
Authors’ version.
Final version published by Elsevier and available at https://doi.org/10.1016/j.jss.2018.10.051

Tuning Self-Adaptation in Cyber-Physical Systems
through Architectural Homeostasis

Ilias Gerostathopoulos1, Dominik Skoda2, Frantisek Plasil2, Tomas Bures2, Alessia

Knauss3

1Fakultät für Informatik, Technische Universität München.
Munich, Germany

2Charles University in Prague, Faculty of Mathematics and Physics.
 Prague, Czech Republic

3Department of Computer Science and Engineering, Chalmers University of Technology.
Gothenburg, Sweden

gerostat@in.tum.de
{skoda,plasil,bures}@d3s.mff.cuni.cz

alessia.knauss@chalmers.se

Abstract. Self-adaptive software-intensive cyber-physical systems (sasiCPS) en-
counter a high level of run-time uncertainty. State-of-the-art architecture-based
self-adaptation approaches assume designing against a fixed set of situations that
warrant self-adaptation. As a result, failures may appear when sasiCPS operate
in environment conditions they are not specifically designed for. In response, we
propose to increase the homeostasis of sasiCPS, i.e., the capacity to maintain an
operational state despite run-time uncertainty, by introducing run-time changes
to the architecture-based self-adaptation strategies according to environment
stimuli. In addition to articulating the main idea of architectural homeostasis, we
introduce four mechanisms that reify the idea: (i) collaborative sensing, (ii) faulty
component isolation from adaptation, (iii) enhancing mode switching, and (iv)
adjusting guards in mode switching. Moreover, our experimental evaluation of
the four mechanisms in two different case studies confirms that allowing a com-
plex system to change its self-adaptation strategies helps the system recover from
run-time errors and abnormalities and keep it in an operational state.

Keywords: cyber-physical systems; software architecture; run-time uncertainty;
self-adaptation strategies; architecture homeostasis

1 Introduction

Cyber-Physical Systems (CPS) [1] are large complex systems that increasingly rely on
software for their operation—they are becoming software-intensive CPS [2, 3]. Such
systems, e.g., in the area of smart grids, road-side computing, and intelligent transpor-
tation are typically comprised of several million lines of code. A high-level view
achieved via focusing on software architecture abstractions is thus becoming increas-
ingly important for dealing with such scale and complexity during development, de-
ployment, and maintenance.

These systems continuously sense physical magnitudes in order to actuate physical
processes. Due to the close connection to the physical world, whose behavior is hard to
fully predict at design time and control at run-time, they encounter a high level of un-
certainty in their operating conditions, called run-time uncertainty [4]. This is typically
rooted in (i) unexpected changes in the run-time infrastructure (e.g., communication
latencies, disconnections, sensor malfunctioning), (ii) unexpected changes in the envi-
ronment (e.g., harsh weather conditions), (iii) the evolution of other cyber or physical
systems that interface with the CPS in question, and (iv) the randomness introduced by
human interaction. Run-time uncertainty can cause numerous failures ranging from
temporary service unavailability to a complete system crash [4].

A promising way to tackle run-time uncertainty is to endow software-intensive CPS
with self-adaptive capabilities, i.e., with capabilities to adjust their own structure and
behavior at run-time based on their internal state and the perceived environment state,
while considering their run-time goals and requirements [5]. In this paper, we focus on
self-adaptation at the architectural level (being inspired by [6–10]).

Problem statement. One of the limitations in the state-of-the-art architecture-based
self-adaptation approaches is that they assume designing against a fixed set of situations
that warrant self-adaptation [11]. However, when run-time uncertainty is high, antici-
pating all potential situations upfront (i.e. at design time) and designing corresponding
actions is a costly, lengthy, and sometimes not even a viable option [4, 12].

Goal and main idea of contribution. In our work, instead of trying to identify all
potential situations and corresponding actions (strategies in architecture-based self-ad-
aptation), we propose to engineer flexibility in the strategies of a self-adaptive software-
intensive CPS (sasiCPS further on) in the form of run-time changes to these strategies.
This way we try to increase the software homeostasis of sasiCPS, i.e. the capacity for
the system to maintain its normal operating state and implicitly repair abnormalities or
deviations from expected behavior [13], by specifically focusing on the architectural
level—architectural homeostasis.

We claim that supporting architectural homeostasis at run-time helps tackle the run-
time uncertainty in sasiCPS. The underlying assumptions of our approach are that (i)
fixed architecture-based self-adaptation strategies result in brittle systems in domains
with high run-time uncertainty, (ii) allowing the components of a complex system to
change their self-adaptation strategies in a slightly different way while still aiming at a
common goal, can have positive results in the overall utility of a self-adaptive system.
Indeed, the last point is common in other domains (e.g., communication protocols that
try to re-establish a connection in some random manner to avoid a flood of reconnec-
tions).

The main contribution of this paper1 are four concrete homeostatic mechanisms (H-
mechanisms) that operate at the architectural level and effectively increase the capacity
of a sasiCPS to maintain an operational state despite run-time uncertainty. The second-
ary contribution lies in implementing the proposed H-mechanisms in a development
and run-time framework for sasiCPS—DEECo component framework [15, 16]—and

1 This paper is an extension of [14].

in evaluating their feasibility and effectiveness via controlled experiments in two dif-
ferent case studies. In particular, we focus on answering the following research ques-
tions: (a) to which extent each H-mechanism repairs the problem it is intended to repair,
(b) what is the overhead of using each H-mechanism, and (c) whether multiple H-mech-
anisms can be applied at the same time. The results show that using the proposed mech-
anisms increases the overall utility of the system in face of run-time errors and abnor-
malities (exceptional situations).

The rest of the paper is structured as follows: Section 2 depicts our running example
and the background of our work. Section 3 presents the main idea of architectural ho-
meostasis, together with its reification into four concrete homeostatic mechanisms. Sec-
tion 4 details our evaluation based on implementing the mechanisms and quantifying
their effects in the running example and in an additional case study. Section 5 elaborates
on interesting points, answers our research questions and discusses the limitations of
our approach. Finally, Section 6 compares our work to existing ones in the literature
and the concluding Section 7 summarizes the contribution.

2 Running Example and Background

2.1 Cleaning Robots Example

In the running example used throughout the paper, four Turtlebots (http://www.turtle-
bot.com/) are deployed in a large 2D space with the task to keep it as clean as possible.
The space is covered by tiles that can get dirty at some arbitrary points in time. Each
robot is able to move around, identify dirty tiles via its downwards-looking camera and
humidity sensor, and clean them. Each robot also works on a specific energy budget;
before it expires, the robot needs to reach a docking station and recharge. Several dock-
ing stations exist in the space. Fig. 1 depicts a scenario with four robots and two docking
stations.

Fig. 1. Cleaning robots example (screenshot from the tool).

The robots communicate with each other to exchange information about the lastly
cleaned tiles to avoid unnecessary trips. They also communicate with the docking sta-
tions to determine the most convenient station for recharging.

This example, although a toy one, comprises situations with run-time uncertainty. It
includes situations where a robot loses the ability of reliably detecting dirty tiles (e.g.
due to a failure in its humidity sensor) or a docking station may stop working. Run-time
uncertainty is also manifested in the unpredictable rate and position where dirt appears
in the space. The rate of the appearance of dirt is assumed to be an order of a magnitude
smaller than the rate of information exchange between robots about the lastly cleaned
tiles; thus, the exchanged information does not become stale too often.

1. role Dockable:
2. id, assignedDockingStationPosition
3. role Cleaner:
4. id, position, targetPosition, dirtinessMap
5. role Dock:
6. position, dockedRobots
7.
8. component Robot features Dockable, Cleaner /*the roles featured*/
9. knowledge:
10. id = . .
11. position = { .. , ..}
12. dirtinessMap = {}
13. targetPosition = null
14. assignedDockingStationsPosition = null
15.
16. process move in mode Cleaning, Searching /* refer to mode-state machine of Fig. 8*/
17. in targetPosition
18. inout position
19. inout dirtinessMap
20. function:
21. position ← move (targetPosition)
22. dirtinessMap ← update(position, dirtinessMap)
23. scheduling: periodic(100ms)
24.
25. process clean in mode Cleaning
26. in position
27. inout dirtinessMap
28. function:
29. if dirty(position):
30. dirtinessMap ← clean(position, dirtinessMap)
31. scheduling: periodic(1000ms)
32.
33. /* similar spec for other processes of Robot */
34. /* instatiation of component instances Robot1, Robot2, and Robot3 and setting of their
35. initial knolwedge is skipped for brevity*/

Fig. 2. Excerpt from the DSL of DEECo components of the cleaning robots example.

2.2 DEECo Model of Cleaning Robots – Running Example

DEECo is a development and run-time framework for sasiCPS [15]. In DEECo, a com-
ponent is an independent entity of development and deployment. Every DEECo com-
ponent contains data (knowledge) and functionality in the form of periodically invoked
processes which map input knowledge to output knowledge; each process is associated
with one or more component mode(s). Two component types were identified in our
running example: Robot and DockingStation. Each Robot (instance) comprises knowledge
about its position, dirtinessMap, etc. (Fig. 2, lines 9-14), and several processes, e.g. clean
(lines 25-31), move, and charge. A process belongs to one or more modes—e.g., the
Robot’s clean process belongs to cleaning mode (line 25). The modes of each component
are switched at run-time according to the component’s mode-state machine (such as the
one in Fig. 8). A component in DEECo has a number of roles, each allowing a subset
of knowledge fields to become subject to component interaction. In the running exam-
ple, each Robot features the Dockable and Cleaner roles (lines 1-4, 8).

Components do not interact with each other directly. Their interaction is dependent
on their membership in dynamic groups called ensembles. The key task of an ensemble
is to periodically exchange knowledge between its coordinator and member compo-
nents (determined by their roles). An ensemble instance is dynamically created/dis-
banded “around” its coordinator depending on which member components satisfy the
membership condition in the ensemble specification. At design-time, an ensemble spec-
ification consists of (i) the roles that the member and coordinator components should
feature, and (ii) a membership condition (Fig. 3, lines 11-17), and (iii) a knowledge
exchange function, which specifies the knowledge exchange that takes place between
the components in the ensemble (lines 18-19). For instance, the components featuring

1. ensemble DockingInformationExchange:
2. coordinator: Dock
3. member: Dockable
4. membership:
5. coordinator.dockedRobots.size() <= 3
6. knowledge exchange:
7. coordinator.dockedRobots ← member.id
8. member.assignedDockingStationPosition ← coordinator.position
9. scheduling: periodic(1000ms)
10.
11. ensemble CleaningPlanExclusion:
12. coordinator: Cleaner
13. member: Cleaner
14. membership:
15. coordinator.targetPosition == member.targetPosition
16. and distance(coordinator.position, coordinator.targetPosition)
17. < distance(member.position, member.targetPosition)
18. knowledge exchange:
19. member.targetPosition ← null
20. scheduling: periodic(1000ms)

Fig. 3. Excerpt from the DSL of DEECo ensembles of the cleaning robots example (cont.).

the Dockable role (e.g. Robot) and satisfying the membership condition (line 5) can form
an ensemble with a component featuring the Dock role (i.e. with a DockingStation) to
coordinate on the docking activity (lines 1-9).

The task of matching a component role and an ensemble role can be interpreted as
establishing a connector in a classical component model; such a connector lasts only
until the next evaluation of the membership condition (periodically triggered, line 20).

Self-Adaptation in DEECo. Overall, the dynamic grouping of components into en-

sembles determining their communication allows for software architecture that is dy-
namically (self-)adapted to the current components’ knowledge values. The semantics
of ensembles reflects the idea of MAPE-K (Monitor-Analyze-Plan-Execute and
Knowledge-base) [17]: Consider an ensemble E. The membership condition MC of E
is evaluated (analyzed) periodically, requiring systematic monitoring of the variables
(knowledge parts) in all components featuring E’s roles. From all components consid-
ered in a particular MC evaluation, only those satisfying MC are planned to be the
members/coordinator of E. This plan is then executed and communication of the mem-
bers/coordinator via knowledge exchange is realized.

Moreover, the components also self-adapt locally according to the state machines
they are associated with: The semantics of switching modes within a component also
reflects the idea of the MAPE-K self-adaptation loop [17]: Consider a component C
and its associated mode-state machine MC. In MC, the transition guards from the current
state are periodically evaluated based on monitoring the variables (knowledge parts
featured in the guards) of C; then it is analyzed which of the eligible transition should
be selected so that the next mode is planned. Finally, the next mode is brought to action
(executed).

To summarize, in DEECo, self-adaptation is performed by two mechanisms applied
in parallel: (i) Mode-switching at the level of individual components, (ii) dynamic par-
ticipation of components in ensembles. In principle, each instance of such a self-adap-
tation mechanism defines a particular self-adaptation strategy (in the sense of [6]), be-
ing characterized in each component by a specific mode-state machine, and in each
ensemble instance by a specific membership condition and knowledge exchange func-
tion. Technically, this is realized by an Adaptation manager (part of the run-time frame-
work of DEECo [15]), which takes the specification of mode-state machines and en-
sembles as definition of self-adaptation strategies and invokes them accordingly.

3 Homeostasis at the Architectural Level

Our approach modifies/adds/removes self-adaptation strategies at run-time when the
system requirements and/or the environment assumptions for which the strategies have
been designed for are not met anymore. Our approach realizes this in an additional
adaptation layer (homeostasis layer). Conceptually, the three layers presented in Fig. 4
follow the three-layered architecture for evolution of dynamically adaptive systems
proposed by Perrouin et al. [18]. Contrary to their work, however, we do not use an
evolution layer to switch between self-adaptation strategies. Instead, we propose the

top layer to change the employed adaptation strategies by homeostatic mechanisms (H-
mechanisms) based on a MAPE-K loop governed by an H-Adaptation Manager (Fig.
4).

To illustrate the concepts of the Homeostasis Layer, we present four H-mechanisms:
Collaborative sensing, Faulty component isolation from adaptation, Enhancing mode
switching, and Adjusting guards in mode switching. Each of them follows the MAPE-
K loop. In its Monitor and Analysis phases, it monitors and analyzes specific excep-
tional situations in the Adaptation Layer (triggers) and reacts by activating its Plan and
Execute phases, which, in turn, modify a self-adaptation strategy at the Adaptation
Layer. Here, to avoid conflicts, the H-Adaptation Manager coordinates the Plan and
Execute phases of H-mechanisms with the Adaptation Manager which controls the ap-
plication of the self-adaptation strategies. This is enabled by storing information on the
currently running adaptation strategies as well as on which adaptation strategy specifi-
cations are locked in the Knowledge-base of the Adaptation Manager (further details to
be found in Section 3.5). It should be emphasized that the Adaptation manager and the
H-Adaptation manager are conceptually singletons. Nevertheless, their functionality
can be implemented both in a centralized and decentralized way in the run-time frame-
work.

In principle, the Homeostasis Layer could be avoided by enhancing the Adaptation
Layer to handle all the exceptional situations; however, this would make their specifi-
cation clumsy and error prone. Therefore, we hoist the handling of these exceptional
situations to the architectural level and modify the Adaptation Layer by the Homeosta-
sis Layer at run-time. Moreover, the adoption of such an architecture style provides
more design flexibility by allowing incremental tuning up of the Adaptation Layer.

As a reference implementation, the Adaptation Layer in our running example is built
upon the self-adaptation mechanisms in DEECo, by modifying/adding/removing the
self-adaptation strategies defined by mode-state machines’ and ensembles’ instances at

Fig. 4. Three-layered architecture with homeostasis layer.
The monitoring-oriented lines express data flow, while the other oriented lines control flow.

run-time. Technically the Adaptation manager and the H-Adaptation manager are both
implemented in a centralized way. This reference implementation is available online2.

To support reuse of the proposed H-mechanisms in other component models than
DEECo, we specify the recommended Adaptation Layer interfaces that a component
model should provide to apply the H-mechanism along with the description of each H-
mechanism in the following subsections. In general, such a component model should
support self-adaptation through (i) dynamic connectors and/or (ii) mode switching. By
dynamic connector we understand a connector established/removed dynamically be-
tween components based on matching their available ports. In the DEECo reference
implementation, the concept of connector is realized as an ensemble, and the concept
of port as role. The exact semantics of “matching” and “available” is specific to a par-
ticular component model. Typically, matching is based on the port name and/or its type.
Furthermore, it may be further constrained by a filtering predicate upon the component
data fields. Examples of component models that support dynamic connectors include
[15, 19–22]. To address the diversity in the actual semantics, we specify below the
minimal functionality the Knowledge-base of the Adaptation Layer has to offer to sup-
port the particular H-mechanism—we do so by providing a conceptual model featuring
recommended interfaces and also indicating which of the component/connector/mode
related entities are assumed to be realized in the Adaptation Layer when the H-mecha-
nism is considered for application.

3.1 H-Mechanism #1: Collaborative Sensing (CS)

sasiCPS are often large data-intensive systems with components that perform sensing
of physical properties via hardware sensors (e.g. GPS, accelerometer, thermometer)
with various reliability margins. When components rely on sensor readings to satisfy
important functional requirements (e.g. a robot needs to know its position to plan its
path to a destination), it becomes extremely important to deal with sensor malfunction-
ing to still enable environment sensing at run-time. For illustration, consider the situa-
tion where the downwards-looking camera of a robot R in our running example starts
failing and consequently R loses the ability to detect dirtiness on the floor (and, to up-
date its dirtinessMap).

A way to overcome the problem of sensor malfunctioning is to take advantage of the
data dependencies and redundancies that may exist in sasiCPS due to components sens-
ing the same or a similar property	𝑄. Collaborative sensing (CS) H-mechanism pro-
vides an adequate approximation of property 𝑄 for a faulty component. CS is based on
defining a new self-adaptation strategy on the fly—technically, in DEECo, by creating
an additional ensemble specification with knowledge exchange function providing the
desired approximation.

CS involves two key computational steps in its Analysis and Plan phases: (i) CS
Analysis—identification of data dependencies and (ii) CS Plan—approximation of	𝑄.
While CS Plan is relatively easy to realize once a dependency relation is identified, for
the two main tasks of CS Analysis, namely for the data collection and the acquiring of
dependency relation, there are different options. The data collection can be done on a

2 https://github.com/d3scomp/uncertain-architectures

real system or on a simulated one. Acquiring the dependency relation can be accom-
plished via statistical or machine learning techniques.

For illustration, in the following we assume that the data collection is performed on
a real system and that the dependency relations are created by applying the following
statistical method: Let us assume that in its Monitor phase CS collects the values of
preselected knowledge fields of the set of components of the same type in the latest
time instances	𝑡 = 1. . 𝑛. Furthermore, for acquiring the dependency relation, CS Anal-
ysis checks all the aggregated knowledge to find out which knowledge fields are de-
pendent on others. Let 𝐶). 𝑘+, be the value of knowledge field 𝑘+ of component 𝐶) at a
time instance	𝑡, and {𝐶). 𝑘+}/0 denote the time series of the knowledge field 𝑘+	of com-
ponent 𝐶) at time instances 1 to	𝑛. Further let 𝜇234𝐶). 𝑘+

,, 𝐶6. 𝑘+,7 be the distance between
two knowledge values of 𝑘+, in components	𝐶) and 𝐶6 measured by metric 𝜇 specific
to	𝑘+. Then, for all component pairs	𝐶), 𝐶6; 	𝑖 ≠ 𝑗, having the fields 𝑘+	and	𝑘<, CS Anal-
ysis computes the boundary Δ2+ such that the implication 𝜇234𝐶). 𝑘+

,, 𝐶6. 𝑘+,7 < Δ23 ⇒
𝜇2@4𝐶). 𝑘<

, , 𝐶6. 𝑘<, 7 < 𝑇2@ for the time instances 𝑡 = 1. . 𝑛 is satisfied in	(at least) the
specified percentage of all the cases (confidence level	𝑎2@, e.g. 90%). Here T2@ repre-
sents the tolerable distance threshold and is provided for each	𝑘<. The CS Analysis
concludes that the value of 𝐶). 𝑘<, is close to the value of 𝐶6. 𝑘<, (and vice versa) for t
such that the values of 𝐶). 𝑘+, and 𝐶6. 𝑘+, are close as well.	

Thus, when a component 𝐶D fails to sense the values of	𝑘<, an approximation of this
property has to take place. This is done by CS Plan by creating an ensemble with the
exchange function 𝐶D. 𝑘< ∶=	𝐶6. 𝑘< and membership condition 𝜇23(𝐶D. 𝑘+, 𝐶6. 𝑘+) <
Δ23. If more than one 𝐶6 satisfies the membership condition, an arbitrary one is selected.
The ensemble is deployed and started by the E phase of CS.

The task to compute the boundary Δ23 is resource and time demanding but there are
techniques that can lower the time needed to finish, such as sorting the data according
to 𝜇2@4𝐶). 𝑘<

, , 𝐶6. 𝑘<, 7 or using sampling of the gathered data to obtain a statistically
significant answer. There are of course a number of other methods to detect dependen-
cies between data such as linear regression, k-nearest neighbors, neural networks, etc.

1. role DirtinessMapRole:
2. position, dirtinessMap
3.
4. ensemble DirtinessMapExchange:
5. coordinator: DirtinessMapRole
6. member: DirtinessMapRole
7. membership:
8. // Member and coordinator must be “close” to form the ensemble
9. // The robot with broken sensor becames the coordinator
10. close(coordinator.position, member.position)
11. and obsolete(coordinator.dirtinessMap)
12. knowledge exchange:
13. coordinator.dirtinessMap ← member.dirtinessMap
14. scheduling: periodic(1000ms)

Fig. 5. DSL excerpt from ensemble specification generated when applying CS for the cleaning robots.

Coming back to our running example, the situation where the camera of robot R
starts failing, is a trigger of the Plan and Execute phase of the CS H-mechanism which
will create a DirtinessMapExchange ensemble, the membership condition of which
states that R becomes the coordinator and the other robots that are closer to R than the
given threshold (obviously, when their positions are close, their maps are “close”) be-
come its members. By knowledge exchange, R adopts the dirtinessMap of the closest
member (Fig. 5) and can resume its cleaning operation.

Assumptions on the Adaptation Layer. In Fig. 6, the conceptual model defines the
interfaces (and other entities) the Knowledge-based of the Adaptation Layer should
provide to support CS. Considering again the robot R as above, the key required func-
tionality of the Adaptation Layer can be illustrated as follows: CS via get-
FaultyKnowledge of IComponent learns about faults in R. When failing of the dirt
sensor is observed, via IConnector Manager, CS creates a new connector specifica-
tion C having a consumer port and producer port. Furthermore, a new consumer port
is added to R (addPort of IComponent) and new producer ports are added to other
components with relevant knowledge structure.

Thanks to the filter predicate specified in addConnector, C instances are dynam-
ically attached to R and the other components determined by the value of filter. This
predicate reflects the condition 𝜇234𝐶). 𝑘+

,, 𝐶6. 𝑘+,7 < Δ23 as derived by the CS Analysis.
To collect data for the analysis, CS relies on the getKnowledge interface of ICompo-
nent.

Computation Complexity. For the complexity analysis of this and the other mecha-
nisms, we assume that the computational complexity of Monitor and Execute phases is
O(1) since they involve a constant number of elementary operations for each run (i.e.
no iterative computations), and only examine the Analysis and Plan phases.

Fig. 6. Collaborative Sensing: Conceptual interfaces for the Adaptation layer Knowledge-base.

CS Analysis has alternative subtasks. The above-described algorithm investigates all
potential relations between knowledge fields to identify dependencies that determine
ensembles in the CS Plan phase. Assuming the algorithm considers a time window of
length 𝑛 and 𝑚 knowledge fields, the complexity of applying the algorithm is
𝑂(𝑐K𝑚K𝑛), where 𝑐 is the number of components. The CS Plan phase has a complexity
of O(1), since it simply takes the result of the Analysis and creates ensemble/connector
specifications.

3.2 H-Mechanism #2: Faulty Component Isolation from Adaptation (FCIA)

The idea of the faulty component isolation from adaptation (FCIA) H-mechanism is
rooted in the well-known fault-tolerance mechanism: When a component starts mal-
functioning it has to be isolated from the rest of the system and its activity taken over
by another non-faulty component providing the same functionality. In essence, FCIA
addresses the situation where a component A starts emitting faulty values of its property
Q. The identification of such a situation can be based either on learnt fault models or
on empirical knowledge about the values that can be considered faulty. In such a case,
FCIA modifies the adaptation strategies that count on Q in order to prevent the “con-
tamination” of other components with faulty values of Q.

For illustration, consider a situation in the running example where a docking station
DS is not able of having docked robots charge anymore due to some error or malfunc-
tion, while still being advertised as operational to the robots that are technically mem-
bers of the DockingInformationExchange ensemble associated with DS (Fig. 3). As a
result, a Robot may still queue at the faulty DS. This is a trigger for applying the Plan
and Execute phases of FCIA H-mechanism. In essence, FCIA modifies the DockingIn-
formationExchange specification in such a way that DS is excluded from being the
coordinator of one of its instances. Technically, this can be done by modifying the
membership condition to make it not satisfiable for DS.

Assumptions on the Adaptation Layer. In Fig. 7, the conceptual model defines the
interfaces (and other entities) that the Knowledge-base of Adaptation Layer should pro-
vide to support FCIA. Considering again the faulty docking station DS as above, the
key required functionality of the Adaptation Layer can be illustrated as follows: Via
getComponents of IComponents Manager, FCIA gets access to the representation of
the components in the Knowledge-base of the Adaptation Layer so that through moni-

Fig. 7. Faulty Component Isolation from Adaptation: Conceptual interfaces for the Adaptation layer

Knowledge-base.

toring (via getFaultyKnowledge of IComponent) it can learn about faults in DS. Fur-
thermore, it identifies (via getExposedKnowledge of IComponentPort) the port(s)
of DS to be removed (by removePort of IComponent) to isolate DS. Then, thanks to
the dynamic connector principle, the affected Robots are connected to available Dock-
ing Stations.

Computation Complexity: In its Analysis phase FCIA traverses all components and
obtains the list of faulty knowledge fields. The complexity of the traversal is bounded
by 𝑂(𝑐𝑘) , where 𝑐 is the number of components and 𝑘 is the number of faulty
knowledge fields per component. The FCIA Plan phase has a complexity of O(1), since
it simply interprets the Analysis results to remove ports (or roles in DEECo) if needed.

3.3 H-Mechanism #3: Enhancing Mode Switching (EMS)

The motivation behind the enhancing mode switching (EMS) H-mechanism are
cases where the behavior of a component specified by its mode-state machine is over-
constrained. For illustration, consider the exceptional situation where there are far more
Robots than DockingStations. Assuming similar energy depletion and similar initial
energy budgets, if all Robots follow the mode-state machine depicted in Fig. 8, they
might all switch to Charging mode at similar points in time when, for example, their
energy falls below 20%. This would result in an increase of the average charging time
caused by the need of queueing up at the docking stations.

Fig. 8. Mode-state machine capturing the mode switching logic of the Robot component. Each state
(mode) is associated with several processes. Transitions are guarded by conditions upon the Robot’s

knowledge. Changes introduced by the EMS H-mechanism are marked in (bold) green – added transi-
tions are guarded by a probabilistic condition.

Thus, instead of being stuck in situations that have not been anticipated at design
time, it can be beneficial to relax the constraints and enlarge the space of actions that
can be tried out to handle such situations. Building on this idea, the EMS H-mechanism
adjusts the self-adaptation strategy implemented as a mode-state machine associated
with a particular component type. In general, EMS monitors the values of the utility
function associated with the given component type (Monitor and Analysis phases of
EMS) and triggers the adaptation (Plan and Execute phases of EMS) when the average
utility value of all instances of the given type is low. In essence, EMS systematically
creates new transitions with the guard of the form "random < 𝑝" among the modes
where none of the original transition is present. These randomized transitions are to be
applied with a higher priority than the original transitions and their effect is evaluated
based on the utility function defined for the related component type. For simplicity, we
consider the following very basic strategy of adding randomized transitions one by one
and observing in a given time period the effect of each of them in isolation. In the end,
the one that improved the average utility the most (if any) is kept in the mode-state
machine (recall that it is applied for all component instances of the given type) and the
Execute phase of EMS ends.

Coming back to our running example, the situation when the queuing and conse-
quently charging time of robots takes longer than usual will act as a trigger for the Plan
and Execute phase of EMS, because the average utility is affected. The utility 𝑈 is com-
puted as 𝑈 = 𝐸4𝑡V)W,_YZZ[YW[V − 𝑡V)W,_]+[Y0[V7 , where 𝐸 is the expected value,
𝑡V)W,_YZZ[YW[V is the time when a dirt 𝑑 appeared and 𝑡V)W,_]+[Y0[V is the time when 𝑑
was cleaned. The EMS will change the mode-state machine of all robots by adding new
transitions (depicted in green in Fig. 8). The new randomized transitions have the guard
of the form random < 𝑝, for some probability	𝑝. The value of p depends on the fre-
quency of mode-state machine evaluation of transitions and on the required level of
manifestation of non-deterministic transitions. In our case, we picked 𝑝 = 0.001 to ob-
serve the manifestation of non-deterministic transitions.

Assumptions on the Adaptation Layer. In Fig. 9, the conceptual model defines the
interfaces (and other entities) that the Knowledge-base of the Adaptation Layer should
provide to support EMS. Considering again the situation with far more robots than
docking stations as above, the key required functionality of the Adaptation Layer can
be illustrated as follows: EMS via getComponents of IComponentsManager gets access
to the representation of components from the Knowledge-base of the Adaptation Layer,
so that through monitoring (via getAverageUtility of IComponentType) it can ob-
serve the average decrease of the utility of robots (this is evaluated by getUtili-
tyThreshold of IComponentType). Furthermore, it identifies (via getTransitions of
IModeChart) all the transitions present in the mode-state machine and augments it
with new (non-deterministic) transitions, one at a time, all of them with the same guard
of the form "random < 𝑝" and of the same higher priority than of those existing so far.
This is done by addTransition of IModeChart. Then, periodically, the average utility
of robots is reevaluated and the added transition is kept only if it has improved the
utility and removed otherwise. At each step of the local optimization algorithm (we
used gradient descent [23]), a new transition is tried out. As soon as the measured utility
climbs above the specified threshold or a preset number of iterations is reached, the

EMS mechanism terminates its Execute phase and the H-Adaptation Manager regains
the control.

Computation Complexity. The EMS Analysis phase has a complexity of O(1), since
it is only concerned with calculating the results of the utility function, the complexity
of which we assume to be O(1). The EMS Plan phase adds, modifies or removes prob-
abilistic transitions. This generally requires traversing the list of transitions in the com-
ponent’s mode-state machine. Assuming the component has 𝑡 transitions, the complex-
ity of EMS Plan is bounded by 𝑂(𝑡𝑐), where 𝑐 is the number of components.

3.4 H-Mechanism #4: Adjusting Guards in Mode Switching (AG)

The idea behind Adjusting Guards in Mode Switching (AG) H-mechanism is that
conditions in mode switch guards are sometimes unnecessarily strict. This happens due
to the semantics of the mode-state machine that requires the guards to be logical ex-
pressions, often captured as hard constraints involving constants which may be hard to
set at design time. For illustration, consider the transition Searching → Approaching
Dock (Fig. 8) guarded by the constraint	𝑒𝑛𝑒𝑟𝑔𝑦 ≤ 20%. In many cases (including this
one) this does not mean that 19% would be too little or that 21% would be too much,
rather it is an educated guess due to lack of experimental data which would give statis-
tical confidence.

As a remedy, the AG H-mechanism tries to improve the performance of the system
by optimizing the constants in the mode switch guards. Similar to EMS, AG monitors
the values of the utility function associated with the given component type and triggers
the adaptation (its Plan and Execute phases) when the average utility value across all
instances of the given type is low. In such a case, AG systematically adjusts the con-
stants and observes the effect on the average utility. This process is driven by a local

Fig. 9. Enhancing Mode Switching: Conceptual interfaces of the Adaptation layer Knowledge base.

optimization algorithm (we used gradient descent) that selects the respective constant
and decides in which direction and how much it should be tuned. In essence, compared
to EMS which addresses the situation when the system is being stuck due to a situation
not anticipated in the system design, AG aims at optimizing the efficiency of system
functionality at runtime.

Coming back to our running example, the AG H-mechanism systematically observes
the swiftness of the cleaning robots in removing the dirt, which is expressed by the
same utility function as in the EMS H-mechanism. Since the utility function in the ex-
ample is constructed as the average time from discovering the dirt to cleaning it, the
statistical confidence about the utility is directly proportional to the number of robots
involved, the rate of dirt appearance, and the time interval over which the utility func-
tion is observed. Once AG reaches sufficient statistical confidence about the effect of
setting a particular guard constant, it proceeds to the next guard or with another value
for the same guard.

Assumptions on the Adaptation Layer. In Fig. 10, the conceptual model of AG de-
fines the interfaces (and other entities) the Knowledge-base of the Adaptation Layer
should provide to support this H-mechanism. In many respects, the conceptual model
is similar to the one of EMS—there is the ability to inspect components and their mode
charts and to query the utility function. What is extra compared to EMS is the ability to
introspect the guard, in particular to query and set the tunable constants in the guard
(via getGuardParams and setGuardParams of ITransition).

Computation Complexity. Similar to EMS, the AG Analysis phase is assumed to
have a complexity of O(1)—the complexity of utility function calculation. The AG Plan
phase has to traverse the guards in each component’s state machine and inside the
guards it traverses the settable parameters. The overall complexity of this phase is thus

Fig. 10. Adjusting Guards in Mode Switching: Conceptual interfaces of the Adaptation layer Knowledge-
base.

bounded by 𝑂(𝑡𝑝𝑐), where 𝑡 is the maximum number of transitions per component, 𝑝
is the maximum number parameters per transitions, and 𝑐 is the number of components.

The difference between EMS and AG should be emphasized: EMS is to be applied
when the system is stuck in a situation not anticipated at the design time, while AG is
intended to remedy an inefficient performance of the system. Even though in both cases
the triggering conditions are based on the utility function, the actual values of the func-
tion to be tested are different (and so are the adaptation strategies).

3.5 The whole picture

In principle, the Monitor and Analysis phases of all four H-mechanisms (recall Fig.
4) are activated periodically (the period is application-specific) and running in parallel.
The trigger of each H-mechanism, which signals to proceed with the corresponding
Plan and Execute phases, is evaluated at the end of the Analysis phase. If it evaluates
to true, the H-Adaptation Manager steps in to coordinate potential conflicts of multiple
H-mechanisms in their Plan and/or Execute phases. Moreover, updating an adaptation
strategy in the Adaptation layer while it is being executed should obviously not be pos-
sible in general. Avoiding such potential conflicts is another task of the H-Adaptation
Manager which has to cooperate with the Adaptation manager, asking for its permis-
sion, to fulfill the task. In general, such multi-layer controller coordination is a hard
problem, especially if possible parallelization of control activities is considered.

Below, we provide a description of the coordination logic we employed in our ex-
periments. It stems from the simple assumption that triggers of the Plan and Execute
phases of the H-mechanisms are indicators of exceptional situations. Since they appear
“exceptionally”, is it not a big harm to handle the case that several triggers appear sim-
ultaneously in a simplistic way:

H-mechanism calling H-Adaptation manager. Let us assume that a run of the
Monitor and Analysis phases of an H-mechanism m ends up with a trigger t. Then m
asks the H-Adaptation manager for a permission to continue with the Plan and Execute
phases to handle t. If the permission is granted, the H-Adaptation manager refuses any
other trigger t’ issued by an H-mechanism m’ until handling of t is finished. In princi-
ple, this means that the “unsuccessful” trigger can be potentially re-generated by a fu-
ture periodic run of the Monitor and Analysis phases of m’. This does not have to be
necessarily the case, because the triggering condition of t’ does not have to be valid
anymore as a consequence of handling t. In the very special case that multiple triggers
appear at the same time, which was not possible—by design—in our experiments, since
the H-mechanisms had different, non-overlapping triggers, one of them is randomly
selected by the H-Adaptation manager to be handled and the rest of them are refused.
A priority-based mechanism could also be introduced to give precedence to certain H-
mechanisms by design. In our experiments, there was no need for prioritization, since
the H-mechanisms we employed could not be triggered together. Therefore, we did not
consider prioritization mechanisms in our work.

Cooperation between the H-Adaptation manager and the Adaptation manager.
Assume again that m asks the H-Adaptation manager for a permission to continue with
the Plan and Execute phases to handle t. To grant the permission, the H-Adaptation

manager calls the Adaptation Manager asking for activating a lock l of the data struc-
tures to be modified by handling t (i.e. locking the specifications of such adaptation
strategies in the first place). Naturally, the call does not return until l has been successful
(a potential wait would be due to another lock by the adaptation being currently exe-
cuted in the adaptation layer). The lock l remains active until the handling of t is fin-
ished (i.e. the phases Plan and Execute of m are completed). Then unlocking of l is
carried out by another call of the Adaptation manager by the H-Adaptation manager.
This concludes handling of t.

4 Experimental Evaluation

In this section, we present an experimental evaluation of the feasibility and effec-
tiveness of the H-mechanisms. In particular, our experiments aim at answering our re-
search question (a): To what extent can each H-mechanism repair the problem it is
intended to repair? The evaluation is based on experimental results obtained by imple-
menting the H-mechanisms in JDEECo, a Java implementation of the DEECo compo-
nent model [15]. We implemented each H-mechanism as a plugin to the JDEECo
framework, taking advantage of its modeling and simulation capabilities. In our imple-
mentation, all H-mechanisms3 are governed by a centralized H-Adaptation Manager
implemented as an isolated DEECo component.

To answer the research question, we performed an experimental study with two sim-
ulated systems acting as testbeds. The first testbed is an implementation of the running
example of cleaning robots already presented in Section 2.1, while the second is an
emergency response system described next.

4.1 Second Testbed: Emergency Response System

Our second testbed is based on the RoboCup Rescue Simulation4 (RCRS), a research
and educational project targeted towards evaluation of multi-agent solutions in disaster
response scenarios. RCRS provides a simulation platform that imitates a city after an
earthquake. The platform provides a city map which includes streets, intersections,
buildings, and stationary and platoon agents. In our testbed, we concentrated on the
fire-fighting scenarios and considered Hydrants and Refugee Station as stationary
agents and Fire Brigades as platoon agents. Additionally, RCRS provides other types
of agents such as Ambulance Centers and Ambulance Teams. Fire Brigades are respon-
sible for extinguishing buildings on fire. They can only carry a limited amount of water
and need to navigate to the closest Hydrant or Refugee Station to refill their water tanks.
They need to coordinate with each other to expedite the fire extinguishing process.

In the DEECo model of the disaster response scenarios, the RCRS agents corre-
spond to DEECo components. Communication between components is prescribed by
two ensembles listed in Fig. 11, which allow for Fire Brigades to find a Hydrant or Refugee
Station to refill (RefillStationEnsemble) and to form teams of collaborating FireBrigades
(TargetFireZoneExchange).

3 Available at: https://github.com/d3scomp/uncertain-architectures
4 http://roborescue.sourceforge.net/

4.2 Experimental Study

The Cleaning Robots testbed (A) was implemented in JDEECo, while testbed (B) was
implemented in the RCRS simulation platform. For each testbed, we designed and con-
ducted targeted controlled experiments consisting of multiple simulation runs of prede-
fined scenarios, each being a combination of deliberatively introduced faults to be ad-
dressed by a particular H-mechanism.

In total, we considered eight different scenarios for each testbed, which are de-
scribed in Fig. 12. To measure the overall utility of a system run, we used the following
metrics:

(A) Cleaning Robots: The mean of computed time required for a tile that got dirty
until it is cleaned. Smaller values are better.

(B) Emergency Response: The RCRS built-in score function associated with the
fraction of buildings not damaged by fire. Larger values are better.

For the sake of statistical significance, each scenario was run in 100 iterations. The
reported values for the above metrics were averaged across these iterations.

4.3 Results and Interpretation

CS and FCIA. Fig. 13 shows the values of the overall system utility of scenarios 1-5
in the form of boxplot diagrams where the number associated with the red line denotes
the median of the sample.

1. ensemble RefillStationEnsemble:
2. coordinator: RefillProvider # can be either a Hydrant or RefugeeCamp component
3. member: RefillConsumer # a FireBrigade component
4. membership:
5. distance(coordinator.position, member.position)
6. < distance(member.refillTarget, member.position)
7. knowledge exchange:
8. member.refillTarget ← coordinator.position
9. scheduling: periodic(1000ms)
10.
11. ensemble TargetFireZoneExchange:
12. coordinator: FireFighter # a FireBrigade component
13. member: FireFighter # a FireBrigade component
14. membership:
15. coordinator.helpTarget == null and coordinator.extinguishing and !member.refilling &&
16. and distance(coordinator.position, member.position)
17. < distance(member.helpTarget, member.position)
18. knowledge exchange:
19. member.helpTarget ← coordinator.position
20. coordinator.helpingFireFighter ← member.id
21. scheduling: periodic(1000ms)

Fig. 11. DEECo ensembles of the emergency response system.

 Scenarios A.1 and B.1 represent the vanilla cases (no faults—no H-mechanism ac-
tivated), acting as the baselines. Not surprisingly, in the other scenarios the overall util-
ity decreases when a fault is introduced but no H-mechanism is triggered (scenarios
A.2, A.4 and B.2, B.4). When the respective H-mechanism is triggered (scenarios A.3,
A.5 and B.3, B.5), the overall utility improves. In scenarios A.3 and A.5, the overall
utility does not reach the baseline scenario (A.1). However, in scenarios B.3 and B.5,
the overall utility in the corresponding scenarios even exceeds that of the baseline (B.1).
We provide the reasons for this counter-intuitive result in the next paragraphs.

When applying CS to testbed A (scenario A.3), a dependency relation (Section 3.1)
was identified based on the observation that the closeness of the positions of Robot com-
ponents implied similar values in their dirtinessMaps. This resulted in the creation and
deployment of a DirtinessMapExchange ensemble (Fig. 5). The associated metrics, toler-
able distances, and confidence levels are depicted in Fig. 14. Similarly, when applying
the same H-mechanism (i.e. CS) in testbed B (scenario B.3), a dependency relation was
identified based on the observation that the closeness of fire fighter’s positions implied
similar values in their burningBuildings knowledge. This resulted in the creation of an
ensemble specification that allowed nearby fire fighters to exchange information about

Sce-
nario Fault Mechanism Number of docking

stations
A.1 - - 3

A.2 A robot’s dirtiness sensor malfunctions - 3
A.3 A robot’s dirtiness sensor malfunctions CS 3

A.4 A docking station emits wrong availability data - 3

A.5 A docking station emits wrong availability data FCIA 3
A.6 Too many robots w.r.t. docking stations - 1

A.7 Too many robots w.r.t. docking stations EMS 1
A.8 Too many robots w.r.t. docking stations AG 1

(A) Cleaning Robots: Simulation duration 600 s, environment size i20 x 20, number of robots 4.

Sce-
nario Fault Mechanism

B.1 - -

B.2 2 firefighters can’t detect burning buildings -
B.3 2 firefighters can’t detect burning buildings CS

B.4 12 (randomly chosen) out of 18 hydrants are not working -
B.5 12 (randomly chosen) out of 18 hydrants are not working FCIA

B.6 deployed system suboptimal -
B.7 deployed system suboptimal EMS

B.8 deployed system suboptimal AG

(B) Emergency Response: Simulation duration 600 steps, number of fire fighters 12.

Fig. 12. Scenarios considered in the controlled experiments.

burning buildings (Appendix A). Scenario B.3 outperforms the baseline (B.1) because
the distance of nearby firefighters in the generated ensemble is larger than the distance
firefighters can detect fire.

When applying FCIA to the two testbeds, the utility in both cases is improved since
the roles of the faulty components are removed. Scenario B.5 even outperforms the
baseline. The reason for this is application-specific: when nearby Hydrants are not
available any more for fire fighters to refill their water tanks, refilling happens at nearby
Refugee Stations (the second choice of fire fighters). Since refilling happens faster in
Refugee Stations than in Hydrants (by design in the RCRS simulator), the overall utility
increases w.r.t. the baseline.

(A) Scenarios A1 – A5. Smaller values are better.

(B) Scenarios B1 – B5. Larger values are better.

Fig. 13. Overall system utilities.

In the rest of the section, we describe only the results of the application of EMS and
AG to testbed (A). When applying EMS and AG to testbed (B), we obtained similar
results. We refer the interested reader to Appendix A where the results obtained while
experimenting with all four H-mechanisms in testbed (B) are provided.

EMS and AG. Scenario 6 serves as a baseline for both EMS and AG. The effect of
EMS is illustrated in Fig. 16 and Fig. 18. There, the compared effect of an added non-
deterministic transition is compared to the baseline. In this case, the baseline consists
of 4 robots and 1 docking station. Fig. 16 shows the utilities of the system when one
non-deterministic transition is added at a time. We can see that some transitions im-
prove the utility of the system and some worsen it. We can see that when the transition
from Searching mode to Blocked mode was added, the system utility slightly improved.
This is intuitive, because when the robot is in Blocked mode and is not blocked by
another robot, it switches to the Approaching dock mode and starts charging when
reaching the dock. Since there are too many robots for only one docking station, it helps
the system when robots go to charge more randomly and do not queue as much in the
docking station. Fig. 18 shows the utilities when two transitions, the ones that yield the
best utilities in Fig. 16, are added at a time. When EMS is applied in scenario 7, it learns
the utilities that the system yields when particular transitions are added. After adapting
the system, due to the introduced probabilistic mode switching (probability of 0.001
was used), the robots started visiting the docking station at different times. Hence, the
overall queueing time was reduced and the overall utility slightly increased. EMS needs

1. def dirtinessMapDistance(map1, map2):
2. dist = 0
3. // for each node in the global map, if visited in
4. // same-ish time add penalty if needed
5. for n in DirtinessMap.getNodes():
6. if(map1.getVisited().get(n) -
7. map2.getVisited().get(n) <= timeWindow):
8. dirt1 = map1.getDirtinessIn(n)
9. dirt2 = map2.getDirtinessIn(n)
10. if(dirt1 - dirt2 > dirtWindow):
11. dist = dist + differencePenalty
12. return dist

Fig. 15. Distance metric for dirtinessMap field of Robot component.

Knowledge field Distance metric (µ) Tolerable distance (Τ) Confidence level (a)

position Euclidean 3 0.9

battery difference 0.005 0.95

dirtinessMap See Fig. 15 3 0.9

 Fig. 14. Distance metrics, tolerable distances, and confidence levels in Robot knowledge

fields.

Box number Added transitions

1 Baseline – 4 robots, 1 docking station
2 Battery dead → Charging
3 Cleaning → Blocked
4 Cleaning → Battery dead
5 Battery dead → Cleaning
6 Searching → Charging
7 Approaching dock → Cleaning
8 Blocked → Charging
9 Approaching dock → Searching
10 Battery dead → Approaching dock
11 Charging → Battery dead
12 Searching → Cleaning
13 Charging → Approaching dirt
14 Blocked → Approaching dirt
15 Approaching dirt → Battery dead
16 Blocked → Searching
17 Approaching dirt → Charging
18 Blocked → Cleaning
19 Charging → Cleaning
20 Charging → Approaching dock
21 Battery dead → Approaching dirt
22 Approaching dirt → Blocked
23 Searching → Blocked
24 Cleaning → Charging
25 Battery dead → Searching
26 Approaching dock → Approaching dirt
27 Blocked → Battery dead
28 Charging → Blocked
29 Battery dead → Blocked

Fig. 17. Description for Fig. 16.

Fig. 16. Utilities of the system when one transition at a time is added in the EMS H-mechanism.

Added transitions are detailed in Fig. 17.

Fig. 18. Utilities of the system when two transitions at a time are added in the EMS H-mechanism.

Added transitions are detailed in Fig. 19.

Box number Added transitions
1 Baseline – 4 robots, 1 docking station

2 Searching → Blocked
 Approaching dock → Approaching dirt

3 Approaching dock → Approaching dirt
 Approaching dock → Searching

4 Approaching dock → Searching
 Battery dead → Blocked

5 Approaching dock → Approaching dirt
 Battery dead → Blocked

6 Approaching dock → Approaching dirt
 Searching → Blocked

7 Battery dead → Blocked
 Searching → Blocked

8 Searching → Blocked
 Battery dead → Blocked

9 Searching → Blocked
 Approaching dock → Searching

10 Approaching dock → Searching
 Approaching dock → Approaching dirt

11 Battery dead → Blocked
 Approaching dock → Approaching dirt

12 Approaching dock → Searching
 Searching → Blocked

13 Battery dead → Blocked
 Approaching dock → Searching

Fig. 19. Description for Fig. 18.

Fig. 20. Utilities of the system when a guard is adjusted using the AG mechanism. Adjusted guards are:
Charged level – battery level to leave a docking station; Drained level – battery level to go to a docking
station; Found enough – number of found dirt to start cleaning; Cleaned enough – number of found dirt

to stop cleaning. Guards detailed in Fig. 21.

Box number Added transitions

1 Baseline – 4 robots, 1 docking station
2 Charged level = 0.9
3 Charged level = 0.7
4 Charged level = 0.5
5 Drained level = 0.1
6 Drained level = 0.3
7 Drained level = 0.5
8 Found enough = 1
9 Found enough = 3
10 Found enough = 7
11 Found enough = 9
12 Cleaned enough = 1
13 Cleaned enough = 2
14 Cleaned enough = 3

Fig. 21. Description for Fig. 20.

Fig. 22. Utilities of the system when two guards at a time are adjusted in AG mechanism. Adjusted

guards: Charged level – battery level to leave a docking station; Drained level – battery level to go to a
docking station; Found enough – number of found dirt to start cleaning; Cleaned enough – number of

found dirt to stop cleaning. Guards detailed in Fig. 23.

Box number Added transitions

1 Baseline – 4 robots, 1 docking station

2 Drained level = 0.3
Found enough = 3

3 Drained level = 0.3
Cleaned enough = 2

4 Found enough = 3
Cleaned enough = 2

5 Charged level = 0.7
Drained level = 0.3

6 Charged level = 0.7
Found enough = 3

7 Charged level = 0.7
Cleaned enough = 2

Fig. 23. Description for Fig. 22.

time to auto-calibrate (performed in training simulations for each transition) as it
searches for the best transition that improves the system utility.

Scenario 8 is trained in the same way as scenario 7. Fig. 20 shows the system utilities
when different guards are modified, one at a time. Fig. 22 shows the utilities of the
system when a combination of two guards is adjusted. AG learns from these measured
values which guards to adjust and how to adjust for improving the running system. As
observed, with AG robots charge more often and do not spend long time charging.
Therefore, the utility improves. Additionally, AG helps when robots start cleaning
sooner as they find less dirt than in the baseline.

5 Discussion

By employing two distinct architectural layers—“standard” self-adaptation and adap-
tation of self-adaptation strategies (the task of H-mechanisms), our solution basically
follows the principle of architectural hoisting [24]—separating concerns by assigning
the possibility for a global system property (here self-adaptation) to system architecture.
Even though the H-mechanisms layer can be interpreted as (high-level) exception han-
dling in self-adaptation settings and can be implemented at the same level of abstraction
as the self-adaptation itself, achieving the same functionality without the H-mechanism
layer would make the code of ensembles and components very clumsy. Architectural
hoisting makes the separation of these concerns much easier and elegant.

It should be emphasized that learning is an inherent part of the proposed mecha-
nisms. CS builds data correlation models adhering to certain parameters, namely toler-
able distances and confidence levels. FCIA builds on (ideally) learnt models of faults.
EMS and AG learn the response (utility) of the system when changing the mode-state
chart of certain components.

We return here to answering the research questions articulated in Section 1 and con-
clude this section by mentioning the limitations of our approach.

To what extent can each H-mechanism repair the problem it is intended to repair?
Our experimental results provide evidence that each H-mechanism is indeed solving
the problem it is intended to solve. The extent to which the problem is repaired depends
on the application and on the degree of abnormality observed. In some cases, e.g. in the
application of CS and FCIA to the emergency coordination testbed, we have observed
that the H-mechanisms enhance the overall utility of a system with an abnormality even
above the case where no abnormality is present (the baseline in our comparisons). This
clearly indicates that dynamic modification of adaptation strategies at the architecture
level via H-mechanism is viable – just imagine that these potential adaptation strategy
modifications were to be defined upfront at a single architectural level.

What is the overhead of using each H-mechanism? The overhead of each H-mecha-
nism depends on the worst-case runtime complexity of each mechanism. For each
mechanism, we have provided an upper bound estimate in big-O notation. From this
perspective, the mechanism with a higher overhead is the CS H-mechanism, with its
complexity being quadratic both in the number of components and the length of
knowledge fields considered.

Can multiple H-mechanisms be applied at the same time? Depending on the partic-
ular fitness function applied, EMS may be triggered in a situation that is also covered
by other H-mechanisms (e.g. by CS). Resolving potential conflicts is a task of the H-
Adaptation Manager. Here, based on a number of experiments, we have employed the
observation that triggers of the P+E phases of the H-mechanisms appear “exception-
ally”; therefore we handle the (very special) case that several triggers appear simulta-
neously in a simplistic way: The H-Adaptation Manager randomly decides which of
the triggers will be accepted – the other are ignored and may be re-activated in a future
run of the M+A phases of the corresponding H-mechanisms.

How can new H-mechanisms be developed? The development of an H-mechanism
starts by identifying a recurring problem that exists with an adaptation strategy and
implementing a solution to the problem that is less intrusive than patching the adapta-
tion strategy itself (which may have other dependencies and thus be difficult to change).
An H-mechanism is thus specific to an adaptation strategy.

Generality and Limitations. In terms of generalization of our approach, we have fo-
cused on articulating our assumptions on the Adaptation layer, to make it clear when
an H-mechanism can be applied to it. Please note that the specifications of our assump-
tions are DEECo-independent.

Our approach does not depend on the existence of a centralized entity hosting the
homeostasis layer. DEECo itself does not specify any deployment style, i.e. DEECo-
based systems can range from completely centralized to completely decentralized ones.
In the latter case, the ensemble evaluation is performed independently by each compo-
nent at run-time. The H-mechanisms we propose in this paper can also be decentralized.
The ease and degree of decentralization depends on the H-mechanism: while FCIA can
be trivially and completely decentralized, since it relies on component-local infor-
mation only, the other three H-mechanisms are difficult to decentralize since they rely
on information gathered from a number of components.

Regarding the computational overhead of our approach, we note that, in general, the
extra layer demands additional computational load, since monitoring of the triggering
events is inherent to all four H-mechanisms. Even though it is minor for CS and FCIA,
in the case of EMS and AG it depends on the complexity of the associated fitness func-
tion. Obviously, the most computationally demanding step is the data collection in CS
if done preventively at run-time. This can be reduced by limiting the time window for
collecting data, or by starting it ex-post, i.e. if need be.

Another limitation of the work presented in this paper is that the proposed H mech-
anisms have been only been evaluated so far with DEECo self-adaptation strategies.
Investigating the generalizability of our homeostasis concept with other self-adaptation
approaches (e.g. Stitch [6]) is an interesting topic of our future work.

6 Related Work

In this paper, we focus on self-adaptive architectures and run-time support for handling
run-time uncertainty in the context of software-intensive cyber-physical systems.
Therefore, as part of related work, we reflect on research in the areas of architecture-

based self-adaptation, addressing uncertainty in self-adaptive systems, and self-adapta-
tion and resilience in cyber-physical systems. This topic touches upon several research
works which we overview and compare to our work below. We have grouped related
works in three (partially overlapping) research strands.

6.1 Architecture-based Self-Adaptation

Architecture-based self-adaptation refers to changes in the run-time architecture of
a system (e.g. adding/removing components and connectors) to deal with changes in
the environment or the goals of a deployed system. The early works of Oreizy et al.
[25] and Kramer and Magee [26] provide the foundations of the field—an overview of
the literature in this area is provided in [27]. In the following, we give an overview of
the most related approaches that support architecture-based self-adaptation strategies:

An approach representative of architecture-based self-adaptation is the combination
of the Rainbow framework [28] with the Stitch language [6]. Rainbow and Stich sup-
port the reuse of adaptation strategies and infrastructure to apply them. A running sys-
tem is monitored for violations and appropriate adaptation strategies are employed to
resolve them. We have built on these ideas in our previous work on architecture-based
self-adaptation using invariant models at run-time—IRM-SA [29]. In this work, we
propose adaptation strategies that can evolve at run-time in order to support a wider
range of scenarios (situations that warrant self-adaptation) while the Rainbow/Stitch
and IRM-SA uses pre-defined, non-evolving strategies.

The PLASMA [30] and Sykes’s approach [31] are based on automated reactive plan-
ning-as-model-checking. In both approaches, the goal is to synthesize an appropriate
sequence of actions on-the-fly which will lead to the satisfaction of a goal. When a goal
is not satisfied anymore (e.g. due to some obstacle), automated re-planning is triggered
which leads to a new series of actions per component which in turn gets translated in
architectural changes (starting/stopping of a component or a component process). Both
approaches essentially comply to Kramer and Magee’s three-layer reference model for
adaptation [26] that hoists the concerns of low-level component control, change man-
agement, and goal management in different, stacked architecture layers. We, too, de-
couple the changes of the business system from the changes of the adaptation layer and
suggest to handle the former in the adaptation layer, which corresponds to the change
management layer in Kramer and Magee’s reference model [26], and the latter in the
homeostasis layer corresponding to the goal management layer in Kramer and Magee’s
work. Contrary to the above approaches PLASMA and Sykes’s approach, which in-
stantiate Kramer and Magee’s reference model, we do not synthesize new strategies or
plans by invoking a planner, but by changing the existing adaptation strategies using
different methods (e.g., data correlation, local search) that are strategy-specific, defined
in our H-mechanisms.

MORPH is a reference architecture for the coordination of reconfiguration and be-
havior adaptation [32]. Behavior adaptation refers to a sequence of steps that should be
executed while reconfiguration adaptation refers to architecture changes to be executed.
MORPH puts forward a Goal Management layer (as in [31]) which re-computes behav-
ior and reconfiguration strategies applied on the two lower layers, the Strategy Man-

agement and Enactment to support customizability. While MORPH focuses on increas-
ing the performance of the system for example through parallel architectures, they do
not target run-time uncertainty.

Another line of research focuses on the usage of (architectural) models for adapta-
tion. For example, Floch et al. propose to use architectural models for adaptation [9]
and Sykes et al. propose to revise models through learning for planning in adaptive
systems [33]. While these works are an important step towards the adaptation based on
runtime architectural models and using environmental domain models that are updated
at runtime to deal with changing environments, we focus more specifically on dealing
with run-time uncertainty in an efficient way.

6.2 Addressing Uncertainty in Self-Adaptive Systems

Managing uncertainty has been identified as one of the major challenges in engi-
neering software for self-adaptive systems [5]. Self-adaptive systems can be affected
by different kinds of uncertainty: Requirements, design and run-time uncertainty [4].
We reflect here on the major works in addressing uncertainty in self-adaptive systems—
for a recent classification of uncertainty in architecture-based self-adaptive systems we
refer the interested reader to [34].

On the requirements uncertainty level, Ramirez et al. have introduced the RELAX
language which allows to make requirements more tolerant to environmental uncer-
tainty [35]. In a similar approach, Baresi et al. have proposed FLAGS [36], a modeling
method and language for specifying adaptation goals that are fuzzy, i.e. whose satisfac-
tion is the result of a fuzzy logic membership function. Villegas et al. focus on adapting
the requirements and context in self-adaptive systems to deal with requirements uncer-
tainty [37]. Their DYNAMICO reference model supports dynamic monitoring and re-
quirements variability to allow satisfying system goals under highly changing environ-
ments. DYNAMICO supports the adaptation at the model level (i.e., control objectives,
context, and context monitors). We focus on supporting self-adaptation at the architec-
tural level.

On design time uncertainty level, Esfahani et al. propose POISED – an approach
based on possibility theory for handling internal uncertainty that affects the system in
making adaptation decisions [38]. Internal uncertainty is caused by the difficulty of
determining the impact of adaptation on the system’s quality objectives. Gerostatho-
poulos et al. proposed the concept of meta-adaptation strategies (inspired from evolu-
tionary-computation approaches to self-adaptation such as AVIDA-MDE [39], Veritas
[40], and Proteus [41]) to deal with situations not anticipated at design-time via creating
adaptation strategies on the fly and applying them on a target system [42]. Although
our approach also tackles unanticipated situations, we do not specifically rely on evo-
lutionary algorithms to evolve the self-adaptive logic at runtime, but on a number of
diverse H-mechanisms. Elkhodary et al. present FUSION that allows a self-adaptive
system to self-tune its adaptation logic in case of unanticipated conditions [42]. It uses
a feature-oriented system model and learns the impact of feature selection and feature
interaction. In contrast to this, we advocate introducing flexibility in self-adaptation
strategies as a method to deal with run-time uncertainty. On run-time uncertainty level,

Knauss et al. contribute with ACon – a learning based approach to deal with unpredict-
able environments and sensor failure [43]. It uses machine learning to keep the context
in which contextual requirements are valid up-to-date. ACon focus is very similar to
the focus of this paper on run-time uncertainty. However, in this paper we take an ar-
chitectural view and focus on ways to evolve self-adaptive logic at run-time to coun-
teract run-time uncertainty, while ACon focuses on keeping contextual requirements
up-to-date. ACon considers uncertainty related to a specific context, while in this work,
we take a general view on, for example, tackling sensor failure by adjusting the archi-
tecture, instead of dealing with a sensor failure for each requirement individually.

6.3 Self-Adaptation and Resilience in Cyber-Physical Systems

When looking at self-adaptation in the context of CPS, the most important concerns
that warrant adaptation are performance, flexibility, and reliability [44]. Since we focus
on strengthening a sasiCPS against run-time uncertainty via flexible adaptation strate-
gies, we also position our work against important approaches supporting reliability
through resilience (tolerance to faults) at the architecture level.

MetaSelf is a service-oriented architecture framework and accompanying develop-
ment method for building dynamically resilient systems [45, 46]. The main idea is to
encode reconfiguration actions into resilience policies and use metadata encoding func-
tional and non-functional properties to select between services in case a policy is trig-
gered. While they focus on a generic infrastructure for service-oriented dynamically
resilient systems, we focus on the flexible evolution of existing adaptation strategies
(ensembles, mode-state machines), which broadly correspond to explicitly defined and
fixed policies in MetaSelf.

Pradhan et al. focus on resilient operation and execution on the run-time infrastruc-
ture level of mobile CPS [47]. Their approach relies on the implicit encoding of all
possible mappings of software components to component nodes—configuration points
or deployments. When a fault is detected, the infrastructure computes a new configura-
tion point by using information about the failure, the current configuration point, and
relevant deployment and resource constraints in the configuration space and invoking
an SMT solver. The faults they consider are node (hardware) failures and component
(software) failures. In our case, we do not focus on resilience at the infrastructure/de-
ployment level but at the application layer, where more fine-grained analysis of the
failure can be achieved. Additionally, we do not rely on a planner but on dynamically
changing the existing application-level adaptation strategies in different ways (data cor-
relation, local search) that are strategy-specific (the H-mechanisms).

Important works in resilience management are also furnished in the area of formal
methods. For instance, Tarasyuk et al. model a robotic system (similar to our running
example) in Event-B [48], a state-based formal development approach relying on iter-
ative refinement of a system’s behavioral model. Faults and mitigation strategies are
inserted into the model and checked via probabilistic verification (using PRISM). Alt-
hough we acknowledge the potential of such formal approaches in sasiCPS, we take a
different perspective and focus on mitigating run-time uncertainty as we believe it can-
not be fully eliminated via model checking or other verification or testing means in the
open and dynamic CPS environment.

7 Conclusions

This paper focused on tackling uncertainty in the operating conditions of self-adaptive
software-intensive cyber-physical systems. The general idea is to equip such a system
with architecture homeostasis—the ability to change its self-adaptation strategies at
run-time according to environment stimuli. This idea was exemplified in four concrete
homeostatic mechanisms: Collaborative Sensing, Faulty Component Isolation from
Adaptation, Enhancing Mode Switching, and Adjusting Guards in Mode Switching.
Each homeostatic mechanism deals with a particular class of problems related to run-
time uncertainty; when triggered, it adjusts its self-adaptation strategies that work at the
software architecture level. The conducted experiments have shown that hoisting the
modification of self-adaptation strategies at the architectural level is a viable option.
We have also tested the feasibility of our approach by applying it in two case studies
from different domains.

In our future work, we intend to conduct further research on the classification algo-
rithms to effectively determine situations that trigger homeostatic mechanisms, and in-
vestigate, concretize, and experiment with more homeostatic mechanisms.

Acknowledgements

This work was partially supported by the project no. LD15051 from COST CZ (LD)
programme by the Ministry of Education, Youth and Sports of the Czech Republic; by
Charles University institutional funding SVV-2016-260331 and PRVOUK; by Charles
University Grant Agency project No. 391115. This work is part of the TUM Living Lab
Connected Mobility project and has been funded by the Bayerisches Staatsministerium
für Wirtschaft und Medien, Energie und Technologie.

References
1. Kim, B.K., Kumar, P.R.: Cyber–Physical Systems: A Perspective at the Centen-

nial. Proc. IEEE. 100, 1287–1308 (2012).
2. Hoelzl, M., Rauschmayer, A., Wirsing, M.: Engineering of Software-Intensive

Systems: State of the Art and Research Challenges. In: Software-Intensive Sys-
tems and New Computing Paradigms. pp. 1–44 (2008).

3. Beetz, K., Böhm, W.: Challenges in Engineering for Software-Intensive Embed-
ded Systems. In: Pohl, K., Hönninger, H., Achatz, R., and Broy, M. (eds.) Model-
Based Engineering of Embedded Systems. pp. 3–14. Springer (2012).

4. Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: SEAMS ’12. pp. 99–108. IEEE (2012).

5. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G.D.M., Dustdar, S., Finkel-
stein, A., Cacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Muller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap. In: Software Engineering for Self-Adaptive Systems.
pp. 1–26. Springer Berlin Heidelberg. (2009).

6. Cheng, S.-W., Garlan, D., Schmerl, B.: Stitch: A language for architecture-based
self-adaptation. J. Syst. Softw. 85, 1–38 (2012).

7. Iftikhar, M.U., Weyns, D.: ActivFORMS: Active Formal Models for Self-Adap-
tation. In: SEAMS ’14. pp. 125–134. ACM Press (2014).

8. Weyns, D., Malek, S., Andersson, J.: FORMS: A Formal Reference Model for
Self-adaptation. In: Proceedings of the 7th International Conference on Autonomic
Computing. pp. 205–214. ACM, New York, NY, USA (2010).

9. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using ar-
chitecture models for runtime adaptability. IEEE Softw. 23, 62–70 (2006).

10. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Muller,
H., Pezze, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback
Loops. In: Software Engineering for Self-Adaptive Systems. pp. 48–70. Springer
Berlin Heidelberg (2009).

11. Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.:
Strengthening Adaptation in Cyber-Physical Systems via Meta-Adaptation Strate-
gies. ACM Trans Cyber-Phys Syst. 1, 13:1–13:25 (2017).

12. Cheng, B., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Ap-
proach to Develop Requirements of an Adaptive System with Environmental Un-
certainty. In: Proc. of MODELS ’09. pp. 1–15. Springer Berlin Heidelberg (2009).

13. Shaw, M.: “Self-healing”: Softening Precision to Avoid Brittleness: Position Paper
for WOSS ’02: Workshop on Self-healing Systems. In: Proceedings of the First
Workshop on Self-healing Systems. pp. 111–114. ACM (2002).

14. Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T., Knauss, A.: Architectural
Homeostasis in Self-Adaptive Software-Intensive Cyber-Physical Systems. In:
Proceedings of ECSA 2016, Copenhagen, Denmark. pp. 113–128. Springer
(2016).

15. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13. pp. 81–
90. ACM (2013).

16. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software Abstractions for Com-
ponent Interaction in the Internet of Things. Computer. 49, 50–59 (2016).

17. Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer. 36, 41–
50 (2003).

18. Perrouin, G., Morin, B., Chauvel, F., Fleurey, F., Klein, J., Traon, Y.L., Barais,
O., Jezequel, J.-M.: Towards Flexible Evolution of Dynamically Adaptive Sys-
tems. In: Proc. of ICSE ’12. pp. 1353–1356. IEEE (2012).

19. Hall, R., Pauls, K., McCulloch, S., Savage, D.: OSGi in Action: Creating Modular
Applications in Java. Manning Publications, Stamford, CT (2011).

20. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an Extensible Service-Oriented
Component Framework. In: IEEE International Conference on Services Compu-
ting (SCC 2007). pp. 474–481 (2007).

21. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: ECOOP
2008 – Object-Oriented Programming. pp. 104–128. Springer, Berlin, Heidelberg
(2008).

22. Wolfinger, R.: Dynamic Application Composition with Plux .NET, http://citese-
erx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.7307&rep=rep1&type=pdf,
(2012).

23. Jan Snyman: Practical Mathematical Optimization. Springer Science & Business
Media (2005).

24. Fairbanks, G.: Architectural Hoisting. IEEE Softw. 31, (2014).
25. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based Runtime Software

Evolution. In: Proc. of ICSE ’98. pp. 177–186. IEEE (1998).
26. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proc.

of FOSE’07. pp. 259–268. IEEE (2007).
27. Weyns, D., Ahmad, T.: Claims and Evidence for Architecture-Based Self-adapta-

tion: A Systematic Literature Review. In: Drira, K. (ed.) Software Architecture.
pp. 249–265. Springer Berlin Heidelberg (2013).

28. Cheng, S., Huang, A., Garlan, D., Schmerl, B., Steenkiste, P.: Rainbow: Architec-
ture-based self-adaptation with reusable infrastructure. IEEE Comput. 37, 46–54
(2004).

29. Gerostathopoulos, I., Bures, T., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F., Plou-
zeau, N.: Self-adaptation in software-intensive cyber–physical systems: From sys-
tem goals to architecture configurations. J. Syst. Softw. 122, 378–397 (2016).

30. Tajalli, H., Garcia, J., Edwards, G., Medvidovic, N.: PLASMA: a plan-based lay-
ered architecture for software model-driven adaptation. In: Proceedings of the
IEEE/ACM international conference on Automated software engineering. pp.
467–476. ACM (2010).

31. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems
(SEAMS ’08). pp. 1–8 (2008).

32. Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: MORPH: a ref-
erence architecture for configuration and behaviour self-adaptation. In: Proceed-
ings of the 1st International Workshop on Control Theory for Software Engineer-
ing. pp. 9–16. ACM (2015).

33. Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., Inoue, K.: Learning Re-
vised Models for Planning in Adaptive Systems. In: Proceedings of the 2013 In-
ternational Conference on Software Engineering. pp. 63–71. IEEE Press, Pisca-
taway, NJ, USA (2013).

34. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A Classification Framework of
Uncertainty in Architecture-Based Self-Adaptive Systems with Multiple Quality
Requirements. In: Managing Trade-offs in Adaptable Software Architectures. pp.
45–78. Elsevier (2016).

35. Ramirez, A.J., Cheng, B.H.C., Bencomo, N., Sawyer, P.: Relaxing Claims: Coping
with Uncertainty While Evaluating Assumptions at Run Time. In: France, R.B.,
Kazmeier, J., Breu, R., and Atkinson, C. (eds.) Model Driven Engineering Lan-
guages and Systems. pp. 53–69. Springer Berlin Heidelberg (2012).

36. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Ad-
aptation. In: Proc. of RE ’10. pp. 125–134. IEEE (2010).

37. Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., Casallas, R.:
DYNAMICO: A Reference Model for Governing Control Objectives and Context
Relevance in Self-Adaptive Software Systems. In: Lemos, R. de, Giese, H., Mül-
ler, H.A., and Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II.
pp. 265–293. Springer Berlin Heidelberg (2013).

38. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: Proc. of SIGSOFT/FSE ’11. pp. 234–244. ACM (2011).

39. Goldsby, H., Cheng, B.: Automatically generating behavioral models of adaptive
systems to address uncertainty. In: Proceedings of the 11th international confer-
ence on Model Driven Engineering Languages and Systems, MoDELS’08. pp.
568–583. Springer Berlin Heidelberg (2008).

40. Fredericks, E.M., DeVries, B., Cheng, B.H.C.: Towards Run-Time Adaptation of
Test Cases for Self-Adaptive Systems in the Face of Uncertainty. In: Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems - SEAMS 2014. pp. 17–26. ACM Press (2014).

41. Fredericks, E.M., Cheng, B.H.C.: Automated Generation of Adaptive Test Plans
for Self-Adaptive Systems. In: Proc. of SEAMS ’15. pp. 157–168. IEEE (2015).

42. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A Framework for Engineering
Self-tuning Self-adaptive Software Systems. In: Proc. of FSE ’10. pp. 7–16. ACM
(2010).

43. Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon:
A learning-based approach to deal with uncertainty in contextual requirements at
runtime. Inf. Softw. Technol. 70, 85–99 (2016).

44. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for Cyber-physical Systems:
A Systematic Literature Review. In: Proceedings of the 11th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems. pp. 75–
81. ACM, New York, NY, USA (2016).

45. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A metadata-
based architectural model for dynamically resilient systems. In: Proc. of the 2007
ACM symposium on Applied computing - SAC ’07. pp. 566–566. ACM Press
(2007).

46. Serugendo, G.D.M., Fitzgerald, J., Romanovsky, A.: MetaSelf – An Architecture
and a Development Method for Dependable Self- * Systems. In: Proc. of the 2010
ACM symposium on Applied computing - SAC ’10. pp. 457–461. ACM (2010).

47. Pradhan, S., Dubey, A., Levendovszky, T., Kumar, P.S., Emfinger, W.A., Bal-
asubramanian, D., Otte, W., Karsai, G.: Achieving resilience in distributed soft-
ware systems via self-reconfiguration. J. Syst. Softw. 122, 344–363 (2016).

48. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal development
and quantitative assessment of a resilient multi-robotic system. In: International
Workshop on Software Engineering for Resilient Systems. pp. 109–124. Springer
(2013).

