the central part of our approach. Also, a variable of fuzzy logic keeps uncertainty “inside its value”; this, e.g., prevents 
a later evaluation of confidence of the computed value.  

Dempster-Shafer theory [46] [47] [48] or evidential reasoning is probably the approach closest to ours by defining 
probabilities on (propositional) sentences (of the logic) and the notion of belief to reason about imprecise and uncertain 
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evidence. However, it focuses on proving logical sentences to be true or false based on the observations by various 
agents, rather than on computing a value along with its confidence level, as the standard statistical methods do. 

Markov decision processes [49] [50], including both Discrete-Time Markov Chains (DTMC) and Continuous-Time 
Markov Chains (CTMC) [51], provide the developers with the means to capture probabilities of elementary events. 
There are plenty of approaches equipped with solid tool support, which allow for reasoning about the stochastic 
properties of the chains. To employ them to perform system analysis, however, it is necessary to have available an 
entire chain; this is rarely the case in the dynamically-evolving systems we target. In our case, we capture the situation 
about components and ensembles around, but just as to the past and present, attempting to predict values in the near 
future, often with the aim of comparing the impact of several alternative choices to be taken. Furthermore, at each state 
of a Markov Chain, the probabilities for particular transitions are defined regardless of the past. This makes it hard to 
employ any type of Markov Chains in our approach.  

Probabilistic Computational Tree Logic (PCTL) [51] [52] is one of the ways to specify the stochastic properties of 
systems, namely DTMC mentioned above. It extends the traditional CTL logic with probabilities and optional 
specification of the number of steps until a sub-property should be satisfied. Although being general enough to capture 
most real-life properties, again, its semantics is defined upon a system model with explicitly given probabilities; this is 
an unrealistic assumption for applying PCTL in our case. An example of such a use is the case presented in [53], where 
the aim is to verify self-adaptive systems using probabilistic model checking (PMC).  

All the logics above either require the input (basic) probabilities to be a priori defined or a model of the entire system 
to be available. These two requirements make it hard or even practically impossible to employ these logics for transition 
guards. 

For forecasting of the future values, the ARIMA approach has been chosen. In principle, other methods can be 
employed, such as neural networks and machine learning in general. Even though these methods can provide better 
results in some cases, especially when the history data exhibit a lot of noise and irregularity, we consider them 
inappropriate due to their extensive computational demands and the need for large sets of training data, which is 
typically not available in the use cases considered by us. 

8. Conclusion 

In summary, the paper targets uncertainty in architecture-based self-adaptation in sCPS. In particular, it focuses on 
coping with environmental uncertainty and dynamic architectural adaptation; it handles related issues at the level of 
transition guards – the conditions, written in a logic, controlling the reconfiguration of SW architecture. As to 
uncertainty, it is assumed that data from the environment cannot be observed directly without noise and that a precise 
model of the environment cannot be obtained.  

In contrast to other approaches targeting uncertainty that typically employ a model of the environment and/or assume 
a prior distribution or base probabilities of data, the paper proposes a confidence-based logic (CB logic) employing 
just the observed data (forming time series) to make probabilistic conclusions about the environment. CB logic defines 
a number of operators allowing to handle noise and incompleteness of the data and to predict future event occurrences 
with a specific level of confidence. By combining different operators in concise language constructs, CB logic allows 
even non-experts in statistics to easily perform statistically rich operations upon time series data.   

The viability of CB logic is demonstrated by employing it in transition guards controlling component mode transitions 
and membership evaluation in component ensembles. This is illustrated on a running example specified in a DSL 
language akin to the one of the DEECo component model which, by following the MAPE-K idea, supports architecture-
based adaptation. Based on the scenario from the RoboCup Rescue Simulation, the running example allowed us to 
carry out a number of simulation experiments, which showed a considerable improvement in system utility when CB 
logic is applied. For the potential adoption of the approach, a Java and C++ implementation of key CB logic operators 
is available at GitHub. 
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