
Author’s copy

Cost-Aware Stage-Based Experimentation: Challenges and Emerging Results

Ilias Gerostathopoulos, Christian Prehofer
Chair of Software and Systems Engineering

Technical University Munich
Munich, Germany

{gerostat, prehofer}@in.tum.de

Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma

Department of Distributed and Dependable Systems
Charles University in Prague

Prague, Czech Republic
{bulej, bures, horky, tuma}@d3s.mff.cuni.cz

Abstract—Experimentation at post-deployment phases (in
production environments) can be a powerful tool for both
learning how a deployed system operates and how it is being
used. Though this knowledge is invaluable for optimization of
the system, collecting it may require long time and experiments
may even worsen the system with negative effects on users and
business. This calls for methods for performing experimentation
in production environments that balance the profit of
experimentation with its cost. In this paper, we describe related
challenges and our emerging results towards cost-aware stage-
based experimentation. In particular, we aim for performing
experiments that optimize towards their profit while making
sure that the overall experimentation cost (e.g. total
experimentation time) stays within given bounds. First, we
illustrate the challenges and needs of such experimentation in
two use cases from different domains. Second, we describe the
main concepts behind our method in a semi-formal notation.
Third, we exemplify the method by applying it in the two use
cases and we report interesting first results.

Keywords—experimentation; cost-aware; optimization

I. INTRODUCTION
Systems we build are ultimately evaluated based on the

value they deliver to their users and stakeholders. Modern
software-intensive systems have several characteristics that
make it easier for such value to be estimated and optimized.
First, they typically have a number of tunable parameters or
knobs that can be used for changing their operation even in
post-deployment phases. Second, they have a number of
probes that can be used for obtaining telemetry data and
calculating different system metrics, such as web page load
time, timing performance, or even end-user satisfaction.

To increase the value delivered by a system, one needs to
capture the relation between the values of its tunable
parameters and the values of its measurable metrics, then
apply the combination of parameter values that optimizes the
metrics of interest—the optimization criterion. In certain
classes of systems, such a relation is very hard to capture in
pre-deployment phases, since they either involve metrics
related to human users (e.g. web-facing applications) or they
have complex, non-linear interactions between input
parameters and metric values that are hard to model a priori.
The practical solution in such cases is to deploy the system
and experiment with it in production environments.

The state of the art in experimentation in production
environments, also called online experimentation, mainly
reports on the experience of web-facing companies such as
Google [1], Uber [2], and Microsoft [3]–[5] in building

scalable experimentation platforms and performing controlled
experiments in order to evaluate changes that affect user
experience and prioritize feature development. A/B tests stand
out as the most common case of experiments in practice, albeit
not without challenges in their execution [6]. Recent research
has gone a step further to propose that systems (instead of
humans) should control and run experiments on themselves in
order to self-optimize [7]–[9]. We follow here this line of
research, i.e. of automated online experimentation, and
formulate what we believe is a challenging problem.

The problem with experimentation in production
environments is that it is very risky due to the high cost it may
incur. Consider experimenting with the parameters of a web
server: the end-to-end latency for a request or a page load time
might accidentally increase. While this experiment is
profitable in terms of knowledge acquired about the system, it
also has high cost if real users get affected, manifested in
negative user experience. On the contrary, performing the
same experiment in a user acceptance testing environment
yields far lower cost (if not none) in terms of negative user
experience. As another example, consider experimenting with
the parameters of a recommender system used via a web-
facing application: the time to get a good recommendation
might again accidentally increase, yielding an outdated,
irrelevant recommendation that reduces the value of the
system as perceived by its end-users. Again, this is not an
issue in a testing environment where delaying a relevant
recommendation does not incur any business cost.

What is actually needed when experimenting in
production environments is a method by balancing the profit
of experimentation (the knowledge acquired about the system)
with its cost [10]. This should allow one to follow risky
strategies which e.g. gather more data for evaluating a
statistical hypothesis even when the cost is high. On the other
side, it should also support one to follow risk-averse strategies
that e.g. cut off an experiment when the actual or the predicted
cost reaches a certain threshold.

In this paper, we describe our research towards such a
method. Our method prescribes the execution of an
experiment in stages (i.e. steps of an experiment) to better
control its profit and cost. The main idea is to decide on the
stages that are most profitable to run but need to be carefully
chosen since they have high cost, via first running a number
of “exploratory stages”, which typically yield no direct profit,
but are also cheaper and provide insights into the system.

In particular, we make the following contributions. First,
we illustrate the challenges and needs for such
experimentation method in two use cases from different

Author’s copy

domains (Section II). Second, we describe the main concepts
behind our method in a semi-formal notation and, third,
exemplify the method by applying it in our two use cases and
we report interesting first results (Section III).

II. USE CASES

A. Use Case 1: Optimizing City Traffic Navigation
The first use case concerns a traffic navigation system for

cars in a city. The system consists of the individual cars and
of a centralized traffic router. The router is a service used by
the cars to plan and guide their routes (series of streets to
follow) from their current location to a destination in the city.
The router is parametric: it offers several interval-scaled
variables that can be tuned to affect the way new routes are
calculated. For route calculation, the router uses a Dijkstra
algorithm for calculating the shortest path between two nodes
(intersections), based on costs assigned to each edge (street).
Costs are assigned to edges based on a function that combines
static traffic information (e.g. street length, maximum speed
on street) with dynamic traffic information (e.g. average speed
on street, calculated for a timespan t from cars that travelled
on the street). The router parameters parametrize the per-edge
cost assignment function by specifying the weight of static
traffic information, the weight of dynamic traffic information,
the timespan t, and other values (a complete list of tunable
parameters is in Table 1 of [11]).

The goal of changing the parameters of the router is to
maximize the value delivered to the drivers. Assuming a
uniform driver profile capturing driver’s preferences, drivers
are satisfied when they reach their destination as soon as
possible. This forms the optimization criterion of minimizing
the trip overhead metric. A trip overhead is obtained by
dividing the actual trip time by the theoretical trip time where
the car travels at full speed in all streets.

The relation between router parameter values and the trip
overhead metric values is not easy to model at design time
because of the complex, non-linear interactions that exist
between the router parameters and the metric values. Consider
e.g. that increasing the value of a parameter increases the
value of the metric, but only in combination with a decrease
in the value of another parameter. Such relation is also not
easy to deduce at pre-deployment phases, because it depends
on runtime situations. For instance, a different configuration
of parameters will be optimal in the situation of low traffic in
the city (where the static traffic information will probably be
more important in calculating per-edge costs than dynamic
information) compared to the situation of high traffic.

Ideally, the system should run under different
configurations and in different situations in production
environments in order to determine the optimal configuration
per situation. The risk of doing so is that, while traversing the
search space, certain configurations can incur high cost in
terms of driver’s annoyance. Such cost can be calculated by
e.g. summing up the complaints filed by drivers to the router
service. A method for experimentation in production
environments should strive for keeping the number of
complaints below a certain limit.

B. Use Case 2: Identifying JIT Performance Regressions
The second use case concerns a system for automatically

detecting performance regressions, i.e. differences in
performance delivered by different versions of a Just-in-Time
(JIT) compiler in a Java Virtual Machine (JVM). The goal is
to detect changes in the code base that impact performance
significantly. Performance is measured by inspecting the
execution time of multiple Java applications acting as
compiler benchmarks. Apart from the execution time, other
metrics are also collected for each benchmark, e.g.
compilation time, instruction count and number of cache
references and misses. Assuming a scenario with a list of JIT
versions (from a version control system) the system outputs
one or more pairs of subsequent versions in which a
performance regression has been detected in at least one of the
benchmarks. To detect a regression in a benchmark, some of
the essential metrics (e.g. execution time or instruction count)
need to show a significant difference at a given significance
level. To detect regressions in neighboring versions, pair-wise
comparisons are performed.

The system offers a parameter, called benchmark
selection, than can be tuned at runtime and specifies which of
the benchmarks will be run, for how long, and in which order.
The selection of the benchmarks is important, since even
when parallel execution of benchmarks is employed (currently
we run up to 36 experiments in parallel), it is typically not
possible to run all (close to 80) benchmarks for all JIT
versions. This is because there are typically several JIT
versions released every day that need to be measured and
because every benchmark has to be run multiple times with
long enough warmup and measurement phase to achieve
statistical significance (each run takes from tens of minutes to
several hours).

The goal of tuning the benchmark selections is to execute
such benchmarks on a JIT version for which there is high
likelihood that a regression will show up and therefore
maximize the value delivered to the developers of the JIT
compiler, who need to know whether their changes introduced
a regression or not within a certain time frame (after which
this information is not so valuable anymore). As such, the
number of correctly identified regressions within a time frame
t is the optimization criterion in this use case, whereas the time
spent in detecting regressions is the cost of experimentation.

III. APPROACH
Our approach aims at running experiments on a system to

derive the learned knowledge, i.e. the knowledge needed to
optimize the system. Each experiment is split into several
stages which exercise the system in different ways. Some of
the stages are costlier and more profitable (in terms of
learning) at the same time; a typical case is to execute these
stages at the end of an experiment, after having exercised the
system in a number of relatively cheap stages. The main
purpose of these stages is not to derive the learned knowledge
but to profile the system and reduce the number of costly
experiments—that are also profitable—that we ultimately
need to run.

Author’s copy

In the rest of the section, we describe the concepts of our
approach in a semi-formal notation and exemplify our
approach on the two use cases.

A. Concepts
System Under Experimentation. A tuple (I, O, S, C, C0)
where I is a non-empty set of identifiers of input (tunable)
system parameters, O is a non-empty set of identifiers of
observables, i.e. system parameters that can be observed, S is
a set of identifiers of situational parameters, which may be
controllable, C is a (possibly infinite) set of applicable
configurations for the parameters in I, and C0 is a function
from S to C producing default configurations (used when no
experiments are run). A configuration of the system is a
valuation of each input parameter in I. A situation of the
system is a scenario with a specific valuation of the
situational parameters in S. Exemplary values for I, O, and S
for the use cases are depicted in Table 1.
System Observation. A tuple obs = (id, val) where id is a
unique identifier and val is a valuation of each parameter in a
(non-strict) subset of O, i.e. a function that assigns a value to
some of the output parameters in O. The identifier is used to
relate an observation to different context such as time and
experiment stages, defined next.
Experiment Stage. A process in which first a configuration
is applied to the system and then observations are collected.
Experiment Stage Result. An experiment stage result is a
tuple st = (conf, s, Obs, c) where the configuration conf is
applied to the system in situation s. Obs is a set of system
observations collected in the stage, whereas cost c of the stage
can depend on conf, s, Obs or execution time of the stage. For
example, in Use Case 1, the cost of the stage is the number of
complaints received while being in the stage. In Use Case 2,
the cost of a stage is the sum of the time each benchmark was
running.
Experiment. A process that generates experiment stages in
order to maximize the value of learned knowledge for one
situation. An experiment has a cost budget, i.e. a threshold on
the sum of costs of the experiment stages that cannot be
exceeded.
Experiment Result. The result of an experiment is expressed
as a tuple ex = (s, lk) where s is a system situation, and lk is
the learned knowledge, e.g. the values of input parameters
that improve the system compared to default values of such
parameters in the situation.

B. Application on Optimizing City Traffic Navigation
We have applied the main idea of stage-based cost-aware

experimentation on CrowdNav, a self-adaptation testbed we
developed in our recent research for comparing solutions to
the city traffic navigation optimization problem [11], [12].
CrowdNav offers a total of seven input parameters that can be
tuned for minimizing the average trip overhead. From a
mathematical viewpoint, the problem of optimizing
CrowdNav is one of minimizing a multivariate black-box

function f that returns an average trip overhead value for a
configuration of CrowdNav. Since the valuations of f are both
noisy and expensive (it takes time to obtain a stable value), a
fitting optimization method is Bayesian Optimization with
Gaussian Processes (BOGP). BOGP runs in a number of
steps; at each step it builds a probabilistic model of f based on
the so-far observed valuations of f, determines the next
configuration for sampling and evaluates f on this
configuration. BOGP is an anytime algorithm for global
optimization, i.e. it tends to provide the best possible solution
for a given number of steps [13]. When applying BOGP on
CrowdNav we observed that it was indeed very effective in
traversing the configuration space and providing a
configuration that minimizes trip overhead. Each step of
BOGP corresponds to an experiment stage in our approach
that is both costly, since it has to run for long time to gather
enough samples of trip overheads and thus the probability of
getting more complaints also increases, and profitable, since a
model of f is trained and directly used to find a minimum.

To minimize the number of BOGP steps, we preceded
them with a number of stages whose role was to profile
CrowdNav and determine a subset of input parameters that
have the strongest effect on the trip overhead metric. BOGP
would then work with a smaller configuration space,
consisting only of this subset, and need less steps to find a
minimum. In particular, we used 27=128 stages corresponding
to the configurations of a full factorial design where each input
parameter becomes a factor with two values (minimum and
maximum). After running each stage for only a limited time—
a fraction of the time needed for a BOGP step—we applied
the between-subjects factorial analysis of variance statistical
test to determine the factors (input parameters) or the
interactions of factors that have a significant effect on the trip
overhead metric. Our initial results show that this strategy can
reduce the number of profitable stages (the BOGP steps) to a
minimum of five, without compromising the solution quality
[11]. Investigating how this reduction translates to a reduction
in experimentation cost is our ongoing work.

C. Application on Identifying JIT Performance Regressions
In this section we assess how our approach applies to

detecting JIT performance regressions. Our assessment is
based on data gathered from implementing and operating a
system for detecting performance regressions between
different open source versions of the Graal compiler, a JIT
compiler project based in Oracle Labs (so far, this amounts to

TABLE 1. SYSTEMS UNDER EXPERIMENTATION IN THE USE CASES.

Use Case 1

I route randomization, static info weight, dynamic info
weight, exploration percentage, …

O trip overhead, complaint
S total cars number, street network, …

Use Case 2
I benchmark selection
O detected regressions

S list of JIT versions, hardware platform, operating system
version, …

Author’s copy

some 650 thousand measurement experiments spread across
approximately 1700 versions created over two years of
development). The system identifies regressions in individual
Graal git merge commits as described in Section II.B. Each
commit is currently analyzed by running close to 80
benchmark workloads from the DaCapo, ScalaBench,
SPECjvm2008 suites and additional (proprietary)
benchmarks. This process is generally time-consuming and
can be optimized by running only a subset of the benchmarks
for each comparison.

Using the terminology introduced before, an experiment
stage is the application of a benchmark selection value and the
observation of detected regressions. Our approach will first
determine which benchmark selection to use in later stages by
first running stages with “profiling selections” which
prescribe shorter benchmark runs. As an example, Figure 1
(top) shows how the benchmark time changes during warmup
for the scalaxb benchmark. Technically, warmup does not
stop before the JIT compiler activity (backdrop) subsides, here
around iteration 20 or later. A short run can potentially save
on the warmup time by using less iterations, here e.g. 5-10.
Fewer iterations may not yield statistically significant
differences in the wall clock time (because of the high
variance of this metric in the warmup phase); however, such
differences may in the instruction count metric which we
observe alongside wall clock time. As seen in Figure 1
(bottom), the instruction count has lower variance, and thus
provides statistically significant results with fewer samples.
The main idea is that, even though changes in instruction
count and wall clock time do not always occur together or in
the same direction, instruction count is a useful profiling
indicator. The actual regressions always need to be detected
on the wall clock time metric when executing the benchmarks

after proper warmup (longer execution time) and collecting
enough data to provide statistical confidence.

IV. CONCLUSIONS
In this paper we focused on the particular challenge of

performing experiments to optimize systems at runtime while
trading off the profit of experimentation with its cost. The
novelty in this respect is conceptualization of an experiment
in stages which provides a framework for experimentation
across domains. We have customized this framework for two
different use cases with different notions of profit and cost.
The key technical idea is the introduction of initial stages
which do not yield direct profit but allow us to guide the
experimentation process towards determining the profitable
experiments to run at later stages.

ACKNOWLEDGMENT
This work has been partly funded by the Bavarian Ministry

of Economic Affairs, Energy and Technology as part of the
TUM Living Lab Connected Mobility Project and by the
German Ministry of Education and Research under grant no
01Is16043A. The work has been partly funded by project no.
LTE117003 (ESTABLISH) from the INTER-EUREKA
LTE117 programme by the Ministry of Education, Youth and
Sports of the Czech Republic.

REFERENCES
[1] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping

experiment infrastructure: More, better, faster experimentation,” in
Proc. of SigKDD 2010, ACM, 2010, pp. 17–26.

[2] “Uber Experimentation Platform,” 15-Mar-2018. [Online]. Available:
https://eng.uber.com/tag/experimentation/.

[3] R. Kohavi et al., “Online experimentation at Microsoft,” in Data
Mining Case Studies and Practice Prize III, 2009, vol. 11.

[4] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: survey and practical guide,” Data
Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, Feb. 2009.

[5] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The evolution of
continuous experimentation in software product development: from
data to a data-driven organization at scale,” in Proc. of ICSE 2017,
IEEE, 2017, pp. 770–780.

[6] H. H. Olsson, J. Bosch, and A. Fabijan, “Experimentation that Matters:
A Multi-case Study on the Challenges with A/B Testing,” in Software
Business, vol. 304, Springer, 2017, pp. 179–185.

[7] J. Bosch and H. H. Olsson, “Data-driven continuous evolution of smart
systems,” in SEAMS 2016, ACM, 2016, pp. 28–34.

[8] D. I. Mattos, J. Bosch, and H. H. Olsson, “More for Less: Automated
Experimentation in Software-Intensive Systems,” in Product-Focused
Software Process Improvement, Springer, Cham, 2017, pp. 146–161.

[9] D. I. Mattos, J. Bosch, and H. H. Olsson, “Your System Gets Better
Every Day You Use It: Towards Automated Continuous
Experimentation,” in SEAA 2017, IEEE, 2017, pp. 256–265.

[10] I. Gerostathopoulos, T. Bures, S. Schmid, V. Horky, C. Prehofer, and
P. Tuma, “Towards Systematic Live Experimentation in Software-
Intensive Systems of Systems,” in Proc. SiSoS@ECSA ’16, 2016, p. 7.

[11] I. Gerostathopoulos, C. Prehofer, and T. Bures, “Adapting a System
with Noisy Outputs with Statistical Guarantees,” in Proc. of SEAMS
2018, to appear., 2018.

[12] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, “Self-
Adaptation Based on Big Data Analytics: A Model Problem and Tool,”
in Proc. of SEAMS 2017, IEEE, 2017, pp. 102–108.

[13] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the Human Out of the Loop: A Review of Bayesian
Optimization,” Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

Figure 1. Warmup behavior with JIT compilation activity in backdrop of a
single version of JIT on the scalaxb-huge benchmark.

