
1

Online Experiment-Driven
Learning and Adaptation

This	 chapter	 presents	 an	 approach	 for	 the	 online	 optimization	 of	 collaborative	
embedded	systems	(CES)	and	collaborative	system	groups	(CSG).	Such	systems	need	to	
adapt	and	optimize	their	behavior	at	runtime	to	increase	their	utilities	and	respond	to	
runtime	situations.	We	propose	to	model	such	systems	as	black	boxes	of	their	essential	
input	parameters	and	outputs,	and	efficiently	search	in	the	space	of	 input	parameters	
for	values	that	optimize	(maximize	or	minimize)	the	system’s	outputs.	Our	optimization	
approach	 consists	 of	 three	 phases	 and	 combines	 online	 (Bayesian)	 optimization	with	
statistical	 guarantees	 stemming	 from	 the	 use	 of	 statistical	methods	 such	 as	 factorial	
ANOVA,	binomial	testing,	and	t-tests	in	different	phases.	We	have	applied	our	approach	
in	a	 smart	 cars	 testbed	with	the	goal	of	optimizing	 the	 routing	of	 cars	via	 tuning	the	
configuration	of	their	parametric	router	at	runtime.		

Ilias Gerostathopoulos, Technical University Munich
Alexander auf der Straße, Universität Duisburg-Essen

2 Online Experiment-Driven Learning and Adaptation

1.1 Introduction

Collaborative	embedded	systems	(CES)	and	collaborative	system	
groups	 (CSG)	 are	 often	 large	 systems	 with	 complex	 behavior.	
Complexity	 stems	 mainly	 from	 the	 interaction	 of	 the	 different	
components	or	sub-systems	(consider	e.g.	the	case	of	several	robots	
collaborating	 in	 pushing	 a	 door	 open	 or	 passing	 through	 a	 narrow	
passage).	 As	 a	 result,	 the	 behavior	 of	 CES	 is	 difficult	 to	 completely	
model	 a	 priori.	 At	 the	 same	 time,	 CES	 need	 to	 be	 continuously	
adapted	 and	 optimized	 to	 new	 runtime	 contexts	 (e.g.	 in	 the	
collaborating	robots’	example,	consider	the	case	of	an	extra	obstacle	
that	makes	the	door	harder	to	open).	

In	 this	 chapter,	we	present	an	approach	 for	online	 learning	and	
adaptation	 that	 can	 be	 applied	 in	 CES	 and	 CSG	 (but	 also	 other	
systems)	 which	 have	 (i)	 complex	 behavior	 that	 is	 unrealistic	 to	
completely	model	 a	 priori,	 (ii)	 noisy	 outputs,	 (iii)	 high	cost	 of	 bad	
adaptation	 decisions.	 We	 assume	 that	 the	 CES-to-be-adapted	 is	
abstracted	 as	 a	 black-box	model	 of	 the	 essential	 input	 and	 output	
parameters.	 Input	 parameters	 (knobs)	 can	 be	 set	 at	 runtime	 to	
change	the	behavior	of	the	CES.	Output	parameters	are	monitored	at	
runtime	to	assess	whether	the	CES	satisfies	 its	goals.	Noisy	outputs	
refer	 to	 outputs	whose	 values	 exhibit	 high	 variance,	 and	 thus	may	
need	 to	 be	 monitored	 over	 long	 time	 windows.	 The	 cost	 of	 an	
adaptation	 decision	 (e.g.	 setting	 a	 new	 value	 to	 one	 of	 the	 knobs)	
refers	to	the	negative	impact	of	the	adaptation	decision		on	the	CES.	

Given	 the	above	assumptions,	we	focus	on	 finding	 the	values	of	
the	input	parameters	of	a	CES	that	optimize	(maximize	or	minimize)	
its	 outputs.	 Our	 approach	 performs	 such	 optimization	 online,	 i.e.	
while	the	system	is	running,	and	in	several	phases	[Gerostathopoulos	
et	al.	2018].	In	doing	so,	it	explores	and	exemplifies	(i)	how	to	build	
system	models	out	of	observations	of	noisy	system	outputs;	(ii)	how	
to	(re-)use	these	models	to	optimize	the	system	at	runtime,	even	in	
the	 face	 of	 newly	 encountered	 situations;	 and	 (iii)	 how	 to	
incorporate	 the	notion	of	 cost	of	adaptation	decisions	 in	 the	above	
processes.	Compared	to	related	approaches,	it	 focuses	on	providing	
statistical	 guarantees	 (in	 the	 form	 of	 confidence	 intervals	 and	 p-
values)	in	different	phases	of	the	optimization	process.		

The behavior of CES and
CSG is difficult to

completely model a
priori

Approach for online
learning and adaptation

of CES and CSG
abstracted as black-box

models

Finding values of input
parameters that

optimize the outputs

 3

1.2 A Self-Optimization Approach for CES

A	 self-optimization	 approach	 for	 CES	 needs	 to	 be	 (i)	 efficient	 in	
finding	an	optimal	or	close-to-optimal	configuration	fast,	and	(ii)	safe	
in	not	 incurring	high	cost	of	adaptation	decisions.	To	achieve	 these	
goals,	in	our	approach,	we	use	prior	knowledge	of	the	system	(the	K	
in	 the	 MAPE-K	 loop	 for	 self-adaptive	 systems	 [Kephart	 and	 Chess	
2003])	in	order	to	guide	the	exploration	of	promising	configurations.	
We	also	measure	the	cost	of	adaptation	decisions	in	the	optimization	
and	stop	 the	evaluation	of	bad	configurations	prematurely	 to	avoid	
incurring	high	cost.		

Formally,	 the	 self-optimization	 problem	 we	 are	 considering	
consists	 of	 finding	 the	 minimum	 of	 a	 response	 or	 output	 function	

,	which	takes	 	input	parameters		 ,	which	range	
in	 domains	 	 respectively.	 X	 is	 the	
configuration	space	and	corresponds	to	the	Cartesian	product	of	all	
the	 parameters	 domains	 .	 A	
configuration	 	assigns	a	value	to	each	of	the	input	parameters.	

Based	 on	 the	 above	 definitions,	 our	 approach	 for	 self-
optimization	of	CES	relies	on	performing	a	series	of	so-called	online	
experiments.	An	experiment	changes	the	value	of	one	or	more	input	
parameters	 and	 collects	 values	 of	 the	 outputs.	 This	 allows	 for	
assessing	the	impact	of	the	input	parameter	change	on	the	outputs.	
The	 experiment-driven	 approach	 consists	 of	 the	 following	 three	
phases,	depicted	also	in	Figure	1-1	(where	the	CES	is	depicted	on	the	
upper	right	corner):	

• Phase	#1:	Generation	of	system	model	
• Phase	#2:	Runtime	optimization	with	cost	handling	
• Phase	#3:	Comparison	with	baseline	configuration	
These	 phases	 run	 consecutively;	 in	 each	 phase	 one	 or	 more	

experiments	are	performed.	An	optimization	round	consisting	of	the	
three	phases	may	be	initiated	via	a	human	(e.g.	an	operator)	or	via	
the	system	itself,	if	it	is	able	to	identify	runtime	situations	where	its	
behavior	can	be	optimized.	At	the	end	of	the	optimization	round,	the	
system	has	learned	an	optimal	or	close-to-optimal	configuration	and	
decides	 (as	 part	 of	 phase	 #3)	 to	 use	 it	 instead	 of	 its	 current	
configuration	or	not.	

In	the	rest	of	the	section,	the	three	phases	are	described.	

“Generation	 of	 system	 model”	 phase	 deals	 with	 building	 and	
maintaining	 the	 knowledge	 needed	 for	 self-optimization.	 Here	 we	
use	factorial	analysis	of	variance	(ANOVA)	to	process	incoming	raw	
data	 and	 automatically	 create	 a	 statistically	 relevant	model	 that	 is	
used	 in	 the	 subsequent	 phases.	 This	model	 describes	 the	 effect	 of	

Self-optimization by
finding the best
configuration

Using factorial analysis
of variance for building
knowledge models

4 Online Experiment-Driven Learning and Adaptation

Figure 1-1. Overview of online experiment-driven learning and adaptation approach.

 changing	a	single	input	parameter	on	the	output,	while	ignoring	the	
effect	 of	 any	 other	 parameters.	 It	 also	 describes	 the	 effects	 of	
changing	 multiple	 input	 parameters	 together	 on	 the	 output.	 This	
phase	is	run	both	prior	to	deploying	the	system	using	a	simulator	(to	
bootstrap	 the	 knowledge)	 and	 while	 the	 system	 is	 deployed	 in	
production	 using	 runtime	 monitoring	 (to	 gradually	 collect	 more	
accurate	knowledge	of	the	system	in	the	real	settings).		

Concretely,	first,	the	designer	needs	to	discretize	the	domain	of	each	
input	 parameter	 in	 two	or	more	 values—an	offline	 task.	When	 the	
phase	starts,	the	system	derives	all	the	possible	configurations	given	
the	 parameter	 discretization	 (e.g.	 for	 three	 input	 parameters	 with	
two	values	each,	it	will	derive	8	possible	configurations	capturing	all	
possible	combinations).	This	corresponds	to	a	full	factorial	design	in	
experimental	 design	 terminology	 [Ghosh	and	Rao	1996].	 Third,	 for	
each	 configuration,	 an	 online	 experiment	 is	 performed	 and	 output	
values	are	collected.	Once	all	experiments	are	performed,	between-
samples	 factorial	 ANOVA	 is	 used	 to	 analyze	 the	 output	 datasets	
corresponding	 to	 the	 different	 configurations.	 The	 output	 of	 this	
phase	is	a	list	of	input	parameters	ordered	by	decreasing	effects	(and	
corresponding	significance	levels)	on	the	output.	

“Runtime	 optimization	 with	 cost	 handling”	 phase	 evaluates	
configurations	via	online	experiments	in	a	 sequential	way	 to	 find	a	
configuration	in	which	the	system	performs	the	best,	i.e.	the	output	
function	 is	 maximized	 or	 minimized.	 Instead	 of	 pre-designing	 the	

Using Bayesian
optimization for finding

optimal configuration

 5

experiments	to	run	as	in	phase	#1,	we	use	an	optimizer	that	selects	
the	 next	 configuration	 to	 run	 based	 on	 the	 result	 of	 the	 previous	
experiment.	In	particular,	the	optimizer	we	have	used	so	far	employs	
Bayesian	 optimization	 with	 Gaussian	 processes	 [Shahriari	 et	 al.	
2016].	The	optimizer	takes	as	input	the	output	of	phase	#1,	i.e.	a	list	
of	input	parameters.	For	each	parameter	in	the	list,	it	selects	a	value	
from	its	domain	(its	original	domain,	not	its	discretized	one	used	in	
phase	#1)	and	performs	and	online	experiment	to	assess	the	impact	
of	 the	 corresponding	 configuration	 to	 the	 system	output.	 Based	 on	
the	 result	 of	 the	 online	 experiment,	 the	 optimizer	 selects	 another	
input	parameter	value,	performs	another	online	experiment,	and	so	
on.	Before	the	start	of	the	optimization	process,	the	design	sets	the	
number	of	online	experiments	(iterations	of	the	optimizer)	that	will	
be	 run	 in	 phase	 #2.	 The	 outcome	 of	 this	 phase	 is	 the	 best	
configuration	found	by	the	optimizer.	

We	assume	that	configurations	are	rolled	out	incrementally	in	the	
system.	If	there	is	evidence	that	a	configuration	incurs	high	cost,	its	
application	 stops	 and	 the	 optimizer	moves	 on	 to	 evaluate	 the	 next	
configuration.	 So	 far,	we	 assume	 that	 cost	 is	measured	 in	 terms	 of	
ratio	of	bad	events,	 e.g.	 complaints.	Under	 this	assumption,	we	use	
binomial	testing	to	determine	(with	statistical	significance)	whether	
a	 configuration	 is	 not	 worth	 exploring	 anymore	 because	 of	 cost	
overstepping	 a	 given	 threshold.	 A	 binomial	 test	 is	 a	 statistical	
procedure	 that	 tests	 whether,	 in	 a	 single	 sample	 representing	 an	
underlying	 population	 of	 two	 categories,	 the	 proportion	 of	
observations	in	one	of	the	two	categories	is	equal	to	a	specific	value.	
In	 our	 case,	 a	 binomial	 test	 evaluates	 the	 hypothesis	 that	 the	
predicted	 proportion	 of	 issued	 “bad	 events”	 is	 above	 a	 specific	
value—our	“bad	events”	maximum	threshold.		

“Comparison	with	baseline	configuration”	makes	sure	that	a	new	
configuration	 determined	 in	 the	 second	 phase	 is	 rolled	 out	 only	
when	 it	 is	 statistically	 significantly	 better	 than	 the	 existing	
configuration	 (baseline	 configuration).	 In	 order	 for	 the	 new	
configuration	to	replace	the	baseline,	it	has	to	be	checked	that	(i)	 it	
indeed	 brings	 a	 benefit	 to	 the	 system	 (at	 a	 certain	 statistical	
significance	level),	(ii)	the	benefit	is	enough	to	justify	any	disruption	
that	may	result	out	of	applying	the	new	configuration	to	the	system.	
The	 last	 point	 recognizes	 the	 presence	 of	 primacy	 effects,	 which	
pertain	to	inefficiencies	caused	by	a	new	configuration	to	the	users.	

Concretely,	 in	 this	 phase,	 the	 effect	 of	 the	 (optimal)	 configuration	
outputted	 by	 phase	#2	 is	 compared	 to	 the	 default	 configuration	 of	

Using statistical testing
to compare optimal
with default
configuration

6 Online Experiment-Driven Learning and Adaptation

the	 system.	 Such	 default	 configuration	 is	 provided	 offline	 by	 the	
system	 designers.	 To	 perform	 the	 comparison,	 the	 two	
configurations	 are	 rolled	 out	 in	 the	 system	 and	 values	 of	 system	
output	 are	 collected.	 In	 other	 words,	 two	 online	 experiments	 are	
performed	corresponding	to	the	two	configurations.	Technically,	the	
effect	of	the	experiments	is	compared	by	means	of	statistical	testing	
(so	far	we	have	used	t-test)	on	the	corresponding	datasets	of	system	
outputs.	 This	way,	we	 can	 deduce	whether	 the	 two	 configurations	
have	a	statistically	significant	difference	(at	a	particular	significance	
level	alpha)	on	their	effect	on	the	system	output.	

1.3 Illustration on CrowdNav

We	illustrate	our	approach	on	the	CrowdNav	self-adaptation	testbed	
[Schmid	et	al.	 2017],	whose	goal	 is	 to	 optimize	 the	 duration	 of	 car	
trips	 in	 a	 city	 by	adapting	 the	 parameters	 of	 the	 routing	 algorithm	
used	for	navigating	the	cars.	CrowdNav	is	released	as	an	open-source	
project1.	

In	CrowdNav,	a	number	of	cars	is	deployed	in	the	city	of	Eichstädt	
with	approx.	450	streets	and	1200	intersections.	Each	car	navigates	
from	an	 initial	 (randomly	allocated)	position	 to	a	 randomly	chosen	
destination	 in	 the	 city.	When	 a	 car	 reaches	 its	 destination,	 it	 picks	
another	one	at	random	and	navigates	to	it.	This	process	is	repeated	
forever.			

To	navigate	from	point	A	to	point	B,	a	car	needs	to	ask	a	router	
for	a	route	(series	of	streets).	There	are	two	routers	in	CrowdNav:	(i)	
the	 built-in	 router	 provided	 by	 SUMO	 (the	 simulation	 backend	 of	
CrowdNav)	 and	 (ii)	 a	 custom-built	 parametric	 router	 developed	 in	
our	previous	work.	A	certain	number	of	cars	(“regular	cars”)	use	the	
built-in	 router;	 the	 rest	 use	 the	 parametric	 router—we	 call	 these	
“smart	cars”.			

The	parametric	router	can	be	configured	at	runtime;	 it	provides	
the	 seven	 configuration	 parameters	 depicted	 in	 Figure	 1-2.	 Each	
parameter	is	an	interval-scaled	variable	that	takes	real	values	within	
a	 range	 of	 admissible	 values,	 provided	 by	 the	 designers	 of	 the	
system.	Intuitively,	certain	configurations	of	the	router’s	parameters	
yield	better	overall	system	performance.			

																																																																				
1	https://github.com/Starofall/CrowdNav	

Application of the
approach on traffic

testbed

 7

To	measure	the	overall	system	performance,	CrowdNav	relies	on	
the	metric	of	trip	overhead.	A	trip	overhead	is	a	ratio-scaled	variable	
whose	values	are	calculated	by	dividing	 the	observed	duration	of	a	
trip	versus	 the	 theoretical	duration	of	 the	 trip,	 i.e.	 the	hypothetical	
duration	 of	 the	 trip	 if	 there	 were	 no	 other	 cars,	 the	 smart	 car	
travelled	 in	 maximum	 speed	 and	 did	 not	 stop	 in	 intersections	 or	
traffic	 lights.	Only	smart	cars	report	their	trip	overheads	at	the	end	
of	their	trips	(we	assume	that	the	rest	of	the	cars	act	as	noise	in	the	
simulation,	 so	 their	 effect	 can	 only	 be	 indirectly	 observed).	 Since	
some	trips	will	have	larger	overhead	than	others	no	matter	what	the	
router	configuration	 is,	 the	data	set	of	 trip	overheads	exhibits	high	
variance—it	can	be	thus	considered	a	noisy	output.	

Together	with	 the	 trip	 overhead,	 each	 smart	 car	 reports	 at	 the	
end	 of	 each	 trip	 a	 complaint	 value,	 i.e.	 a	 Boolean	 value	 indicating	
whether	 the	 driver	 is	 annoyed.	 The	 complaint	 value	 is	 generated	
based	on	the	trip	overhead	and	a	random	chance,	so	that	some	of	the	
“bad	trips”	would	generate	complaints	(but	not	all).	To	measure	the	
cost	of	a	bad	configuration	in	CrowdNav,	the	metric	of	complaint	rate	
is	used:	 the	 ratio	of	 issued	complaints	 to	 total	number	of	observed	
(trip	overhead,	complaint)	tuples.		

Finally,	 CrowdNav	 resides	 in	 different	 situations	 depending	 on	
two	context	parameters	that	can	be	observed,	but	not	controlled:	the	
number	of	regular	(non-smart)	cars	and	the	number	of	smart	cars.	In	
particular,	each	context	parameter	can	be	in	a	number	of	predefined	
ranges.	For	example,	the	number	of	smart	cars	can	be	in	one	of	the	

Trip overhead is a prime
example of noisy output

Driver complaints model
“bad events”

Id Name Range Description

1 route randomization [0-0.3]
Controls the random noise introduced to
avoid giving the same routes

2 exploration percentage [0-0.3]
Controls the ratio of smart cars used as
explorers2

3 static info weight [1-2.5]
Controls the importance of static
information (i.e. max speed, street length)
on routing

4 dynamic info weight [1-2.5]
Controls the importance of dynamic
information (i.e. observed traffic) on routing

5 exploration weight [5-20]
Controls the degree of exploration of the
explorers

6 data freshness threshold [100-700]
Threshold for considering traffic-related
data as stale and disregard them

7 re-routing frequency [10-70]
Controls how often the router should be
invoked to re-route a smart car

Figure 1-2. Configurable (Input) Parameters in CrowdNav’s Parametric Router.

8 Online Experiment-Driven Learning and Adaptation

following	 ranges	 or	 states:	 0-100,	 100-200,	 200-300,	 …,	 700-800,	
>800.	All	the	possible	situations	are	defined	as	the	cartesian	product	
of	 the	 states	 of	 all	 context	 variables.	 At	 each	 situation,	 a	 different	
configuration	 might	 be	 optimal.	 The	 task	 of	 self-optimization	 in	
CrowdNav	 then	 becomes	 one	 of	 quickly	 finding	 the	 optimal	
configuration	for	the	situation	the	system	resides	in	and	applying	it.		

In	this	context,	quickly	finding	a	configuration	of	parameters	that	
minimizes	the	trip	overhead	in	a	situation,	while	keeping	the	number	
of	 complaints	 in	 check,	 entails	 understanding	 the	 effect	 a	
configuration	has	on	both	the	trip	overhead	(the	output	we	want	to	
optimize	for)	and	the	complaint	rate	(the	“bad	events”	metric).	

Generalizing	from	this	scenario,	the	problem	to	solve	is:	“Given	a	
set	 of	 input	 system	 parameters	 X,	 an	 output	 system	 parameter	 O	
with	values	exhibiting	high	variance,	an	environment	situation	S,	and	
a	 cost	 parameter	 C,	 find	 the	 values	 of	 each	 parameter	 in	 X	 that	
optimize	O	in	S	without	exceeding	C,	in	the	least	number	of	tries.”	

We	 have	 evaluated	 the	 applicability	 of	 our	 experiment-driven	
self-optimization	 method	 on	 CrowdNav.	 Compared	 to	 performing	
optimization	 with	 all	 the	 input	 parameters	 (essentially	 skipping	
phase	 #1),	 our	 approach	 is	 able	 to	 reduce	 the	 optimization	 space,	
and	 consequently	 converge	 faster,	 by	 only	 optimizing	 the	 input	
parameters	that	have	a	strong	effect	on	the	output	(trip	overhead	in	
the	case	of	CrowdNav)	[Gerostathopoulos	et	al.	2018].		

1.4 Conclusions

In	 this	 chapter,	 we	 presented	 an	 approach	 for	 runtime	
optimization	 of	 CES.	 Our	 approach	 relies	 on	 the	 concept	 of	 online	
experiments	 which	 consist	 of	 applying	 an	 adaptation	 action	
(changing	 a	 configuration)	 of	 a	 running	 system	 and	 observing	 the	
effect	of	the	change	in	the	system	output.	 It	consists	of	three	stages	
that	 together	combine	 optimization	with	 statistical	guarantees	 that	
come	 in	 the	 form	of	 confidence	 intervals	and	observed	effect	 sizes.	
We	 have	 applied	 the	 approach	 on	 a	 self-adaptation	 testbed	where	
the	routing	of	cars	in	a	city	is	optimized	at	runtime	based	on	tuning	
the	configuration	of	the	cars’	parametric	router.	Our	approach	can	be	
used	 in	any	system	that	 can	be	abstracted	as	a	black-box	model	of	
the	essential	input	and	output	parameters.	

Our approach focuses
the optimization on the

important input
parameters

 9

1.5 Literature
[Gerostathopoulos	et	al.	2018]	 I.	Gerostathopoulos,	C.	Prehofer,	T.	Bures,	Adapting	a	

System	with	Noisy	Outputs	with	Statistical	Guarantees,	in	Proceedings	of	the	13th	
International	 Symposium	 on	 Software	 Engineering	 for	 Adaptive	 and	 Self-
Managing	Systems	(SEAMS	2018).	ACM,	2018,	pp.	58–68.		

[Kephart	and	Chess	 2003]	 J.	Kephart	D.	Chess,	The	Vision	of	Autonomic	Computing,	
Computer,	vol.	36,	no.	1,	pp.	41–50,	2003.	

[Schmid	 et	 al.	 2017]	 S.	 Schmid,	 I.	 Gerostathopoulos,	 C.	 Prehofer,	 T.	 Bures,	 Self-
Adaptation	 Based	 on	 Big	 Data	 Analytics:	 A	 Model	 Problem	 and	 Tool,	 in	
Proceedings	 of	 the	 12th	 International	 Symposium	 on	 Software	 Engineering	 for	
Adaptive	and	Self-Managing	Systems	(SEAMS	2017).	IEEE,	2017,	pp.	102–108.		

[Ghosh	and	Rao	1996]	S.	Ghosh,	C.	R.	Rao,	Eds.,	Handbook	of	Statistics	13:	Design	and	
Analysis	of	Experiments,	1	edition.	Amsterdam:	North-Holland,	1996.	

[Sheskin	 2007]	 J.	 Sheskin,	 Handbook	 of	 Parametric	 and	 Nonparametric	 Statistical	
Procedures,	4th	ed.	Chapman	&	Hall/CRC,	2007.	

[Shahriari	 et	al.	2016]	B.	Shahriari,	K.	Swersky,	Z.	Wang,	R.	P.	Adams,	N.	 de	Freitas,	
Taking	 the	 Human	 Out	 of	 the	 Loop:	 A	 Review	 of	 Bayesian	 Optimization,	
Proceedings	of	the	IEEE,	vol.	104,	no.	1,	pp.	148–175,	Jan.	2016.	

	

