
Adapting a System with Noisy Outputs with Statistical
Guarantees

Ilias Gerostathopoulos
Technical University Munich

Boltzmannstr. 3, 85748 Garching
Germany

ilias.gerostathopoulos@tum.de

Christian Prehofer
Technical University Munich & fortiss GmbH

Boltzmannstr. 3, 85748 Garching
Germany

christian.prehofer@tum.de

Tomas Bures
Charles University in Prague

Malostranske namesti 25,11800 Prague
Czech Republic

bures@d3s.mff.cuni.cz

ABSTRACT 1
Many complex systems are intrinsically stochastic in their
behavior which complicates their control and optimization.
Current self-adaptation and self-optimization approaches are not
tailored to systems that have (i) complex internal behavior that is
unrealistic to model explicitly, (ii) noisy outputs, (iii) high cost of
bad adaptation decisions, i.e. systems that are both hard and
risky to adapt at runtime. In response, we propose to model the
system to be adapted as black box and apply state-of-the-art
optimization techniques combined with statistical guarantees.
Our main contribution is a framework that combines runtime
optimization with guarantees obtained from statistical testing
and with a method for handling cost of bad adaptation decisions.
We evaluate the feasibility of our approach by applying it on an
existing traffic navigation self-adaptation exemplar.

CCS CONCEPTS
• Software and its engineering ~ Designing software
• Theory of computation ~ Mathematical optimization

KEYWORDS
self-adaptation, statistical guarantees, experimentation cost

1 INTRODUCTION
Modern software-intensive systems become more and more
complex to model, develop, test, and optimize. The major source
of complexity is the uncertainty that creeps in both at
development time, in the form of unknown requirements and
uncertain environment assumptions, and at runtime, in the form
of runtime conditions that have not been fully anticipated and
thus specifically designed for. Uncertainty handling is the main
motivation behind equipping such systems with self-adaptivity,

1 © ACM, 2018. This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in the Proceedings of the 13th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
{VOL#, ISS#, (DATE)} http://doi.acm.org/10.1145/nnnnnn.nnnnnn.

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

i.e. the ability of a system to observe its own functioning and
adapt itself at runtime in order to achieve better performance,
recover from faults, or strengthen itself in face of safety or
security threats.

Intuitively, certain systems are both harder and riskier to
adapt at runtime than others. With current techniques, adapting
a system with predictable behavior and well-known boundaries,
such as a web application, is easier than an open-ended system
with largely stochastic behavior, such as an emergency
coordination system. Adaptation risk is orthogonal to adaptation
difficultly and pertains to the magnitude of effect and the
frequency of bad runtime adaptation decisions: when adapting a
video encoder at runtime, a bad decision may influence the
adaptation speed or the quality of the encoding; when adapting a
live system being used by a large number of users, such as a
traffic navigation system, bad decisions may incur serious cost in
terms of business, e.g. dissatisfied customers.

In this paper, we focus on a class of systems which have (i)
complex behavior that is unrealistic to model explicitly, (ii) noisy
outputs, (iii) high cost of bad adaptation decisions; they are,
therefore, both hard and risky to adapt at runtime. We assume
that the system-to-be-adapted is abstracted as a black-box model
of the essential input and output parameters. Noisy outputs refer
to observations of system metrics that can be observed and used
for self-adaptation but possess high variance. Cost refers to the
negative impact of bad adaptation decisions on the system-to-be-
adapted.

We aim to provide a framework for performing self-
optimization in this challenging class of systems. We are
focusing on optimizing application-level performance goals. The
main questions we explore examine (i) how to build system
models out of observations of noisy system outputs; (ii) how to
re-use these models to optimize the system at runtime, even in
the face of newly encountered situations; and (iii) how to
incorporate the notion of cost, referring to the negative impact
of adaptation decisions, in the above processes.

To provide statistical guarantees, our self-optimization
framework relies upon statistical procedures (t-tests, analyses of
variance, binomial tests) at different phases. These procedures
can be configured, e.g. by picking different thresholds for
statistical significance levels, to increase or decrease the
statistical guarantees that come in the form of confidence
intervals and observed effect sizes.

For runtime optimization, we employ the state-of-the-art
technique of Bayesian Optimization with Gaussian Processes

SEAMS’18, May 2018, Gothenburg, Sweden I. Gerostathopoulos et al.

2

Figure 1: Overview of the approach.

(BOGP). This technique supports multi-variate optimization of
input parameters and effectively deals with high noise (variance)
of system outputs. However, it needs a considerable number of
iterations to converge when exploring large configuration
spaces, i.e. large number or value ranges of input parameters.
We provide a hybrid approach where BOGP is still used but
applied only on a subset of the configuration space. This subset
is prescribed by the system models learned from prior
observations. We also incorporate a technique to handle cost in
case of a bad configuration choice made by the BOGP optimizer.

The novel contribution of our work is that it provides the
first framework, to the best of our knowledge, that combines
runtime optimization with guarantees obtained from statistical
testing and with a statistically grounded method for handling
cost of bad adaptation decisions.

We have evaluated our framework by implementing it within
the RTX tool for self-adaptation based on Big Data analytics [18]
and applying it on a traffic navigation self-adaptation exemplar—
CrowdNav [18]. Our results show that it is possible to exploit the
knowledge of the target system to inform the self-optimization
process, assuming that the system resides in an unknown
situation and that we only have a small total budget for
experimentation.

The rest of the paper is organized as follows. Section 2
provides an overview of the different phases of the approach,
while Section 3 describes the running example and illustrates the
challenges of optimizing it. In Section 4, the proposed approach
is described in full detail, while in Section 5 a validation of the
main claim is provided. Section 6 discusses important
assumptions, Section 7 compares our approach to related ones,
and Section 8 concludes with a summary of contributions.

2 OVERVIEW OF THE APPROACH
A self-optimization approach for systems with noisy outputs and
high cost of bad adaptation decisions needs to be (i) efficient in
finding an optimal configuration in the least amount of time and
(ii) safe in not incurring too high cost. To achieve these goals, we
propose to use prior knowledge of the system (the K in the
MAPE-K loop for self-adaptive systems) in order to guide the
exploration of promising configurations. We also propose to
measure the cost of the individual stages in the self-optimization
and stop the evaluation of bad configurations. We connect this
with statistical guarantees, which represents an approach
beyond the state of the art.

Formally, the self-optimization problem we are considering
consists of finding the minimum of a response or output
function 𝑓:	𝕏 → ℝ, which takes 𝑛 input parameters 𝑋),	 𝑋+, …,
𝑋,, which range in domains 𝐷𝑜𝑚(𝑋)), 𝐷𝑜𝑚(𝑋+), …,
𝐷𝑜𝑚(𝑋,) respectively. 𝕏 is the configuration space and
corresponds to the Cartesian product of all the domains of the
parameters 𝐷𝑜𝑚(𝑋)) × 𝐷𝑜𝑚(𝑋+) × …×𝐷𝑜𝑚(𝑋,) . A configu-
ration 𝐶 assigns a value to each of the input parameters.

Based on the above definitions, our approach for self-
optimization consists of the following three phases (Figure 1):

Generation of system model (Section 4.1), deals with building
and maintaining the knowledge needed for self-optimization.
Here we use factorial analysis of variance to process incoming
raw data and create a statistically relevant model that is used in
the subsequent phases. This model describes the effect of
changing a single input parameter on the output, while ignoring
the effect of any other parameters. It also describes the effects of
changing multiple input parameters together on the output. This
phase is run both prior to deploying the system using a
simulator (to bootstrap the knowledge) and while the system is
deployed in production using runtime monitoring (to gradually
collect more accurate knowledge of the system in the real
settings). The output of this phase is a list of input parameters or
combinations of input parameters, ordered by decreasing effects
(and corresponding significance levels) on the output.

Runtime optimization with cost handling (Section 4.2),
selects values for the system input parameters to find a
configuration in which the system performs the best, i.e. the
output function is minimized. Configurations experimented with
in this phase are generated by an optimizer that operates in
several stages. At each stage, only a subset of the configuration
space is available to the optimizer for generating
configurations—we start from the subset that corresponds to the
input parameters or combination of input parameters with the
highest effect on the output, as reported by the first phase. We
assume that configurations are rolled out incrementally in the
system. If there is evidence that a configuration incurs high cost,
its application stops and the optimizer moves on to evaluate the
next configuration. To give statistical significance in
determining if a configuration is not worth exploring anymore
because of cost overstepping a given threshold, we use binomial
testing. The outcome of this phase is the best configuration
found by the optimizer.

Comparison with baseline configuration (Section 4.3), makes
sure that a new configuration determined in the second phase is
rolled out only when it is statistically significantly better than
the existing configuration (baseline configuration). In order for
the new configuration to replace the baseline, it has to be

Adapting a System with Noisy Outputs with Statistical Guarantees SEAMS’18, May 2018, Gothenburg, Sweden

 3

Figure 2: Histogram showing the distribution of trip
overheads in an exemplary data set with 5000 data points.

checked that (i) it indeed brings a benefit to the system (at a
certain statistical significance level), (ii) the benefit is enough to
justify any disruption that may result out of applying the new
configuration to the system. The last point recognizes the
presence of primacy effects, which pertain to inefficiencies
caused by a new configuration to the users, as reported in
controlled experiments on the web [11].

3 MOTIVATING SCENARIO
We illustrate our approach on the CrowdNav self-adaptation
exemplar [18], whose goal is to optimize the duration of car trips
in a city by adapting the parameters of the routing algorithm
used for navigating the cars. CrowdNav is part of our previous
work [18] and released as an open-source project at
https://github.com/Starofall/CrowdNav.

In the scenario we considered, a number of cars is deployed
in the city of Eichstädt with approx. 450 streets and 1200
intersections. Each car navigates from an initial (randomly
allocated) position to a randomly chosen destination in the city.
When a car reaches its destination, it picks another one at
random and navigates to it. This process is repeated forever. 2

To navigate from point A to point B, a car needs to ask a
router for a route (series of streets). There are two routers in
CrowdNav: (i) the built-in router provided by SUMO (the
simulation backend of CrowdNav) and (ii) a custom-built
parametric router developed in our previous work. A certain
number of cars (“regular cars”) use the built-in router; the rest
use the parametric router—we call these “smart cars”.

The parametric router can be configured at runtime; it
provides the seven configuration parameters depicted in Table 1.
Each parameter is an interval-scaled variable that takes real
values within a range of admissible values, provided by the
designers of the system. Intuitively, certain configurations of the
router’s parameters yield better overall system performance.

To measure the overall performance of the system,
CrowdNav relies on the metric of trip overhead. A trip overhead
is a ratio-scaled variable whose values are calculated by dividing
the observed duration of a trip versus the theoretical duration of
the trip, i.e. the hypothetical duration of the trip if there were no
other cars, the smart car travelled in maximum speed and did not
stop in intersections or traffic lights. Only smart cars report their
trip overheads at the end of their trips. Since some trips will
have larger overhead than others no matter what the router
configuration is, the data set of trip overheads exhibits high
variance (Figure 2)—it can be thus considered a noisy output.

Together with the trip overhead, each smart car reports at the
end of each trip a complaint value, i.e. a Boolean value indicating
whether the driver is annoyed. The complaint value is generated
based on the trip overhead and a random chance, as depicted in
the simple logic of Listing 1. To measure the cost of a bad
configuration in CrowdNav, the metric of complaint rate is used:

2 An explorer in CrowdNav is a car that is instructed to take longer route in order
to provide information on traffic levels of under-explored streets to the router [18].

the ratio of issued complaints to total number of observed (trip
overhead, complaint) tuples.

Finally, CrowdNav resides in different situations depending
on two environment parameters that can be observed, but not
controlled: the number of regular (non-smart) cars and the
number of smart cars. At each situation, a different configuration
might be optimal. The task of self-optimizion in CrowdNav then
becomes one of quickly finding the optimal configuration for the
situation the system resides in and applying it.

Table 1: Configurable parameters in CrowdNav’s
parametric router.

Id Name Range Description

1 route
randomization

[0-0.3]
Controls the random noise
introduced to avoid giving

the same routes

2 exploration
percentage

[0-0.3]
Controls the ratio of smart

cars used as explorers2

3 static info
weight

[1-2.5]

Controls the importance of
static information (i.e. max

speed, street length) on
routing

4 dynamic info
weight

[1-2.5]
Controls the importance of
dynamic information (i.e.

observed traffic) on routing

5 exploration
weight

[5-20]
Controls the degree of

exploration of the explorers

6 data freshness
threshold

[100-
700]

Threshold for considering
traffic-related data as stale

and disregard them

7 re-routing
frequency

[10-70]
Controls how often the

router should be invoked to
re-route a smart car

1. def generate_complaint(trip_overhead):
2. if trip_overhead > 2.5 and random.random() > 0.5:
3. return True
4. return False

Listing 1: Generation of complaints in CrowdNav. The
threshold for overhead values that may warrant a

complaint is empirically set to 2.5.

SEAMS’18, May 2018, Gothenburg, Sweden I. Gerostathopoulos et al.

4

Figure 3: Main effects in Example 1.

In this context, quickly finding a configuration of parameters
that minimizes the trip overhead in a situation, while keeping
the number of complaints in check, entails understanding the
effect a parameter change has on the trip overhead and
evaluating the effect a configuration has on the complaint rate.

Generalizing from this scenario, the problem to solve is:
“Given a set of input system parameters X, an output system
parameter O with values exhibiting high variance, an
environment situation S, and a cost parameter C, find the values
of each parameter in X that optimize O in S without exceeding C,
in the least number of tries.”

Having been in a number of similar situations the system
should ideally learn from them in order for the optimization
process to become faster over time. In the simplest case,
returning to a known situation, for which an optimal
configuration has been found in the past, should not trigger the
optimization process, but just apply the optimal configuration.

In the next section, we detail on our approach for cost-aware
self-optimization with statistical guarantees.

4 APPROACH

4.1 Generation of system model
Generating a system model to be used in self-adaptation involves
observing the (i) situation the system resides in, (ii) its
configuration—values of input parameters, (iii) the output of the
system. For each situation, a model is built that ranks input
parameters according to their effect on the output, from highest
to lowest. To build such a model, we use a statistical procedure
called factorial ANOVA, which we describe below.

Factorial ANOVA. The between-subjects factorial analysis of
variance (ANOVA) is a parametric test employed with interval-
or ratio-scaled data [20]. It is used for evaluating a factorial
design, i.e. an experimental design employed to simultaneously
evaluate the effect of two or more independent variables on a
dependent variable. An independent variable is called a factor; a
factor takes two or more values called levels. Factorial design and
the associated factorial ANOVA method offer the opportunity to
evaluate the effect of several factors on a dependent variable.
Concretely, for each factor, factorial ANOVA evaluates the
hypothesis of whether at least two of the factor’s levels represent
populations of the dependent variable with different mean values
(i.e. the populations are significantly different at a significance
level a). This hypothesis evaluates the presence or absence of so-
called main effects of the factors on the dependent variable. In
addition to analyzing main effects, factorial ANOVA also
evaluates the hypothesis of whether a significant interaction
(again, at a significance level a) exists between any combination
of factors. An interaction is present for a combination of factors
when the values of the dependent variable corresponding to the
levels of one factor are not consistent across the levels of another
factor. The result of factorial ANOVA contains one F value—the
test statistic—for each of the independent variables and their
possible combinations. The F values are compared against tabled
critical F values for different significance levels (e.g. 0.05, 0.01); if

the obtained F value is larger than the critical one, there is a
significant effect. The main effects are linear regression models
and thus can be graphically depicted in linear plots (Figure 3).

Example 1: Consider an experiment where two pills, P1 and P2,
are evaluated on the treatment effect they have on a disease D.
Each pill is a factor which can take two levels, low and high
dosage; the independent variable is the treatment effect. In this
setting, three different hypotheses can be evaluated with factorial
ANOVA: (i) the effect of P1 in curing D, (ii) the effect of P2 in
curing D, (ii) the combined effect or interaction of P1 and P2.
Assuming the resulting F-values are FP1=48, FP2=27, and FP1P2=3,
the corresponding probabilities of accepting the null hypotheses
(taking into account the degrees of freedom per case) are 0.000121,
0.000826, and 0.121503, respectively. Thus, we conclude that, at
significance level 0.05, there is significant difference in means for
each of the factors (since 0.05>0.000121 and 0.05>0.000826) and no
significance interaction between the factors (since 0.05<0.121503).
Graphically, the main effects are depicted in Figure 3. The stronger
effect of P1 is illustrated by the higher slope of the dashed line.

Using factorial ANOVA. Viewing the system that we want to
optimize as a black box, factorial ANOVA is employed to
determine the input parameters that have the largest effect on
the system output. Input parameters, in this setting, correspond
to the independent variables or factors of the factorial design,
while the system output corresponds to the dependent variable.
This way, we treat different values of input parameters, resulting
in different configurations, as “treatments” to the system we
want to optimize.

We also define environment variables that work as blocking
factors in our approach. A combination of values of environment
variables prescribes a situation the system resides in. For each
such situation, we build a system model using factorial ANOVA.
The model is used in two places: (i) to set the default
configuration for a situation, (ii) to inform the self-optimizer
(Section 4.2) with the input parameters or combinations of input
parameters that have the largest effect on the system output and
thus are the most promising to explore first.

Importantly, the generation of system models in our
approach works in an incremental way: the more situations are
encountered and configurations are tried out, the more

Adapting a System with Noisy Outputs with Statistical Guarantees SEAMS’18, May 2018, Gothenburg, Sweden

 5

(a) Situation: 0 regular cars, 750 smart cars

(b) Situation: 400 regular cars, 350 smart cars

(c) Situation: 0 regular cars, 350 smart cars

Figure 4: Main effects resulting from applying factorial

ANOVA in three situations of CrowdNav.

knowledge the system builds up that can be used in self-
optimization. We assume that this knowledge is built both before
deployment (e.g. in simulations), by performing a systematic
application of factorial design on the configuration space, and
while the system is in production.

Finally, note that knowledge can be transferred from one
situation to another (a concept known as transfer learning [17]).
This is important in case the system resides in a situation for
which not enough data have been gathered. If the new situation
is similar (according to certain similarity metrics) with one or
more situations that are already encountered, a model for it can
be built by applying factorial ANOVA on the raw data from all
the similar situations. We come back to this point in Section 5.

Illustration on CrowdNav. In CrowdNav, the input parameters
are the seven parameters depicted in Table 1. These become the
factors of factorial ANOVA. This means that when applying a
full factorial design with two levels per factor (minimum and
maximum value for each factor) in CrowdNav, 27=128 different
configurations need to be evaluated. The output of CrowdNav is
the trip overhead function, which becomes the dependent
variable of factorial ANOVA. Environment variables are the
number of regular cars and the number of smart cars.

For illustration, Figure 4 depicts the main effects retrieved
from applying factorial ANOVA to three different situations in
CrowdNav, while Table 2 depicts the three most significant
effects for each situation at significance level 0.0005. Key
takeaways from inspecting both are the following: (i) at each
situation, different factors have the most significant effects; (ii)
the level of statistical guarantees that can be provided depends
on the situation. For example, the values of the probabilities of
accepting the null hypotheses (last column in the table), are far
lower in the last situation than in the first one and thus provide
greater guarantees in the last situation than in the first one.
Finally, (iii) apart from main effects, interactions between two or
even three parameters are also significant (see e.g. line 3 on
Table 2 for an example of a significant three-way interaction).

Default values for the parameters of a CrowdNav situation

can be determined by taking into account the positive or
negative slope of each line in the main effects plots. For example,
for the situation in Figure 4(a), default values for exploration
weight and re-routing frequency should be the minimum ones,
owing to the positive slope of the respective lines.

4.2 Runtime optimization
When viewing the general problem of optimizing a system
output as the mathematical problem of minimizing a function f
(with or without constraints), a number of different algorithms

Table 2: Results of applying factorial ANOVA in three
situations of CrowdNav. Results are sorted by significance.

Situation Parameter(s) Prob (>F)

0 regular
cars, 750

smart cars

1
exploration percentage,
data freshness threshold

0.000002

2 re-routing frequency 0.000004

3
exploration percentage,

static info weight,
data freshness threshold

0.000007

400
regular

cars, 350
smart cars

1 exploration percentage 0.000029
2 static info weight 0.000029

3 exploration weight 0.000085

0 regular
cars, 350

smart cars

1 data freshness threshold 𝟒.𝟐𝟏 × 𝟏𝟎:𝟐𝟓
2 exploration percentage 𝟏.𝟐𝟐 × 𝟏𝟎:𝟏𝟒

3
data freshness threshold,

static info weight
𝟐.𝟐𝟓 × 𝟏𝟎:𝟏𝟎

SEAMS’18, May 2018, Gothenburg, Sweden I. Gerostathopoulos et al.

6

and methods can be readily employed, such as variants of the
Simplex algorithm [13] or the BFGS algorithm [16]. Each
algorithm or method works under certain assumptions. In our
approach, reflecting the realistic applicability, we assume the
following:

1. f is a black-box for which no closed form is available, nor
its derivatives;

2. evaluations of f are noisy;
3. evaluations of f are expensive (in terms of time or other

application-specific cost metric).
The above assumptions are also the minimal assumptions of

the Bayesian optimization framework, a sequential model-based
approach to global optimization we have incorporated in our
approach. We provide an overview of this framework and its
Gaussian-Process-based specialization next.

Bayesian optimization with Gaussian Processes (BOGP).
Optimization in the BOGP framework works in the following
way [19]. At each execution step, BOGP builds a probabilistic
model of the uni- or multi-variate function-to-be-minimized
(called objective function) f, based on the so-far observed
valuations of f. The model represents an approximation of the
real function using a Gaussian process (called posterior).
Equipped with this model, BOGP induces acquisition functions
that leverage the uncertainty in the model to guide exploration.
In particular, an acquisition function is maximized in order to
find the next point for sampling. In our experiments, we used the
“expected improvement” acquisition function for BOGP [19],
which measures the expected amount of improvement of a
configuration w.r.t. the so-far best observed configuration. After
determining the next point (configuration) p for sampling and
evaluating f(p), the algorithm moves to the next execution step.
Every BOGP works under a budget, which is the number of steps
it is allowed to perform before it reports the so-far best value of
f, together with the parameter values that induce it.

Using Bayesian optimization with Gaussian Processes.
BOGP is employed in our approach in order to traverse a
configuration space in an effective way when trying to optimize
(minimize) the main system output. Instead of providing the
BOGP the whole configuration space, we split the configuration
space into subspaces that correspond to the parameter
combinations outputted in the previous phase (Section 4.1). The
optimization phase then executes BOGP in several stages, each
of which takes as input a parameter combination. We define as
total budget of the optimization phase the total number of BOGP
steps across all BOGP executions. The total budget is allocated
uniformly across all BOGP executions. For instance, assuming a
total budget of 12 and 4 BOGP executions, each execution will be
invoked with a budget of 3. By splitting the executions of BOGP
and optimizing only along orthogonal (i.e. non-interacting
subspaces), which were identified by ANOVA to have the largest
effect on the system’s output, we are able to find a meaningful
minimum with even extremely small total budgets. Our results
validating this claim are reported in Section 5.

Illustration on CrowdNav. When optimizing CrowdNav, the
optimization phase takes the list of the input parameters or

combinations of input parameters generated by ANOVA. This
list is ordered by having the most significant factors (i.e.
configuration parameters) first. For example, for CrowdNav in
the situation of (0 regular cars, 750 smart cars), the two most
significant sets of parameters are [exploration percentage, data
freshness threshold], and re-routing frequency (Table 2). If
CrowdNav resides in a situation (e.g. (0 regular cars, 500 smart
cars)) for which there are not enough data, we reuse data from
similar situations or we reuse data regardless of a situation. The
latter strategy naturally lowers the guaranteed significance of
input parameters generated by ANOVA, but still provides a best
guess equipped with statistical significance based on the
behavior of the system in other situations.

Assuming a total budget of 12 split into 4 stages, the first
optimization stage uses BOGP to optimize the parameters
[exploration percentage, data freshness threshold] in 3
iterations. In the second optimization stage, the best parameters
from the previous stage are fixed and BOGP is used to optimize
the second set of parameters (re-routing frequency) in 3 more
BOGP iterations; the same process applies for the remaining two
stages. In all stages, the objective function of BOGP is the
average value of a specific number of observed trip overheads. In
our experiments, we routinely used 5000 for such a number.

4.3 Cost handling in runtime optimization
At each optimization step, BOGP selects a configuration to try
out, applies it on the system, and collects values of system
outputs. We assume that the application of an experimental
configuration is rolled out incrementally. This means that, at any
point in time, only a fraction of the users experience the system
under the experimental configuration, whereas the rest view the
system in a default configuration. In CrowdNav, this means that
only a fraction of the cars (e.g. 10%) use the router that is
configured with the experimental configuration, and trip
overheads are analyzed only from this fraction of cars. As time
passes, the percentage of users exposed to experimental
configuration increases (e.g. from 10% to 20%, then 30%, and so
on). This incremental rollout allows to control the number of
users that are exposed to a potentially bad configuration, i.e. a
configuration that incurs a high cost to the system.

In order to identify such a bad configuration, we propose to
observe the cost metric of the system under experimentation and
interrupt the evaluation of a configuration (experiment) if the
cost oversteps a certain level that is user-defined. To make sure
that there is enough evidence that the high cost occurs
consistently, we propose to use statistical testing to test the
alternative hypothesis that the cost is larger than the threshold
at a given statistical significance level. The choice of a particular
statistical test to ensure statistically grounded decision heavily
depends on how the cost is measured. We illustrate the usage of
binomial test in the case of CrowdNav, where cost is a
proportion of values of a binomial distribution, however, other
tests can also be used in case of differently scaled cost metric.
For instance, multinomial test can be used in case of multinomial
distributions or t-test in case of interval- or ratio-scaled costs.

Adapting a System with Noisy Outputs with Statistical Guarantees SEAMS’18, May 2018, Gothenburg, Sweden

 7

Illustration on CrowdNav. Cost in CrowdNav is measured by
the ratio of issued complaints on the total number of observed
(trip overhead, complaint) tuples. The threshold for the complaint
ratio is empirically set to 12%. This means that, if there is
sufficient evidence that the complaint ratio will overstep 12%, we
abort a running experiment. In this case, the optimization will
continue to the next step. To provide such evidence with
statistical means, we perform a binomial test.

A binomial test is a statistical procedure that tests whether,
in a single sample representing an underlying population of two
categories, the proportion of observations in one of the two
categories is equal to a specific value [20]. In our case, we use a
one-tail binomial test employing the directional alternative
hypothesis that predicts the underlying population proportion of
issued complaints (complaints with value True) is above a
specific value—our complaints threshold. We perform this test
every ten (trip overhead, complaint) tuples that we receive. If we
predict that, in the next checkpoint, the complaint ratio is
expected to be larger than 12% (assuming that the complaint
ratio at the next checkpoint remains the same as the current one)
at a significance level α (we used 0.05), we abort the running
experiment. This logic is illustrated in Listing 2. This test
provides the necessary statistical backing to ensure that any
overstepping of the threshold did not happen by accident (which
should not be reason enough to abort an experiment).

4.4 Comparison with baseline configuration
Once the total budget of the optimization phase is exhausted, the
so-far best configuration is outputted. The third phase of our
approach compares this configuration to the baseline
configuration of the system. The reason for this is twofold: (i) to
ensure that the so-far best configuration is indeed better than the
baseline one at a specific statistical significance level a, (ii) to
ensure that the effect size of the improvement is enough to
justify the cost of applying the new configuration to the system.
The cost of applying the configuration refers to any disruption
that may result from changing the system. Such disruptions may
even appear when the new configuration is actually better, since
e.g. users are more used to the old configuration and need some
time to adjust to the new one [11].

This phase takes thus as input two application-specific
parameters, a statistical significance level a and a minimum
effect size e, and performs a statistical test to determine whether
the so-far best configuration induces system outputs that are
better than the ones induced by the baseline configuration. If a
(positive) statistical significant difference is observed at the
provided level a, the effect size of the difference is calculated and
compared to e. If the observed effect is larger than e, then the so-
far best configuration is applied to the system, meaning that it is
rolled out to all the users of the system.

In the following, we describe the use of t-test for this phase,
however, other parametric or non-parametric tests for two
independent samples can also be used (e.g. Mann-Whitney U),
depending on the scale of the main system output and the
assumption on its distribution (normal or not).

Illustration on CrowdNav. System output in CrowdNav is
measured via the trip overhead metric, a ratio-scaled variable. To
measure whether the output is better (smaller) with statistical
means we perform t-test.

 A t-test for two independent samples is a statistical test
evaluating whether the samples represent two populations with
different mean values [20]. The result of a t-test is a p-value,
which is compared to a (pre-selected) statistical significance level
a; if the p-value is less or equal to a, the test concludes that there
is statistical significance difference in the means. Effect size in t-
tests is typically computed by the Cohen’s d metric, which is
defined as the difference of the means of the two samples
divided by their pooled standard deviation. A value of 1 for
Cohen’s d indicates that the two means differ by one standard
deviation, a value of 0.5 by half standard deviation, and so on.

In our case, we are using a one-tailed test evaluating whether
the mean of trip overheads derived from applying the so-far best
configuration is smaller than the mean of trip overheads derived
from applying the baseline configuration. T-test assumes that the
distribution of data in the underlying populations is normal,
which does not hold for the original data set of trip overheads
(Figure 2). We therefore perform a logarithmic transformation
on the trip overhead data that results in a distribution that is
closer to normal, and thus allows us to perform t-test without
compromising its reliability. Also, apart from the standardized
Cohen’s d effect size, we also provide an unstandardized
measure of effect size by calculating the difference in the means
of the samples (which is a more natural way to think about the
actual difference at the application level).

To illustrate the result of this phase, consider comparing two
CrowdNav configurations C1 and C2, where C1 is the so-far best
and C2 is the baseline configuration. The results are reported as:

p value: 0.000048
Cohen’s d: 0.078039
difference in means: 0.024358

Assuming that we have requested, prior to performing the
test, a significance level of 0.05 and a difference in means of at
least 0.01, these results show both statistical significant
difference (p value < 0.05) and significant effect (difference in
means > 0.01). This provides statistical evidence for our
approach to apply the so-far best configuration to CrowdNav
(which then becomes the new baseline for the situation).

1. complaints_ratio = issued_complaints / observed_tuples
2. next_observed_tuples = observed_tuples + step # step=10
3. estimated_complaints = next_observed_tuples * complaints_ratio

4. p_val = binom_test(estimated_complaints, next_observed_tuples,

 p = 0.12, alternative=”greater”)

5. if p_val < binom_test_alpha: # binom_test_alpha = 0.05
6. raise StopIteration(“Too costly to continue this experiment”)

Listing 2: Binomial test for cost handling in CrowdNav
(Python snippet).

SEAMS’18, May 2018, Gothenburg, Sweden I. Gerostathopoulos et al.

8

Figure 5: Box plots of BOGP results in the baseline
scenario.

Figure 6: Main effects when applying factorial ANOVA in
data from all three situations of CrowdNav.

5 EVALUATION
To evaluate our approach, we have implemented the three
different phases in Python and used it to optimize the CrowdNav
exemplar. Our implementation is part of the RTX tool for self-
optimization based on Big Data analytics [18]. In particular, we
use RTX for observing the data produced by CrowdNav (our
testbed) and for applying different configurations to it. Both
interactions are mediated via Kafka3, a distributed messaging
system. To persist the raw data and enable also a posteriori
analysis we have used Elasticsearch4, a distributed document
database tailored for time series data. For all the statistical
procedures and the Bayesian optimization method, we used
existing Python libraries5. We have open-sourced all the code
and the data; more information is provided in the online
Appendix at https://github.com/Starofall/RTX/tree/seams18.

After implementing the different phases of the approach and
performing several curiosity-driven experiments to acquire
domain expertise with CrowdNav that would allow us to set
meaningful values to parameters such as significance levels for
the various statistical procedures, we ventured into validating
one of our major claims, namely:

“Can we exploit the knowledge of our generated system
models in informing the self-optimization process, when
assuming that the system resides in an unknown situation and
that we only have a small total budget for experimentation?”

To answer this question, we performed a comparative
experimental study (controlled experiment). The goal of the
study was to compare the end result of our approach (the best
configuration found) to a baseline scenario in which the state-of-
the-art BOGP is used in its vanilla form. In both cases, we apply
self-optimization in the CrowdNav situation of (300 regular cars,
300 smart cars), for which we have no prior knowledge. In both
cases, the total budget for experimentation is 5 steps of BOGP,
and the objective function of BOGP is the average value of each
configuration evaluated on 5000 samples of the trip overhead
function. We first explain the baseline scenario and show its
results, then describe how our approach led to different results
and finally compare the two.

Baseline scenario. In this scenario, we let the BOGP optimizer
run once with the full budget (all 5 steps) and with the whole
configuration space (all 7 CrowdNav parameters and their
ranges as depicted in Table 1). This corresponds to a standard
usage of the BOGP optimizer, which is one of the most powerful
tools in performing optimization of noisy functions. BOGP
terminates after 5 steps, plotted in Figure 5, by reporting the best
configuration found, Cbaseline (Table 3).

Our approach. When applying our approach, we first need to
build a system model for the CrowdNav situation. Since we do
not have any data (it is a new situation), we use the data from all
the other situations we have observed so far, in particular from

3 https://kafka.apache.org/
4 https://www.elastic.co
5 scipy.stats, statsmodels, skopt

Table 3: Best values of CrowdNav parameters.

 Cbaseline Capproach
route randomization 0.11615 0

exploration percentage 0.19508 0
static info weight 2.36432 1.22184

dynamic info weight 1.20810 1
exploration weight 15 5

data freshness threshold 359 700
re-routing frequency 63 10

Table 4: Results (sorted by significance) of applying ANOVA
in data from all three situations of CrowdNav.

Parameter(s) Prob (>F)
1 static info weight 𝟑. 𝟏𝟏 × 𝟏𝟎:𝟏𝟎
2 data freshness threshold 𝟔. 𝟖𝟏 × 𝟏𝟎:𝟎𝟖
3 exploration weight 𝟐. 𝟕𝟎 × 𝟏𝟎:𝟎𝟕

Adapting a System with Noisy Outputs with Statistical Guarantees SEAMS’18, May 2018, Gothenburg, Sweden

 9

Figure 7: Box plots of BOGP results in our approach: The
first 3 steps belong to the first execution stage, the last 2

to the second.

Figure 8: Mean values of trip overhead during the
optimization in the baseline scenario and our approach.

the three situations depicted in Figure 4. The results are depicted
in Table 4 (3 most significant effects); the main effects are also
graphically depicted in Figure 6. Based on these results, the
approach sets the baseline configuration (not to be confused
with the baseline scenario) according to the slopes of the lines in
Figure 6 and proceeds to perform BOGP in several stages. Since
the overall budget is 5, and a BOGP execution needs at least 2
steps, only two stages are prescribed: the first stage takes a
budget of 3 steps and explores the subspace of static info weight
(indicated as the parameter with the highest effect—Table 4); the
second stage takes a budget of 2 steps and explores the subspace
of data freshness threshold. The best observed configuration of
the first stage (static info weight: 1.22184) is applied in all
subsequent experiments of the second stage. The result of the
second stage (data freshness threshold: 700), together with the
result of the first one and the default values for the rest of the
parameters form the best configuration returned by our
approach, Capproach (Table 3). The results of 5 steps (divided into 2
stages) of BOGP in our approach are plotted in Figure 7.

Results and Interpretation. To compare the end result of our
approach against that of the baseline, we performed a t-test
evaluating whether the mean overhead of Capproach is smaller, at a
statistically significance level 0.05, than the mean overhead of
Cbaseline. (In particular, we applied the test after applying
logarithmic transformation to trip overhead values to normalize
their distribution.) The result from the t-test indicated that such
a difference indeed exists (p value: 0.013, power: 72%).

Comparing the runs of the BOGP optimizer for each setting
side by side (Figure 8), we observe that the most plausible reason
why our approach outperformed the baseline is that the BOGP in
the baseline case did not have enough budget (5 steps) w.r.t. the
number of parameters it needed to experiment with (7
parameters). In comparison, BOGP in our approach, even though
it operated in an even more constrained budget (3 and 2 steps), it
also operated always with only a single parameter, which made
overshooting less probable and traversing the configuration
space feasible even under such “starvation” settings.

Limitations. It has to be mentioned that we did not observe the
same superiority of our approach in experiments where the
overall budget is relatively large. For instance, we experimented
with an overall budget of 20 steps, which we divided in our
approach into 5 stages of 4 steps each. Under this setting, the
baseline performed slightly better than our approach (albeit not
statistically significant better). The reason for this is that the
BOGP in the baseline had enough budget to effectively traverse
the configuration space consisting of all the seven parameters.
The 20 steps budget is however more than we usually assume in
our approach, where we specifically target systems where
experiments are costly or lengthy and the budget is tight (e.g. 5
steps in CrowdNav).

6 DISCUSSION
Scalability of model generation phase. When using a full-
factorial design, the number of configurations to evaluate grows

exponentially due to combinatorial explosion. In the case of
CrowdNav, 7 parameters with 2 values per parameter resulted in
128 configurations to evaluate. To reach a significance level a of
0.0005 for three effects (our stopping criterion), we had to collect
less than 100 output (trip overhead) values per configuration.
Increasing a reduces the number of observations needed, but also
reduces the obtained statistical guarantees. This nevertheless
allows us to collect only as many observations as we are
realistically able to at this phase. Another way to speed up this
phase is to reduce the number of configurations that need to be
evaluated by employing a fractional factorial design (e.g.
Plackett-Burman design [20]). This can reduce the number of
configurations to half or quarter of the full factorial case; it
typically allows, however, to examine for main effects and only
for some of the interactions. Finally, a third way to speed up the
model generation phase, is to examine multiple configurations in
parallel (given the necessary infrastructure), as already done in
web experimentation [11].

Assumptions on statistical methods. In our approach we use
several statistical methods: analysis of variance (ANOVA),
binomial test, and t-test. These methods have several

SEAMS’18, May 2018, Gothenburg, Sweden I. Gerostathopoulos et al.

10

assumptions. In particular, they assume that observations are
independent. Furthermore, the ANOVA and t-test assume
normality and homogeneity of variances across samples.
ANOVA and t-test (due to the central limit theorem) are quite
robust against violating the normality assumption, which makes
them usable for data coming from real systems where the
normality assumption does not fully hold. The assumption on
independence is more important because its violation makes the
tests more confident than they should be, given the collected
observations. If there is a reason to assume that data are
dependent, it is necessary to adapt the statistical methods to
work with dependent observations. This typically requires
assumption on bounded length 𝑛 of the dependency (formally,
absolute summability of the autocovariance function is required
[12]). With this assumption, it is possible to obtain independent
data by taking every 𝑛-th item from observations. Alternatively,
a statistical method specifically aiming at dependent data can be
used instead—e.g. block bootstrap—to determine test quantiles.

7 RELATED WORK
Self-adaptation and self-optimization has been a topic of active
research the past years. Most of the proposed approaches rely on
some form of white-box analytical model of the system-to-be-
adapted, i.e. a model of the internal structure of the system that
relates the impact of adaptation decisions of the system’s goals
[2]. Such model can be an architectural model [1, 5], a timed
automaton [8], a Markov process [6], or a mathematical model
used in feedback-based control [4]. In our approach, we assume
that such models are difficult and error-prone to build and
maintain for the class of large complex software-intensive
systems that we target. We thus rely on black-box models as
system abstractions and try to perform self-optimization in this
setting. We review here other self-adaptation approaches that do
the same and compare against them.

 One of the first approaches of black-box adaptation was
proposed with the FUSION framework [2, 3]. FUSION employs
feature modeling to model dependencies between the
architectural elements in a system and online learning to induce
the impact of selecting a feature configuration on the system’s
goals. When a situation that warrants adaptation is detected, the
system switches to the configuration that best satisfies the
system’s goals. FUSION employs a learning cycle in which a
configuration is applied and values of goal metrics are observed.
For each goal metric, a linear regression model is learned (via the
M5 model tree algorithm) that associates tunable parameters
(Boolean feature selection variables) and their interactions with
the goal metric. Learning stops when a learning accuracy
threshold is reached. Our approach also generates linear
regression models via factorial ANOVA to capture the
dependencies between tunable parameters and system output
(similar to the work in [22]) and relies on statistical thresholds
for controlling the amount of learning uncertainty that can be
tolerated. However, we assume tunable parameters to be scalar
variables and we use the result of the learning phase to inform a
subsequent cost-aware black-box optimization phase.

Black-box optimization is the task of optimizing an objective
function with a limited budget for evaluations [7]. A powerful
type of black-box optimization because of its ability to tolerate
noisy objective functions is Bayesian optimization with Gaussian
Processes (BOGP) [21]. We are not the first to employ BOGP in
self-optimization. BOGP has been recently successfully used in
configuration optimization of Big Data stream processing
systems [10]. Also, Gaussian Processes have been recently
proposed for building performance models in the context of
transfer learning for self-adaptation [9].

Finally, our work is related to recent attempts towards an
architectural framework for automated experimentation, which
focus on identifying the principle software architecture qualities
and design decisions underlying such framework [14, 15]. Our
approach, and the corresponding implementation on top of the
RTX engine, can be seen as an instantiation of such framework
which also allows to (i) deal with noisy outputs, (ii) provide
statistical guarantees, (iii) deal with experimentation cost.

8 CONCLUSION
In this paper, we have focused on a class of systems that is both
hard and risky to self-optimize. The reason is that complex
software-intensive systems are difficult to model a priori, have
considerable variation in their outputs (noisy outputs) and incur
high cost of bad adaptation decisions. We have detailed on an
instance of such systems which pertains to traffic navigation in a
city. We have described our framework for self-optimization
which consists of three phases: generation of system model,
runtime optimization with cost handling, and comparison with
baseline configuration. At each phase, we have employed
statistical procedures to back up our analysis with statistical
guarantees. Our prototype implementation and results prove
that it is possible to exploit the knowledge of the target system
to inform the self-optimization process, assuming that the
system resides in an unknown situation and that we only have a
small total budget for experimentation. We believe these results
can be generalized to other systems of the same class.

In the future, we intend to investigate the application of
transfer learning (similar to [9]) to reuse knowledge from similar
situations. We also intend to investigate how to make the
Bayesian optimization method aware of application-level risk so
that configuration selection is based not only on maximizing the
expected improvement but also on minimizing the expected risk.

ACKNOWLEDGMENTS
This work has been partly funded by the Bayerisches
Staatsministerium für Wirtschaft und Medien, Energie und
Technologie as part of the TUM Living Lab Connected Mobility
Project and partly sponsored by the German Ministry of
Education and Research (BMBF) under grant no 01Is16043A. The
work has been partially supported by project no. LTE117003
(ESTABLISH) from the INTER-EUREKA LTE117 programme by
the Ministry of Education, Youth and Sports of the Czech
Republic.

Adapting a System with Noisy Outputs with Statistical Guarantees SEAMS’18, May 2018, Gothenburg, Sweden

 11

REFERENCES
[1] Cheng, S.-W. et al. 2012. Stitch: A language for architecture-based self-

adaptation. Journal of Systems and Software. 85, 12 (2012), 1–38.
DOI:https://doi.org/10.1016/j.jss.2012.02.060.

[2] Elkhodary, A. et al. 2010. FUSION: A Framework for Engineering Self-tuning
Self-adaptive Software Systems. Proc. of FSE ’10 (2010), 7–16.

[3] Esfahani, N. et al. 2013. A Learning-Based Framework for Engineering
Feature-Oriented Self-Adaptive Software Systems. IEEE Transactions on
Software Engineering. 39, 11 (Nov. 2013), 1467–1493.

[4] Filieri, A. et al. 2014. Automated Design of Self-adaptive Software with
Control-theoretical Formal Guarantees. Proceedings of the 36th International
Conference on Software Engineering (New York, NY, USA, 2014), 299–310.

[5] Garlan, D. et al. 2004. Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. Computer. 37, 10 (2004), 46–54.
DOI:https://doi.org/10.1109/MC.2004.175.

[6] Ghezzi, C. et al. 2013. Managing Non-functional Uncertainty via Model-
driven Adaptivity. Proc. of ICSE’13 (2013), 33–42.

[7] Golovin, D. et al. 2017. Google Vizier: A Service for Black-Box Optimization.
(2017), 1487–1495.

[8] Iftikhar, M.U. and Weyns, D. 2014. ActivFORMS: Active Formal Models for
Self-adaptation. Proc. SEAMS ’14 (2014), 125–134.

[9] Jamshidi, P. et al. 2017. Transfer Learning for Improving Model Predictions
in Highly Configurable Software. arXiv:1704.00234 [cs] (Apr. 2017).

[10] Jamshidi, P. and Casale, G. 2016. An uncertainty-aware approach to optimal
configuration of stream processing systems. Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2016
IEEE 24th International Symposium on (2016), 39–48.

[11] Kohavi, R. et al. 2009. Controlled experiments on the web: survey and
practical guide. Data Mining and Knowledge Discovery. 18, 1 (Feb. 2009), 140–
181. DOI:https://doi.org/10.1007/s10618-008-0114-1.

[12] Kreiss, J.-P. and Paparoditis, E. 2011. Bootstrap methods for dependent data:
A review. Journal of the Korean Statistical Society. 40, 4 (Dec. 2011), 357–378.
DOI:https://doi.org/10.1016/j.jkss.2011.08.009.

[13] Lewis, R.M. et al. 2000. Direct search methods: then and now. Journal of
Computational and Applied Mathematics. 124, 1 (Dec. 2000), 191–207.
DOI:https://doi.org/10.1016/S0377-0427(00)00423-4.

[14] Mattos, D.I. et al. 2017. More for Less: Automated Experimentation in
Software-Intensive Systems. Product-Focused Software Process Improvement
(Nov. 2017), 146–161.

[15] Mattos, D.I. et al. 2017. Your System Gets Better Every Day You Use It:
Towards Automated Continuous Experimentation. 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) (Aug.
2017), 256–265.

[16] Nocedal, J. and Wright, S.J. 2006. Numerical Optimization. Springer.
[17] Pan, S.J. and Yang, Q. 2010. A Survey on Transfer Learning. IEEE

Transactions on Knowledge and Data Engineering. 22, 10 (Oct. 2010), 1345–
1359. DOI:https://doi.org/10.1109/TKDE.2009.191.

[18] Schmid, S. et al. 2017. Self-Adaptation Based on Big Data Analytics: A Model
Problem and Tool. Proc. of SEAMS 2017 (Buenos Aires, Argentina, May 2017),
102–108.

[19] Shahriari, B. et al. 2016. Taking the Human Out of the Loop: A Review of
Bayesian Optimization. Proceedings of the IEEE. 104, 1 (Jan. 2016), 148–175.
DOI:https://doi.org/10.1109/JPROC.2015.2494218.

[20] Sheskin, D.J. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC.

[21] Snoek, J. et al. 2012. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems (2012), 2951–
2959.

[22] Ustinova, T. and Jamshidi, P. 2015. Modelling multi-tier enterprise
applications behaviour with design of experiments technique. Proceedings of
the 1st International Workshop on Quality-Aware DevOps (2015), 13–18.

