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Abstract—Experimentation at post-deployment phases (in 
production environments) can be a powerful tool for both 
learning how a deployed system operates and how it is being 
used. Though this knowledge is invaluable for optimization of 
the system, collecting it may require long time and experiments 
may even worsen the system with negative effects on users and 
business. This calls for methods for performing experimentation 
in production environments that balance the profit of 
experimentation with its cost. In this paper, we describe related 
challenges and our emerging results towards cost-aware stage-
based experimentation. In particular, we aim for performing 
experiments that optimize towards their profit while making 
sure that the overall experimentation cost (e.g. total 
experimentation time) stays within given bounds. First, we 
illustrate the challenges and needs of such experimentation in 
two use cases from different domains. Second, we describe the 
main concepts behind our method in a semi-formal notation. 
Third, we exemplify the method by applying it in the two use 
cases and we report interesting first results.            
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I.  INTRODUCTION  
Systems we build are ultimately evaluated based on the 

value they deliver to their users and stakeholders. Modern 
software-intensive systems have several characteristics that 
make it easier for such value to be estimated and optimized. 
First, they typically have a number of tunable parameters or 
knobs that can be used for changing their operation even in 
post-deployment phases. Second, they have a number of 
probes that can be used for obtaining telemetry data and 
calculating different system metrics, such as web page load 
time, timing performance, or even end-user satisfaction.  

To increase the value delivered by a system, one needs to 
capture the relation between the values of its tunable 
parameters and the values of its measurable metrics, then 
apply the combination of parameter values that optimizes the 
metrics of interest—the optimization criterion. In certain 
classes of systems, such a relation is very hard to capture in 
pre-deployment phases, since they either involve metrics 
related to human users (e.g. web-facing applications) or they 
have complex, non-linear interactions between input 
parameters and metric values that are hard to model a priori. 
The practical solution in such cases is to deploy the system 
and experiment with it in production environments. 

The state of the art in experimentation in production 
environments, also called online experimentation, mainly 
reports on the experience of web-facing companies such as 
Google [1], Uber [2], and Microsoft [3]–[5] in building 

scalable experimentation platforms and performing controlled 
experiments in order to evaluate changes that affect user 
experience and prioritize feature development. A/B tests stand 
out as the most common case of experiments in practice, albeit 
not without challenges in their execution [6]. Recent research 
has gone a step further to propose that systems (instead of 
humans) should control and run experiments on themselves in 
order to self-optimize [7]–[9]. We follow here this line of 
research, i.e. of automated online experimentation, and 
formulate what we believe is a challenging problem.  

The problem with experimentation in production 
environments is that it is very risky due to the high cost it may 
incur. Consider experimenting with the parameters of a web 
server: the end-to-end latency for a request or a page load time 
might accidentally increase. While this experiment is 
profitable in terms of knowledge acquired about the system, it 
also has high cost if real users get affected, manifested in 
negative user experience. On the contrary, performing the 
same experiment in a user acceptance testing environment 
yields far lower cost (if not none) in terms of negative user 
experience. As another example, consider experimenting with 
the parameters of a recommender system used via a web-
facing application: the time to get a good recommendation 
might again accidentally increase, yielding an outdated, 
irrelevant recommendation that reduces the value of the 
system as perceived by its end-users. Again, this is not an 
issue in a testing environment where delaying a relevant 
recommendation does not incur any business cost.  

What is actually needed when experimenting in 
production environments is a method by balancing the profit 
of experimentation (the knowledge acquired about the system) 
with its cost [10]. This should allow one to follow risky 
strategies which e.g. gather more data for evaluating a 
statistical hypothesis even when the cost is high. On the other 
side, it should also support one to follow risk-averse strategies 
that e.g. cut off an experiment when the actual or the predicted 
cost reaches a certain threshold.  

In this paper, we describe our research towards such a 
method. Our method prescribes the execution of an 
experiment in stages (i.e. steps of an experiment) to better 
control its profit and cost. The main idea is to decide on the 
stages that are most profitable to run but need to be carefully 
chosen since they have high cost, via first running a number 
of “exploratory stages”, which typically yield no direct profit, 
but are also cheaper and provide insights into the system.  

In particular, we make the following contributions. First, 
we illustrate the challenges and needs for such 
experimentation method in two use cases from different 



Author’s copy 

domains (Section II). Second, we describe the main concepts 
behind our method in a semi-formal notation and, third, 
exemplify the method by applying it in our two use cases and 
we report interesting first results (Section III).  

II. USE CASES  

A. Use Case 1: Optimizing City Traffic Navigation  
The first use case concerns a traffic navigation system for 

cars in a city. The system consists of the individual cars and 
of a centralized traffic router. The router is a service used by 
the cars to plan and guide their routes (series of streets to 
follow) from their current location to a destination in the city. 
The router is parametric: it offers several interval-scaled 
variables that can be tuned to affect the way new routes are 
calculated. For route calculation, the router uses a Dijkstra 
algorithm for calculating the shortest path between two nodes 
(intersections), based on costs assigned to each edge (street). 
Costs are assigned to edges based on a function that combines 
static traffic information (e.g. street length, maximum speed 
on street) with dynamic traffic information (e.g. average speed 
on street, calculated for a timespan t from cars that travelled 
on the street). The router parameters parametrize the per-edge 
cost assignment function by specifying the weight of static 
traffic information, the weight of dynamic traffic information, 
the timespan t, and other values (a complete list of tunable 
parameters is in Table 1 of [11]).       

The goal of changing the parameters of the router is to 
maximize the value delivered to the drivers. Assuming a 
uniform driver profile capturing driver’s preferences, drivers 
are satisfied when they reach their destination as soon as 
possible. This forms the optimization criterion of minimizing 
the trip overhead metric. A trip overhead is obtained by 
dividing the actual trip time by the theoretical trip time where 
the car travels at full speed in all streets.    

The relation between router parameter values and the trip 
overhead metric values is not easy to model at design time 
because of the complex, non-linear interactions that exist 
between the router parameters and the metric values. Consider 
e.g. that increasing the value of a parameter increases the 
value of the metric, but only in combination with a decrease 
in the value of another parameter. Such relation is also not 
easy to deduce at pre-deployment phases, because it depends 
on runtime situations. For instance, a different configuration 
of parameters will be optimal in the situation of low traffic in 
the city (where the static traffic information will probably be 
more important in calculating per-edge costs than dynamic 
information) compared to the situation of high traffic.  

Ideally, the system should run under different 
configurations and in different situations in production 
environments in order to determine the optimal configuration 
per situation. The risk of doing so is that, while traversing the 
search space, certain configurations can incur high cost in 
terms of driver’s annoyance. Such cost can be calculated by 
e.g. summing up the complaints filed by drivers to the router 
service. A method for experimentation in production 
environments should strive for keeping the number of 
complaints below a certain limit.     

B. Use Case 2: Identifying JIT Performance Regressions 
The second use case concerns a system for automatically 

detecting performance regressions, i.e. differences in 
performance delivered by different versions of a Just-in-Time 
(JIT) compiler in a Java Virtual Machine (JVM). The goal is 
to detect changes in the code base that impact performance 
significantly. Performance is measured by inspecting the 
execution time of multiple Java applications acting as 
compiler benchmarks. Apart from the execution time, other 
metrics are also collected for each benchmark, e.g. 
compilation time, instruction count and number of cache 
references and misses. Assuming a scenario with a list of JIT 
versions (from a version control system) the system outputs 
one or more pairs of subsequent versions in which a 
performance regression has been detected in at least one of the 
benchmarks. To detect a regression in a benchmark, some of 
the essential metrics (e.g. execution time or instruction count) 
need to show a significant difference at a given significance 
level. To detect regressions in neighboring versions, pair-wise 
comparisons are performed. 

The system offers a parameter, called benchmark 
selection, than can be tuned at runtime and specifies which of 
the benchmarks will be run, for how long, and in which order. 
The selection of the benchmarks is important, since even 
when parallel execution of benchmarks is employed (currently 
we run up to 36 experiments in parallel), it is typically not 
possible to run all (close to 80) benchmarks for all JIT 
versions. This is because there are typically several JIT 
versions released every day that need to be measured and 
because every benchmark has to be run multiple times with 
long enough warmup and measurement phase to achieve 
statistical significance (each run takes from tens of minutes to 
several hours).  

The goal of tuning the benchmark selections is to execute 
such benchmarks on a JIT version for which there is high 
likelihood that a regression will show up and therefore 
maximize the value delivered to the developers of the JIT 
compiler, who need to know whether their changes introduced 
a regression or not within a certain time frame (after which 
this information is not so valuable anymore). As such, the 
number of correctly identified regressions within a time frame 
t is the optimization criterion in this use case, whereas the time 
spent in detecting regressions is the cost of experimentation.  

III. APPROACH 
Our approach aims at running experiments on a system to 

derive the learned knowledge, i.e. the knowledge needed to 
optimize the system. Each experiment is split into several 
stages which exercise the system in different ways. Some of 
the stages are costlier and more profitable (in terms of 
learning) at the same time; a typical case is to execute these 
stages at the end of an experiment, after having exercised the 
system in a number of relatively cheap stages. The main 
purpose of these stages is not to derive the learned knowledge 
but to profile the system and reduce the number of costly 
experiments—that are also profitable—that we ultimately 
need to run.  
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In the rest of the section, we describe the concepts of our 
approach in a semi-formal notation and exemplify our 
approach on the two use cases. 

A. Concepts 
System Under Experimentation. A tuple (I, O, S, C, C0) 
where I is a non-empty set of identifiers of input (tunable) 
system parameters, O is a non-empty set of identifiers of 
observables, i.e. system parameters that can be observed, S is 
a set of identifiers of situational parameters, which may be 
controllable, C is a (possibly infinite) set of applicable 
configurations for the parameters in I, and C0 is a function 
from S to C producing default configurations (used when no 
experiments are run). A configuration of the system is a 
valuation of each input parameter in I. A situation of the 
system is a scenario with a specific valuation of the 
situational parameters in S. Exemplary values for I, O, and S 
for the use cases are depicted in Table 1.   
System Observation. A tuple obs = (id, val) where id is a 
unique identifier and val is a valuation of each parameter in a 
(non-strict) subset of O, i.e. a function that assigns a value to 
some of the output parameters in O. The identifier is used to 
relate an observation to different context such as time and 
experiment stages, defined next. 
Experiment Stage. A process in which first a configuration 
is applied to the system and then observations are collected.  
Experiment Stage Result. An experiment stage result is a 
tuple st = (conf, s, Obs, c) where the configuration conf is 
applied to the system in situation s. Obs is a set of system 
observations collected in the stage, whereas cost c of the stage 
can depend on conf, s, Obs or execution time of the stage. For 
example, in Use Case 1, the cost of the stage is the number of 
complaints received while being in the stage. In Use Case 2, 
the cost of a stage is the sum of the time each benchmark was 
running.      
Experiment. A process that generates experiment stages in 
order to maximize the value of learned knowledge for one 
situation. An experiment has a cost budget, i.e. a threshold on 
the sum of costs of the experiment stages that cannot be 
exceeded.  
Experiment Result. The result of an experiment is expressed 
as a tuple ex = (s, lk) where s is a system situation, and lk is 
the learned knowledge, e.g. the values of input parameters 
that improve the system compared to default values of such 
parameters in the situation. 

B. Application on Optimizing City Traffic Navigation 
We have applied the main idea of stage-based cost-aware 

experimentation on CrowdNav, a self-adaptation testbed we 
developed in our recent research for comparing solutions to 
the city traffic navigation optimization problem [11], [12]. 
CrowdNav offers a total of seven input parameters that can be 
tuned for minimizing the average trip overhead. From a 
mathematical viewpoint, the problem of optimizing 
CrowdNav is one of minimizing a multivariate black-box 

function f that returns an average trip overhead value for a 
configuration of CrowdNav. Since the valuations of f are both 
noisy and expensive (it takes time to obtain a stable value), a 
fitting optimization method is Bayesian Optimization with 
Gaussian Processes (BOGP). BOGP runs in a number of 
steps; at each step it builds a probabilistic model of f based on 
the so-far observed valuations of f, determines the next 
configuration for sampling and evaluates f on this 
configuration. BOGP is an anytime algorithm for global 
optimization, i.e. it tends to provide the best possible solution 
for a given number of steps [13]. When applying BOGP on 
CrowdNav we observed that it was indeed very effective in 
traversing the configuration space and providing a 
configuration that minimizes trip overhead. Each step of 
BOGP corresponds to an experiment stage in our approach 
that is both costly, since it has to run for long time to gather 
enough samples of trip overheads and thus the probability of 
getting more complaints also increases, and profitable, since a 
model of f is trained and directly used to find a minimum.   

To minimize the number of BOGP steps, we preceded 
them with a number of stages whose role was to profile 
CrowdNav and determine a subset of input parameters that 
have the strongest effect on the trip overhead metric. BOGP 
would then work with a smaller configuration space, 
consisting only of this subset, and need less steps to find a 
minimum. In particular, we used 27=128 stages corresponding 
to the configurations of a full factorial design where each input 
parameter becomes a factor with two values (minimum and 
maximum). After running each stage for only a limited time—
a fraction of the time needed for a BOGP step—we applied 
the between-subjects factorial analysis of variance statistical 
test to determine the factors (input parameters) or the 
interactions of factors that have a significant effect on the trip 
overhead metric. Our initial results show that this strategy can 
reduce the number of profitable stages (the BOGP steps) to a 
minimum of five, without compromising the solution quality 
[11]. Investigating how this reduction translates to a reduction 
in experimentation cost is our ongoing work.                 

C. Application on Identifying JIT Performance Regressions  
In this section we assess how our approach applies to 

detecting JIT performance regressions. Our assessment is 
based on data gathered from implementing and operating a 
system for detecting performance regressions between 
different open source versions of the Graal compiler, a JIT 
compiler project based in Oracle Labs (so far, this amounts to 

TABLE 1. SYSTEMS UNDER EXPERIMENTATION IN THE USE CASES. 

Use Case 1 

I route randomization, static info weight, dynamic info 
weight, exploration percentage, … 

O trip overhead, complaint 
S total cars number, street network, …   

Use Case 2 
I benchmark selection 
O detected regressions  

S list of JIT versions, hardware platform, operating system 
version, … 
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some 650 thousand measurement experiments spread across 
approximately 1700 versions created over two years of 
development). The system identifies regressions in individual 
Graal git merge commits as described in Section II.B. Each 
commit is currently analyzed by running close to 80 
benchmark workloads from the DaCapo, ScalaBench, 
SPECjvm2008 suites and additional (proprietary) 
benchmarks. This process is generally time-consuming and 
can be optimized by running only a subset of the benchmarks 
for each comparison.  

Using the terminology introduced before, an experiment 
stage is the application of a benchmark selection value and the 
observation of detected regressions. Our approach will first 
determine which benchmark selection to use in later stages by 
first running stages with “profiling selections” which 
prescribe shorter benchmark runs. As an example, Figure 1 
(top) shows how the benchmark time changes during warmup 
for the scalaxb benchmark. Technically, warmup does not 
stop before the JIT compiler activity (backdrop) subsides, here 
around iteration 20 or later. A short run can potentially save 
on the warmup time by using less iterations, here e.g. 5-10. 
Fewer iterations may not yield statistically significant 
differences in the wall clock time (because of the high 
variance of this metric in the warmup phase); however, such 
differences may in the instruction count metric which we 
observe alongside wall clock time. As seen in Figure 1 
(bottom), the instruction count has lower variance, and thus 
provides statistically significant results with fewer samples. 
The main idea is that, even though changes in instruction 
count and wall clock time do not always occur together or in 
the same direction, instruction count is a useful profiling 
indicator. The actual regressions always need to be detected 
on the wall clock time metric when executing the benchmarks 

after proper warmup (longer execution time) and collecting 
enough data to provide statistical confidence.  

IV. CONCLUSIONS  
In this paper we focused on the particular challenge of 

performing experiments to optimize systems at runtime while 
trading off the profit of experimentation with its cost. The 
novelty in this respect is conceptualization of an experiment 
in stages which provides a framework for experimentation 
across domains. We have customized this framework for two 
different use cases with different notions of profit and cost. 
The key technical idea is the introduction of initial stages 
which do not yield direct profit but allow us to guide the 
experimentation process towards determining the profitable 
experiments to run at later stages.         
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Figure 1. Warmup behavior with JIT compilation activity in backdrop of a 
single version of JIT on the scalaxb-huge benchmark. 

 


