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The dynamic nature of complex Cyber-Physical Systems puts extra requirements on their functionalities: 
they not only need to be dependable, but also able to adapt to changing situations in their environment. 
When developing such systems, however, it is often impossible to explicitly design for all potential situations 
upfront and provide corresponding strategies. Situations that lie out of this “envelope of adaptability” can 
lead to problems that end up by applying an emergency fail-safe strategy to avoid complete system failure. 
The existing approaches to self-adaptation cannot typically cope with such situations better—while they are 
adaptive (and can apply learning) in choosing a strategy, they still rely on a pre-defined set of strategies not 
flexible enough to deal with those situations adequately. To alleviate this problem, we propose the concept 
of meta-adaptation strategies, which extends the limits of adaptability of a system by constructing new 
strategies at runtime to reflect the changes in the environment. Though the approach is generally applicable 
to most approaches to self-adaptation, we demonstrate our approach on IRM-SA—a design method and 
associated runtime model for self-adaptive distributed systems based on component ensembles.  We 
exemplify the meta-adaptation strategies concept by providing three concrete meta-adaptation strategies 
and show its feasibility on an emergency coordination case study.  

• Computer systems organization➝Embedded and cyber-physical systems    • Software and its engineering➝ 
Software organization and properties➝ Software system structures➝ Software architectures. 
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1. INTRODUCTION  
The advent of cost-effective embedded devices with increased computing capabilities 
and the proliferation of wireless networks have brought about the potential for value-
added services provided by a web of distributed interacting elements organized into 
Cyber-Physical Systems (CPSs) (NIST 2012; ERCIM 2014). Examples include 
intelligent navigation systems, smart electric grids, and emergency coordination 
systems. Modern CPSs need to be able to operate in dynamic or even hostile 
environments and yet remain dependable and efficient.  

An important feature of efficient and dependable CPSs is self-adaptivity, i.e., the 
ability to modify their behavior and/or structure in response to changes in their 
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environment (de Lemos et al. 2013; Salehie and Tahvildari 2009). Self-adaptation in 
software systems is usually achieved in three fundamental ways: (i) by relying on a 
detailed application model, e.g., Markov Decision Processes (MDP) (Ghezzi et al. 2013), 
and employing simulations or other means of state-space traversal to infer the best 
response of the system, (ii) by identifying control parameters and employing feedback-
based control techniques from control theory (Filieri et al. 2015), and (iii) by 
reconfiguring architecture models, typically with the help of Event-Condition-Action 
rules—architecture-based self-adaptation (Kephart and Chess 2003; Kramer and 
Magee 2007; Garlan et al. 2004). These three ways have also been used both combined 
and together with learning and search-based approaches. For example, control theory 
has been employed in the runtime modification of the probabilities of a MDP (Filieri et 
al. 2011). Learning-based approaches have been proposed to deduce the impact of 
adaptation actions at runtime (Elkhodary, Esfahani, and Malek 2010), and to mine the 
application model from system execution traces (Yuan, Esfahani, and Malek 2014). 
Genetic algorithms have been used both in the decision-making process of self-adaptive 
systems (Ramirez et al. 2009), and in choosing between applicable paths of self-
adaptation actions (Ramirez et al. 2010). 

In CPSs, as  large complex distributed systems, the high-level view of architecture-
based self-adaptation is generally favored (David et al. 2009; Garlan et al. 2004; Hirsch 
et al. 2006). Architecture-based self-adaptation techniques typically follow the MAPE-
K loop (or reference model) (Kephart and Chess 2003), which separates self-adaptation 
into four phases: Monitoring activities, Analyzing runtime metrics, Planning 
strategies, and Execute plan—all based on a shared Knowledge base. Self-adaptation 
strategies are expressed as actions involving particular architecture reconfigurations; 
they are applicable under certain conditions in the presence of certain events or 
situations (S.-W. Cheng, Garlan, and Schmerl 2012; David et al. 2009; Batista, Joolia, 
and Coulson 2005). Each action can be associated with the satisfaction of one or more 
system goals (Salehie and Tahvildari 2012), typically quantified via fitness or utility 
functions (S.-W. Cheng, Garlan, and Schmerl 2012).  

At the same time, due to high external uncertainty in CPSs, caused, e.g., by 
hardware failures and temporary network unavailability, anticipating and explicitly 
designing for all potential situations upfront is not viable. As a result, adapting by 
switching between the available (pre-defined) self-adaptation strategies may be a 
challenge, since a CPS might arrive in a situation where none of these strategies 
applies well, so that a generic “fail-safe” strategy keeping the system operational at a 
degraded state is the only option.  

As a remedy, we propose to generate new self-adaptation strategies at runtime to 
reflect the changes in the environment and increase the overall system utilities, in 
particular robustness, resilience, safety, performance, and availability. We do so by 
introducing the concept of meta-adaptation strategies, which enriches the adaptation 
logic of a CPS (thus the “meta” prefix) by systematically generating new self-
adaptation strategies that can be employed equally to pre-defined ones within the 
adaptation loop. This provides a dynamic space of actions and effectively extends the 
limits of adaptability of the CPS. We present the idea of meta-adaptation strategies 
and its integration with the “traditional” MAPE-K loop, which follows a three-layer 
architecture style. On top of this basis, we show three concrete examples of meta-
adaptation strategies and demonstrate their applicability.  

Although our approach is to a large extent agnostic to a particular adaptation 
method, we illustrate and evaluate the application of meta-adaptation strategies 
within an existing architecture-based self-adaptation technology for distributed 
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dynamic CPSs—DEECo and IRM-SA—in the context of an emergency coordination 
case study employed as the running example.  

The rest of the paper1 is structured as follows. Section 2 describes the emergency 
coordination case study and its DEECo and IRM-SA model. Sections 3 describes the 
meta-adaptation strategies concept and gives examples of three such strategies. 
Section 4 reports on our experiments with the three meta-adaptation strategies. 
Section 5 surveys the related work, Section 6 reflects on the implications and the 
possible extensions of our approach, and Section 7 concludes. 

2. RUNNING EXAMPLE AND BACKGROUND 
To demonstrate the concept of meta-adaptation strategies, we briefly overview below 
the running example used in the paper and the DEECo component model and IRM-SA 
self-adaptation method, which serve as the technological basis we use to exemplify our 
approach. 

2.1 Running Example: Firefighter Coordination Case Study 
The firefighter coordination case study is a real-life real-scale case study that has been 
proposed for the evaluation of distributed self-adaptive systems (Gerostathopoulos et 
al. 2016). Firefighters belonging to tactical groups are deployed on the emergency field. 
They communicate via low-power nodes integrated into their personal protective 
equipment. Each of these nodes is configured at runtime depending on the task 
assigned to its bearer. For example, a hazardous situation might need closer 
monitoring of a certain parameter (e.g., temperature). 

In the setting of the complete case study, firefighters have to communicate with the 
officers (their group leaders), who are equipped with tablets; the software running on 
these tablets provides a model of the current situation (e.g., on a map) based on data 
measured at and aggregated from the low-power nodes. Parameters measured at each 
low-power node are position, external temperature, battery level, and oxygen level. The 
data aggregation on the side of the group leaders is done with the intention that each 
leader can infer whether any of his/her group members is in danger and take strategic 
decisions. 

Such a coordination system has rigorous safety and performance requirements. It 
needs to operate on top of opportunistic ad-hoc networks, where no guarantees for end-
to-end response time exist, with minimum energy consumption, and without 
jeopardizing its end-users. It also needs to respond to a number of challenging 
situations such as: What if the temperature sensor starts malfunctioning or completely 
fails at runtime? What if firefighters are deployed inside a building where GPS 
readings are not available? What if the communication between members and their 
leader is lost? 

In all these situations, each node has to adapt its behavior according to the latest 
information available (choose an appropriate strategy). For example, if a firefighter 
node detects that it is in the situation “indoors”, it has to switch from the strategy of 
determining the position via the GPS to using an indoors tracking system. Other 
strategies include increasing the sensing rate in face of a danger or even relying on the 
nearby nodes for planning when communication with the group leader is lost. 

Obtaining an exhaustive list of situations that trigger adaptations in the firefighter 
coordination system is not a realistic option, as the environment is highly dynamic and 
unpredictable. In order to deal with this large envelope of adaptability, we rather need 

 
1 This paper is an extension of (Gerostathopoulos et al. 2015). 
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to build a system that would dynamically change its behavior by (i) generating new 
strategies on demand, and (ii) using them in a MAPE-K-style self-adaptation loop. 

2.2 Dependable Emergent Ensembles of Components (DEECo) 
DEECo is a component model and corresponding framework that is tailored to the 

needs of self-adaptive CPSs (Bures et al. 2013; Al Ali et al. 2014). It features two basic 
abstractions: Autonomous components forming dynamic goal-driven collaboration 
groups called ensembles. A component contains knowledge (its data) and processes, 
whose periodic execution results in updates to the knowledge. Components are not 
bound to each other; they can only indirectly communicate while being a member/the 
coordinator of an ensemble. The communication takes the form of mapping the 
coordinator’s knowledge fields into the member component’s knowledge field (and vice 
versa)—knowledge exchange (Fig. 1, lines 25-26). Not being static, the membership of 
a component in an ensemble is periodically evaluated at runtime based on the 
membership condition in the ensemble, specified over partial views of the components’ 
knowledge (Fig. 2, lines 23-24). These views are determined by roles specified both in 
components and ensembles (Fig. 2, lines 1-4, 6, 21-22). The periodic evaluation of 
membership conditions in ensembles, done by monitoring in DEECo runtime, is an 
embedded means of self-adaptation in DEECo since its effect is the dynamic adaptation 
of system architecture to the current component states (the semantics of this 
adaptation complies with the MAPE-K loop idea). Such inherently dynamic 
architectures built with DEECo are best suited for distributed systems featuring high 

1. role GroupMember: 
2. missionID, position 
3. role GroupLeader: 
4. missionID, positionMap 
5.  
6. component Firefighter features GroupMember 
7. knowledge: 
8. ID = 59 
9.        position = {49.040606, 15.093519} 
10. temperature = 45.2 
11. … 
12. process determinePositionFromGPS 
13. out position 
14. function: 
15. position ←GPSSensor.read() 
16. scheduling: periodic( 500ms ) 
17. mode: “outdoors” 
18. … /* other process definitions */ 
19.  
20. ensemble PositionExchange: 
21. coordinator: GroupLeader 
22. member: GroupMember 
23.  membership: 
24.    member.missionID == coordinator.missionID 
25.  knowledge exchange: 
26. coordinator.positionMap ← ( member.id, member.position ) 
27.  scheduling: periodic( 1000ms )  

Fig. 1. Excerpt from DSL of DEECo component and ensembles of the firefighter coordination system. 
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mobility, unstable communication links, and dynamic availability of components in an 
open environment (such as our running example). 

2.3 Invariant Refinement Method for Self-Adaptivity (IRM-SA) 
IRM-SA is a requirements-oriented design method tailored for distributed systems of 
autonomous components communicating in ensembles—thus including DEECo-based 
systems (Gerostathopoulos et al. 2016; Keznikl et al. 2013). IRM-SA is based on 
contractual design via iterative refinement of system-level requirements. It captures 
goals and requirements of the system components as invariants that describe the 
desired state of the system-to-be at every time instant (“invariant” reflects the notion 
of “continuously striving to achieve a goal”, a central notion in highly dynamic systems). 
An application of the method yields an IRM-SA model represented as a tree. For 
example, consider invariant (1) in Fig. 2, which specifies that the leader of each 
firefighter group should have an up-to-date view (encapsulated in the positionMap field) 
of his/her group members. This “necessity” is AND-decomposed into invariants (2) and 
(3), which specify the necessities of propagating the position from each member to the 
leader and determining the position on the site of each member, respectively. The 
refinement is finished when each leaf invariant of the refinement tree is either an 
assumption or a computation activity corresponding to a process or knowledge exchange 
(called process and exchange invariant, respectively). Alternative designs are captured 
by the OR-decomposition pattern, where each variant is guarded by an assumption 
capturing the state of the environment. For example, invariant (3) can be satisfied 
either by determining the position through an indoors tracking system—invariant 
(5)—or a global positioning system—invariant (7).  

Thus, an IRM-SA model defines a system architecture, by determining which 
groups (ensembles) of components need to communicate via knowledge exchange and 
what the internal activity of each component needs to be. 

Moreover, employing an IRM-SA model as a model@runtime, the satisfaction of 
assumptions (4) and (6) can be dynamically monitored to trigger the activity 
corresponding to the chosen branch in the tree. As a result, the IRM-SA model captures 
the adaptation logic (strategy) to be used in the planning phase of the MAPE-K loop.  

Fig. 2. Excerpt from the IRM-SA model of the running example. 
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IRM-SA supports the design of DEECo-based systems, since there is a 
straightforward mapping between the IRM-SA and DEECo constructs: IRM-SA 
components correspond to DEECo components; process invariants to component 
processes; exchange invariants to ensembles; and assumptions to DEECo runtime 
monitors. For example, invariants (7) and (2) of the IRM-SA model of Fig. 2 correspond 
to the DEECo process and ensemble specification of Fig. 1.  

Since the IRM-SA model is also used at runtime in the planning phase of self-
adaptation in DEECo-based systems to switch on and off DEECo processes or 
knowledge exchange functions, an adaptation strategy consists of selecting a set of 
invariants (a configuration) that can satisfy all the root invariants in the model, given 
the current situation as captured by the assumptions. If no satisfiable configuration 
can be found, the adaptation fails and thus the system cannot run as intended. 
Effectively this means that a situation not addressed by the designer has occurred. In 
the running example, such a case might arise when a firefighter is outdoors and his or 
her GPS device is malfunctioning. Thus, even though invariant (6) holds and (4) does 
not, the DEECo process corresponding to invariant (7) cannot be selected because 
invariant (7) is not satisfiable. 

3. META-ADAPTATION STRATEGIES 
As already mentioned in the previous sections, due to the large envelope of adaptability, 
a self-adaptive CPS should ideally devise new strategies to remain operational and 
satisfy its business goals to the best possible extent. Apart from being able to devise 
new strategies (e.g. by modifying existing ones), the adaptation mechanism should 
rank them according to their effect on the system, in order to be able to select the most 
promising one, or, at least, to select the ones that are worth trying. 

Focusing on architecture-based self-adaptation, we assume that the Business 
System is adapted via an Adaptation Layer (two-layer architecture), instance of the 
generic MAPE-K loop, implementing a number of adaptation strategies. In our running 
example, this is done, e.g., by dynamic switching of component processes based on 
evaluation of the IRM-SA model at runtime. Hence, adaptation strategies are depicted 
in Fig. 3 as IRM-SA models (subtrees). The selection and execution of an adaptation 
strategy is the responsibility of the Adaptation Manager (similar to Rainbow and 
Stitch (Garlan et al. 2004; S.-W. Cheng, Garlan, and Schmerl 2012)).  

We propose an new architecture style which hoists the handling of situations the 
system is not explicitly designed for to the architectural level (Fig. 3 and Fig. 3); this 
three-layer architecture introduces a new architectural entity—Meta-Adaptation 
Layer2—which modifies the Adaptation Layer at runtime. Specifically, in our running 
example, the IRM-SA model is modified at runtime. The “Meta” layer implements a 
number of meta-adaptation strategies (MTASs), conceptually following the MAPE-K 
loop by monitoring the effects of the adaptation strategies, analyzing problems (not 
explicitly-designed-for situations), planning changes (additions/removals/ 
modifications) to the adaptation strategies, and executing them. As illustrated in Fig. 
3, the application of each MTAS results into dynamically creating new adaptation 
strategies, i.e., IRM-SA models. The selection and execution of a MTAS is the 
responsibility of the Meta-Adaptation Manager. 

 
2 Similar three-layered architecture has been employed in our recent work on architecture homeostasis 
(Gerostathopoulos et al. 2016), which, based on the idea of meta-adaptation strategies, illustrates how a 
concrete system can handle abnormalities and deviations from expected behavior at runtime. 
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In the rest of the section, we detail on the concept of MTASs. MTASs serve as 
patterns for extending the limits of adaptability of the system, with each MTAS 
extending the limits in a certain way. The goal of a MTAS is twofold: 

1. To provide an algorithm to systematically generate a set of strategies at 
runtime. 

2. To provide a way to rank the strategies in the set. 
 

To facilitate the presentation, understanding, and application of MTASs, we use a 
template similar in style to the one used by Ramirez et al. to document adaptation 
design patterns (Ramirez and Cheng 2010) (which was in turn based on the template 

 
 

Fig. 4. Steps exemplifying the application of our approach. 

 
Fig. 3. The three-layer architecture style of our approach. Apart from the original adaptation strategy (top 

left IRM-SA model at the Adaptation Manager box), three new adaptation strategies are depicted.   
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of Gamma et al. (Erich Gamma et al. 1994)). Fig. 5 depicts the MTAS template and 
explains each field’s intent. 

In the rest of the section, we bring our MTAS template into action by presenting 
three MTASs. Note that the three MTASs can be applied sequentially or in parallel in 
the running system, since they are by design orthogonal to each other. 

3.1 MTAS employing Knowledge Exchange by Data Classification 
In CPSs, exploiting the interdependencies between sensed data is an opportunity for 
introducing specific MTASs. A particular case is the location-dependency of data, i.e., 
the fact that the value of certain measurable system attributes depends on the physical 
location of the sensors that provide the data. Below we describe a MTAS providing a 
way to automatically create knowledge exchange specifications (ensemble 
specifications in DEECo) that introduce “collaborative sensing” (when direct sensing 
is not possible anymore) and feed them into the running system. Hence, such new 
ensembles take the role of new strategies. Fig. 4 provides an overview of the steps in 
the application of the MTAS. 
Name (abbreviation): Knowledge Exchange by Data Classification (DC) 
Intent: To increase the robustness of the system by prolonging its acceptable 
functioning (or by achieving its graceful degradation) in face of data unavailability and 
outdatedness. 
Context: The MTAS targets the case when values of a knowledge field of a component 
become outdated to the extent that they cannot be relied upon in terms of correct 
behavior of the component. For instance, there is a sensor malfunction that prevents 
value updates. 

Behavior: To make up for losing the ability to obtain the actual value of an outdated 
knowledge field, create a new ensemble specification through which the field is 
assigned an approximated value based on the up-to-date related knowledge values of 
other components. This specification consists of (a) a membership condition, which 

Name (abbreviation): A unique handle that describes the 
MTAS in a succinct way (a code for quick reference). 

Intent: The rationale of the MTAS and the goal(s) we want to 
achieve by applying it. 
Context: The non-application-specific conditions in which the 
MTAS can be applied. 
Behavior: Description of the algorithm and/or related UML 
activity diagram (s) for generating new tactics and the fitness 
function used for the comparison of the generated tactics. 
Trade-offs: List of the trade-offs and possible drawbacks of 
applying the MTAS.  
Example: One or more scenarios that illustrate the problem(s) to 
be addressed and how the MTAS helps to solve the problem(s). 

Fig. 5. Meta-adaptation strategy template. 
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prescribes the condition under the components should interact, and (b) a knowledge 
exchange function, which specifies the knowledge exchange that takes place between 
the collaborating components. (For simplicity, we consider the knowledge exchange 
that just copies the data without manipulating them in any other way.) 

To construct the membership condition when the situation targeted by the MTAS 
happens, the following steps are to be taken:  

(i) Observe the system when it is healthy and log components’ knowledge (as a time 
series of the knowledge evolution):  

(ii) Analyze (typically offline) the logged knowledge and find conditional 
correlations indicating that when values of some knowledge fields 𝐶#. 𝑘&', 𝐶). 𝑘&'  are 
pairwise “close” then other values of 𝐶#. 𝑘*' , 𝐶). 𝑘*' are “close” as well. Here, 𝐶# and 𝐶) are 
different components, 𝑘& and 𝑘* are different knowledge fields and 𝑡 is a point in time. 
If the relation above holds in some specified percentage of all time instances  𝑡 = 1. . 𝑛, 
formulate an ensemble (to be instantiated when the situation targeted by the MTAS 
happened), which uses the pairwise “closeness” of 𝐶#. 𝑘&, 𝐶). 𝑘&  as the membership 
condition and has the assignment 𝐶#. 𝑘* ≔ 𝐶). 𝑘* as the knowledge exchange. 

(iii) Realize (ii) technically by looking for relations 𝜇12 𝐶#. 𝑘&
', 𝐶). 𝑘&' < Δ12 →

𝜇1* 𝐶#. 𝑘*' , 𝐶). 𝑘*' < 𝑇17 for the time instance 𝑡 = 1. . 𝑛, which can be established (based 
on the knowledge observed from the system) on a given confidence level 𝛼17 (e.g, 90% 
of all the cases). 	𝛼17  is specific to each knowledge field 𝑘*. For this, assume user-
defined domain-specific distance metrics 𝜇17  and 𝜇12 , which provide “distance” 
between values of knowledge fields 𝑘*  and 𝑘&  (typically a Euclidean distance), and 
user-defined domain-specific tolerable distance 𝑇17 , also specific to each knowledge 
field 𝑘* . Further  Δ12  is a parameter (output of the method), which denotes the 
maximal distance of knowledge field values that implies correspondence of 
values	𝐶#. 𝑘*	𝑎𝑛𝑑	𝐶). 𝑘*. 

(iv) Generate an ensemble with membership condition 𝜇12(𝐶#. 𝑘&, 𝐶). 𝑘&) < Δ12  and 
exchange function 𝐶#. 𝑘* ∶= 	𝐶)𝑘*. This ensemble corresponds to a new strategy. Create 
more such strategies as more logged data become available.  

(v) Select a strategy between the new strategies (ensembles) that update 𝐶#. 𝑘* by 
applying a fitness function of selecting the strategy which provides the most general 
membership condition (the one with the largest distance Δ12 ) given the target 
confidence level 𝛼17. 

Trade-offs: The analysis of the collected time series can be very resource-demanding 
and therefore a dedicated hardware infrastructure should be used. Similarly, the data 
collection may be a rather resource-intensive process, especially when components’ 
knowledge is large or changes frequently. Also, introducing superfluous new ensembles 
can overload the system with unnecessary replicated data. 
Example: In the firefighter coordination case study, each firefighter component 
features the knowledge fields of position and temperature. Suppose that the 
temperature values are used to control the suit cooling system. Obviously, when the 
temperature sensor breaks, a real-life threat arises. Since firefighters are usually 
moving in groups so that those close to each other obtain similar temperature readings, 
the temperature value of one component can be approximated based on the 
temperature values of the others, when their positions are close. Technically, the 
threshold of temperature proximity can be preset (e.g., 20°C). 
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3.2 MTAS employing Process Period Adjusting 
A CPS typically brings real-time requirements that are reflected in schedulability 
parameters of component processes. The schedulability parameters can be typically 
inferred by real-time design via schedulability analysis. However, when schedulability 
parameters influence the systems in a complex manner (e.g., when there is a tradeoff 
between CPU utilization, battery, network utilization), it is not possible to infer them 
by systematic analysis. Rather, the schedulability parameters are set manually, based 
on the experience of the system’s architect. The MTAS below addresses the case when 
the manually set schedulability parameters cannot cope with a situation the CPS is 
not explicitly designed for.  
Name (abbreviation): Process Period Adjusting (PPA) 

Intent: To optimize the scheduling of processes with respect to overall system 
(application-specific) performance in a system where processes are scheduled 
periodically.  
Context: The MTAS targets situations when the system starts failing due to violated 
timing requirements and the schedulability parameters cannot be inferred a priori 
because they influence the system in a complex manner.  
Behavior: Let R be the set of all active real-time processes in the system. To identify 
the situation when a requirement for a process r in R with period p is not satisfied 
anymore, equip each r with a runtime monitor returning a fitness value fv (real 
number in [0-1]). Generate strategies that correspond to new real-time processes r’ 
created from r by adjusting (reducing or enlarging within pre-defined permissible 
bounds) p to p’, when f drops below a predefined acceptable threshold. To explore the 
search space of possible period adjustments, employ the genetic algorithm (1+1)-
ONLINE EA (Bredeche, Haasdijk, and Eiben 2010) as shown in Fig. 6 (PPA algorithm). 
Changing p (line 10) can be interpreted as generating a new strategy r’ and using it to 
substitute the strategy r in the system. Terminate the period adjusting procedure 
when the adjustment of each p has been exercised in both directions and no further 
benefit can be achieved. 

In this MTAS, strategies (new processes) are weighted by applying them to the 
running system and calculating the overall system fitness as a function of fitness 
values. The overall fitness is calculated after an observation time window (domain 
dependent; line 12) allowing several invocations of all processes. For instance, the 
fitness function in our running example yields the weighted average of functions that 
measure battery usage, position accuracy and temperature accuracy (Appendix I). 
Trade-offs: Reducing periods (a usual action) may have a negative impact on other 
resources (CPU, battery, network). In such a case, the impact would have to be 
modelled and taken into consideration in the state-space search. 
Example: Consider extending the design of our running example by a root invariant 
that specifies that “battery consumption should be kept minimized”. In order to satisfy 
this invariant, the system will try at runtime to tweak the processes’ periods to invoke 
them as scarcely as possible. At the same time, when there is high inaccuracy in the 
GPS readings (e.g., less than 3 satellites in sight), the GPS process may need to be 
invoked more often to make sure the cumulative inaccuracy of the estimated position 
of a moving firefighter is within certain bounds. (The cumulative inaccuracy is 
essentially the sum of the initial inaccuracy of the GPS reading and the distance a 
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firefighter has moved since the last GPS reading.) It is thus a dynamic trade-off 
between availability and dependability that has to be resolved at runtime. 

3.3 MTAS employing Assumption Parameters Adjusting 
In order for a self-adaptive CPS to employ adaptation actions that enable/disable 
strategies (execute phase of the MAPE-K loop), it first needs to identify the current 
situation it resides in (monitor and analyze phases). For this, special-purpose activities 
continuously evaluate the assumptions that each situation corresponds to, regarding 
the CPS’s internal state and its environment. However, these assumptions typically 
rely on domain knowledge captured by pre-defined behavioral models (e.g., timed 
automata or state-space models), which may be invalidated at runtime when a CPS 
reaches a situation it is not explicitly designed for. The MTAS below addresses the case 
when the manually set parameters of an assumption fail to effectively identify the 
situation at hand by strengthening or relaxing (similar to the work in (Whittle et al. 
2010)) these assumptions. Veritas, a method that uses evolutionary computation to 
adapt test cases (Fredericks, DeVries, and Cheng 2014) was an inspiration for this 
MTAS. 
Name (abbreviation): Assumption Parameters Adjusting (APA) 
Intent: To enhance the monitoring and analysis phases (and therefore prevent 
premature or delayed actions) by ensuring at runtime that assumptions parameters 
are relevant to the current situation. 
Context: The MTAS targets situations when domain knowledge hardcoded in 
assumption-monitoring activities fails to frame the current situation, leading, e.g., to 
very quick or late adaptation actions. This may happen due to a situation which is not 
modeled by any of the assumptions monitored by the system. 

1. begin 
2. foreach Invariant from Processes.Invariants do 
3. Compute fitness for Invariant 
4. OldFit = *CombineFitness(Processes.Invariants.Fitnesses) 
5. Adaptees = *SelectProcessesToAdaptTheirPeriods(Processes) 
6. foreach Process from Adaptees do 
7. begin 
8. *Select the direction for period adjustment (up or down) for Process 
9. *Calculate period delta (difference between old and new period) for Process 
10. Change the period of Process 
11. end 
12. ObserveTime = CalculateObserveTime(Processes) 
13. Run for ObserveTime with no further adaptations for changes to take effect 
14. foreach Invariant from Processes.Invariants do 
15. Compute fitness for Invariant 
16. NewFit = *CombineFitness(Processes.Invariants.Fitnesses) 
17. if NewFit > OldFit then 
18. Keep changes 
19. else 
20. Roll-back changes 
21. end 
22. end 

Fig. 6. Pseudocode capturing a single run of the PPA algorithm. “*” marks steps considered as variation 
points in the algorithm. 
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Behavior: Let A be the set of all assumptions in the system. To be able to identify the 
situation when an assumption a in A is not satisfied anymore, equip each a with a 
runtime monitor accepting parameters P with values V returning a fitness value fv 
(real number in [0-1]). Generate (monitoring) strategies that correspond to a new 
assumption a’ created from a by adjusting (reducing or enlarging each parameter value 
within pre-defined permissible bounds) V to V’, when f drops below an acceptable 
threshold. To explore the search space of possible parameter adjustments, employ the 
genetic algorithm (1+1)-ONLINE EA (Bredeche, Haasdijk, and Eiben 2010) (similar to 
the application of the PPA algorithm).  

In this MTAS, strategies (new assumptions) are weighted by applying them to the 
running system and calculating the overall system fitness as a function of fitness 
values (similar to the PPA fitness function). In our running example, the weighted 
average of functions that measure battery usage, position accuracy and temperature 
accuracy was used (Appendix I). 
Trade-offs: Relaxing assumptions is not panacea; on the contrary, it can be dangerous 
in safety critical applications whose operation must not deviate from strict 
specifications. For this, assumptions that can be relaxed (parametrized) have to be 
carefully identified at design time, and parameter bounds have to be chosen so that 
they do not jeopardize the system under any circumstances. 
Example: Consider extending the design of our running example by an assumption—
sibling to invariant (7): “GM::position is determined by GPS every 1 sec” in Fig. 2—
that specifies that “position inaccuracy is within [0,t]”, where t is a parameter with 
values in [5,20] and initial value set to 5. When the inaccuracy of the GPS readings 
increases (e.g., because of less satellites visible) the assumption will be violated and 
the activity corresponding to invariant (7) will be deactivated. If the firefighter is 
outdoors, this will lead to a situation where no configuration is applicable. In response, 
the system will try to tweak t in order to obtain a new satisfied assumption and 
consequently an applicable configuration. Though this will yield lower system quality 
than having the right number of satellites, it will be able to prevent the situation in 
which the position could not be determined at all due to too strict system design. 

4. EXPERIMENTAL EVALUATION 
In this section, we describe the experiments performed in order to validate the MTASs 
idea. The experimental evaluation focuses on measuring the effect of applying the 
three MTASs to a running system (a scenario from the running example). We first 
detail the implementation of the three MTASs (Section 4.1), then describe the 
experimental setting and results (Section 4.2).  

4.1 Implementation of MTASs in JDEECo  
We have implemented the three MTASs in the JDEECo framework 3 , a Java 
implementation of the DEECo component model. Specifically, each MTAS was 
implemented4 as an extension of IRM-SA, an existing JDEECo plugin. IRM-SA endows 
each component in a DEECo-based application with an adaptation loop. In the nutshell,  
the IRM-SA adaptation loop periodically (i) aggregates monitoring results from the 
knowledge of the component and from copies of knowledge of other components 
(replicas), (ii) constructs a runtime representation of the IRM-SA model (cf. Fig. 2), (iii) 

 
3https://github.com/d3scomp/JDEECo 
4https://github.com/d3scomp/IRM-SA/tree/meta-adaptation-strategies 
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translates the IRM-SA model into a SAT formula, with monitoring variables 
corresponding to assumptions in the IRM-SA model bound to a particular Boolean 
value, (iv) invokes the underlying SAT solver and translates its output to the desired 
current configuration, (v) activates/deactivates component processes and ensemble 
knowledge exchange processes according to this configuration. For more details on the 
IRM-SA plugin, we refer the interested reader to (Gerostathopoulos et al. 2016). 

When the SAT solving process fails to return an applicable configuration, a 
dedicated MetaAdaptationManager component is notified, which fires up a MTAS. 
The responsibility of this component is to determine the cause of the reasoning failure 
(e.g. non-up-to-date data for a knowledge field) and activate the MTAS whose context 
(cf. Section 3) is closer to the identified cause. Each MTAS is also implemented as a 
dedicated component with a periodically-invoked meta-adapt process.  

The DC MTAS is implemented by a dedicated DCManager component. DCManager 
aggregates knowledge relevant to DC from all components via a dedicated “aggregation” 
ensemble, and determines which knowledge values 𝑘*  are dependent on other 𝑘& , 
according to the DC algorithm (Section 3.1). During a run of  DCManager’s meta-
adapt process, if a correlation relation is found between knowledge fields 𝑘& and 𝑘* 
(in components 𝐶# and 𝐶)) with distance of 𝐶#. 𝑘& and 𝐶). 𝑘& less than Δ12 and distance of 
𝐶#. 𝑘*  and 𝐶). 𝑘*  less than 𝑇17  at confidence level 𝛼1* , a new ensemble with 
membership condition 𝜇12(𝐶#. 𝑘&, 𝐶). 𝑘&) < Δ12  and exchange function 𝐶#. 𝑘* ∶= 	𝐶). 𝑘*  is 
created and deployed. In further runs, more aggregated knowledge becomes available. 
As a result, meta-adapt may create during its subsequent invocations several such 
ensembles with different maximal distances Δ12, subject to the same confidence level. 
Since these ensembles are ranked by their maximal distances Δ?12, Δ

@
12, etc., meta-

adapt is responsible for ensuring that always only the “best” of them, i.e., the one with 
the largest maximal distance, is deployed in the system.         

The PPA MTAS is implemented by a dedicated PPAManager component. 
PPAManager’s meta-adapt process periodically runs the PPA algorithm (Fig. 6). At 
each run, it selects a set of processes (adaptees) belonging to the local DEECo 
component and changes their period. So far, we have considered the case where there 
is only one adaptee - the process with the lowest fitness value. For measuring fitness 
values, PPAManager relies on the output generated by runtime monitors—dedicated 
periodically-invoked DEECo processes. We have experimented with different values of 

 
 
Fig. 7. Map of the example: lines delineate permissible paths for firefighters, background colors depict 

the temperature (bright colors correspond to high temperatures). 
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parameters of the PPA algorithm (Section 4.2) such as initial direction and the delta 
of period change. At each run, meta-adapt performs one iteration of the PPA 
algorithm (Fig. 6) and creates a new process by taking the adaptee as blueprint, 
changing its period, and applying the new process instead of the adaptee to the running 
system. Then, meta-adapt evaluates the new process by observing the system for a 
time period and calculating the overall fitness of the system over this period. This 
calculation is a variation point of the PPA algorithm.  Other variation points include 
initial direction and the delta of period change (we have experimented with different 
setting of these). Further, we used a weighted average over the values retrieved by the 
runtime monitors. If the overall fitness is reduced when deploying a new process, 
meta-adapt rolls-back the changes and creates another process. This way, new 
processes are indirectly weighted according to their impact in the running system.      

The APA MTAS is implemented by a dedicated APAManager component, whose 
meta-adapt process works similarly to PPAManager’s meta-adapt process. The 
difference is that, instead of adjusting process periods, it adjusts the parameters of 
runtime monitors that correspond to assumptions in the IRM-SA model. As in the case 
of PPA, new assumptions are indirectly weighted (by nature of (1+1)-ONLINE EA) 
according to their impact in the running system.  

4.2 Experimental Setting and Results 
Having the implementations of the three MTASs in place, we implemented a simple 
scenario from the firefighter coordination system (Section 2.1) to acquire initial 
evidence regarding the feasibility and effectiveness of the three MTASs5.  

 
5 All the results together with the scripts used to analyze the data can be downloaded from 
http://d3s.mff.cuni.cz/~skoda/public/TCPS/results.zip  

 
Fig. 8. IRM-SA model of the evaluation example. 

Knowledge 
field 

Distance 
metric (µ) 

Tolerable 
distance (Τ) 

Confidence 
level (a) 

position Euclidean 4 m 0.9 

temperature difference 20 °C  0.8 

battery  difference 0.5 % 0.9 
 

Fig. 9.  Distance metrics, tolerable distances, and confidence levels in Firefighter knowledge fields.
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The example considers three firefighters (FF1, FF2, and FF3) moving in a building 
(Fig. 7). Each firefighter is represented by a Firefighter DEECo component (lines 
6-18 in Fig. 1), which senses its position, the surrounding temperature, and the battery 
level. FF1 and FF2 are moving together in a group, whereas FF3 is moving 
independently. The objectives of this scenario are represented by the IRM-SA model of 
Fig. 8.  

We used this simple example as testbed for experimenting with the three 
implemented MTASs. The questions we were mainly aiming to answer were:  

1. Does the application of each MTAS help the system deal with situations not 
explicitly designed for at design time?  

2. Can two or more MTASs be used at the same time and result in a positive 
combined effect to the overall utility of the system? 

To answer the above questions, we run simulations of the testbed in JDEECo. In 
particular, for answering the first question, we run a series of micro-benchmarks 
(simulation runs lasting 300 seconds each).  

To experiment with DC, we used the DC-related metadata depicted in Fig. 9. The 
values of these metadata were selected based on the domain knowledge of the designer 
and fine-tuned after few simulation runs. We instructed the simulation environment 
to introduce a fault in the temperature sensor of FF1 at the time 150s and observed 
how the system reacted to this (unexpected at design-time) situation. As expected, 
shortly after this time instance, MetaAdaptationManager was notified that the 
system cannot self-adapt based on the IRM-SA model. Since 
MetaAdaptationManager could not identify the cause of the fault, it activated all 
three MTASs simultaneously. Shortly, the APAManager and PPAManager stopped 
their execution since their changes had no effect on the system. DCManager’s meta-
adapt process, however, discovered that there is a correlation relation between the 
distance of the firefighters and their surrounding temperatures (the closer the 
firefighters are, the more similar the temperature is). It thus deployed a new ensemble 
that injected the values of the temperature field of FF3 and FF2 to the temperature 
field of FF1, whenever FF2 and FF3 were close enough to FF1. At the time 150s the 
maximal distance defining the “close enough” was 10.5m. Later in the simulation, a 
new ensemble with maximal distance 11.1m was created and deployed. Creating these 
new ensembles corresponds to adjusting the IRM-SA model of the scenario at runtime; 
the outcome is depicted in Fig. 10. It is important to stress here that the only input we 
provided for the DC were the distance metrics, tolerable distances, and confidence 

 
Fig. 10. Final IRM-SA model, after the application of the DC MTAS; the new exchange invariant is 

depicted in bold. 
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levels for the three knowledge field of Firefighter (Fig. 9). DC automatically 
detected the correlation and created the new ensemble.  

A graphical illustration of the impact of the application of DC is provided in Fig. 11. 
The solid line represents the actual temperature of FF1’s surroundings. The dashed 
line represents the belief about the temperature in the simulation run that does not 
employ MTASs (the baseline for the evaluating MTASs). The dotted line represents 
the belief about the temperature when MTASs are employed. Before time 150s, the 
belief about the temperature is rather accurate—disturbed only by random noise and 
movement of the firefighter between temperature sampling. After the temperature 
sensor stops working (time 150s), when MTASs are not employed, FF1 obtains no more 
temperature updates so that the temperature belief becomes obsolete and unreliable 
(horizontal part of the dashed line). In case MTASs are employed (dotted line), the 
temperature belief is being updated by the temperature sensed by FF2 and FF3, as 
explained above. Even though there is a delay and inaccuracy, the temperature belief 
is usable. 

To experiment with PPA and APA (and their combination), we performed another 
set of simulation runs. We instructed the simulation environment to increase the 
inaccuracy of position readings of FF1 at the time 50s. Shortly, 
MetaAdaptationManager was notified that the system cannot self-adapt according 
to the IRM-SA model as the position inaccuracy it higher than assumed (cf. invariant 
(7) in Fig. 8). Since the position values were continued to get updated (only with 
inaccurate readings), MetaAdaptationManager did not activate DC, but only PPA 
and APA.  PPA identified invariant (8): “FF:position is determined every 1.25 secs” as 
a candidate for improvement and decreased the period of determinePositionFromGPS 
in FF1 (lines 12-17 in Fig. 1). This decrease reduced also the inaccuracy of position 
values between subsequent readings. This partially mitigated the effect of the 
increased inaccuracy of the position readings. Notably, there were several runs of the 
PPAManager’s meta-adapt process. In each run, a new process with smaller period 
(reduction by 250ms) than the adaptee was created and deployed. However, the period 

 
Fig. 11. The evolution of actual and belief temperature of FF1. 
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could not be reduced below a given lower limit (250ms in this case), which means that 
PPA itself would not have been able to improve the position inaccuracy back below the 
required boundary (1.5 m). This situation was addressed by APA, which identified 
assumption (7) (Fig. 8) as a candidate for relaxation and increased the threshold of the 
allowed position inaccuracy (while still keeping it within designated bounds). These 
two changes finally resulted in a system state valid with respect to the IRM-SA 
specification. 

Fig. 12 shows the influence of PPA and APA on the system after the malfunction 
occurs at the time 50s. The boxplots depict the difference between the actual position 
of FF1 and its position belief (sampled every 1250ms). The left-most boxplot depicts 
the baseline. The middle and right-most boxplots depict the data obtained in the 
interval 50s to 300s. While the middle boxplot corresponds to not employing MTASs, 
the right-most indicates the effect of MTASs application. Clearly, the increased 
inaccuracy of the position readings increased the difference between the actual and 
believed position; using the PPA and APA helped mitigate this problem. The 2-sample 
t-test that we performed on the samples depicted in the middle and right-most boxplot 
showed (at confidence interval 95%) a statistical significant difference with p-value < 
2.2e-16. The horizontal dashed and dotted-dashed lines denote the assumed limit on 
position inaccuracy—the former corresponds to the original limit (1.5 m), the latter to 
the limit relaxed by the APA MTAS (1.9 m).  

5. RELATED WORK 
Self-adaptation has been a flourishing research topic within the software engineering 
community (B. Cheng, de Lemos, et al. 2009; de Lemos et al. 2013; Salehie and 
Tahvildari 2009) and has been primarily tackled by (i) modeling and model-driven 
engineering (Zhang and Cheng 2006; Goldsby and Cheng 2008; Morandini and Perini 
2008), (ii) control theory (Patikirikorala et al. 2012; Filieri et al. 2011; Filieri, 
Hoffmann, and Maggio 2014; Filieri et al. 2015), and (iii) software architecture (Garlan 
et al. 2004; S.-W. Cheng, Garlan, and Schmerl 2012; Sykes et al. 2008; Kramer and 
Magee 2009). 

 
Fig. 12. The distance between actual position and belief position. It is split into the case with and 

without meta-adaptation, and into the interval before and after the position sensor faults. 
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Although tailored to architecture-based self-adaptation, the proposed MTASs 
concept can be used to complement different approaches from (i)-(iii) to extend the 
limits of adaptability of a system. For example, if a model-driven approach is able to 
generate new behavior models and select among them at runtime, there is a good 
chance that it can be articulated as a MTAS. AVIDA-MDE stands as a good example 
towards this direction  (Goldsby and Cheng 2008). Therein, a MTAS takes the  form of 
generating behavioral models (UML state diagrams) via a digital evolution-based 
approach, backed by an evolutionary computation platform (Ofria and Wilke 2004).  In 
AVIDA-MDE, a MTAS fitness function is expressed in terms of both the non-functional 
characteristics and the latent functional properties that the generated models exhibit. 
Although AVIDA-MDE is an offline approach, its importance lies in the automatic 
generation of strategies, which the MTASs idea relies upon. Methods of synthetizing 
computationally diverse program variants (Baudry et al. 2014) have been similar 
sources of our inspiration. 

To deal with uncertainty at runtime, Veritas, a method that uses evolutionary 
computation to adapt test cases (Fredericks, DeVries, and Cheng 2014) was an 
inspiration for our APA MTAS. The main idea of it is to apply (1+1)-ONLINE algorithm 
to generate new test cases that better reflect the changes in the behavior of a self-
adaptive system, i.e., produce less false negatives when exercised in the running 
system. In comparison, a MTAS takes the form of generating new test cases by 
iterative application of the evolutionary algorithm. The overall system fitness is 
measured by fitness functions (similarly to our APA MTAS) and can be interpreted as 
the fitness function of APA. Veritas has been integrated in a framework that addresses 
assurance at run time in face of uncertainty called Proteus (Fredericks and Cheng 
2015). Apart from online adaptive testing mentioned above, component-based 
integration testing has also been advocated to support runtime compliance checking of 
self-adaptive systems (da Silva and de Lemos 2011).  

Extending the envelope of adaptability of a system in order to deal with uncertainty 
(that effectively “drives” self-adaptation) has been pursued at different levels. 
Important ideas have been spurred at the requirements engineering community in 
approaches such as FLAGS (Baresi and Pasquale 2010; Baresi, Pasquale, and Spoletini 
2010), Evolution Requirements (Souza, Lapouchnian, and Mylopoulos 2012; Souza et 
al. 2012), and the combination of KAOS with RELAX (B. Cheng, Sawyer, et al. 2009).  

FLAGS focuses on modeling “adaptation requirements”, i.e., such requirements 
that concern countermeasures to be taken when application requirements fail. FLAGS 
relies on the goal, operation, and object models of KAOS (Lamsweerde 2008) and 
extends them. The main concept is an adaptation goal, a special type of goal that 
corresponds to a countermeasure to be applied when a “conventional” goal fails to meet 
its satisfaction criteria. To model such criteria, FLAGS introduces the notion of fuzzy 
goal. For the formal specification of fuzzy goals, RELAX language (Whittle et al. 2010) 
was employed (Baresi and Pasquale 2011). According to the degree of satisfaction of 
goals at runtime, adaptation goals can be triggered, resulting into counteractions that 
include adding/removing goals, operations, or objects, modifying the membership 
function of goals, and adjusting the pre- and post-conditions of operations (Baresi, 
Pasquale, and Spoletini 2010).  

Evolution Requirements (EvoReqs) focuses on modeling the requirements that 
cause the evolution of other requirements. It is model-based; since (traditional) 
requirements are modeled as goals, evolution requirements are then modeled as event-
condition-action rules that refer to the events acting as guard conditions for the goals. 
The main idea is that when a requirement cannot be satisfied anymore, it is changed. 
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Examples of changes include retrying after some time, relaxing the requirement, 
delegating it to a human actor, and replacing a domain assumption with a system task 
(Souza et al. 2012).    

The main differences of FLAGS and EvoReqs to our MTASs idea is that (i) they 
focus primarily on requirements specification, while our approach focuses more on 
runtime behavior (although, in many cases, important design effort needs to be 
furnished, cf. Section 6.5), and (ii) they cannot handle situations not explicitly designed 
for, since each situation and corresponding strategy has to be modeled upfront.   

Another noteworthy approach to deal with environmental uncertainty at the 
requirements level is the combination of KAOS method with the RELAX language (B. 
Cheng, Sawyer, et al. 2009). In this approach, goals are first elicited and decomposed 
forming a KAOS model (Lamsweerde 2008). Then obstacles/threats are identified, 
corresponding to environmental conditions that pose uncertainty at development time 
and may warrant dynamic adaptation at runtime. Finally, “mitigation tactics” are 
devised in order to deal with the identified threats. These tactics take the form of 
adding low-level sub-goals, relaxing a goal (adding flexibility to goal satisfaction using 
RELAX), or adding a high-level goal. We view the above approach complementary to 
ours: While they focus on identifying application-specific threats that are anticipated 
at development time and on providing means to mitigate them, we focus on identifying 
domain-specific contexts and generating and ranking runtime strategies that are to be 
triggered in such contexts.  

A discussion on the four different levels of requirements engineering for and in self-
adaptive systems (Berry, Cheng, and Zhang 2005) acknowledges the difficulty in 
developing self-adaptive systems able to adapt to changes not explicitly designed for 
at runtime; our MTASs idea is a step towards this direction. With respect to this four-
level classification, we view the MTASs as an enhancement of Level 3 RE, since even 
though “they are designed by humans” they determine adaptation elements in an 
automated way. 

Finally, a three-layer architecture for evolution of dynamically adaptive systems 
has been proposed also by (Perrouin et al. 2012). Contrary to their work, which focuses 
on using an evolution layer for switching between available self-adaptation strategies, 
we propose the top layer to create new self-adaptation strategies at runtime. In general, 
our approach basically follows the principle of architectural hoisting (Fairbanks 
2014)—separating concerns by assigning the possibility for a global system property 
(here self-adaptation) to system architecture. 

6. DISCUSSION 

6.1 Problem Space Coverage  
Generally, if a system is subject to environment uncertainty, the extent of the problem 
space that should be covered by system’s adaptability is unknown. This makes it 
impossible to devise all adaptation strategies at design time. It of course makes it also 
impossible to presume all necessary MTASs, since each MTAS covers only a certain 
sub-space of the problem space. However, compared to pre-designed strategies, the 
MTASs involves observation of system’s and environment’s evolution at runtime and 
utilizes this to formulate new strategies. As such, it has the potential to carry through 
higher expressive power than pre-designed strategies and consequently achieve higher 
coverage of the problem space. Moreover, it is possible to combine MTASs with 
orthogonal intent, as we illustrated in Sect. 4, and thus to increases the problem space 
coverage even further. 
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6.2 Interplay of Meta-Adaptation Strategies 
We assume that MTASs may overlap in their actions. This brings up the question of 
their combined effect. Specifically, the interesting case is when more MTASs generate 
two strategies that the adaptation manager can exploit at the same time. In the 
running example, this is illustrated by the interplay of PPA and APA to address the 
problem of low inaccuracy of position readings. PPA creates a strategy of sensing 
position more frequently, while APA creates a strategy of relaxing the requirements 
on inaccuracy. It is the responsibility of the meta-adaptation mechanism to strike a 
balance between the overlapping strategies. For instance, in our running example, this 
is achieved by associating APA with a priority lower than PPA, which effectively 
applies APA only when PPA hits its limits (a period cannot be lowered any further).  

In general, each MTAS has an impact on the cost and risk in the system—e.g., more 
frequent sensing of position increases power consumption, while relaxing the 
requirements may increase the risk that the system does not promptly react to 
changing conditions. To address related trade-offs we assume fitness functions 
associated with system goals (invariants in IRM-SA) will be provided by the user and 
employed by the meta-adaptation mechanism (e.g. by MetaAdaptationManager). In 
a similar vein, the meta-adaptation mechanism might periodically check the system’s 
performance and cost and propose MTASs that can optimize them—e.g., APA may 
strengthen a previously relaxed requirement. Nevertheless these issues are out of the 
scope of this paper. 

6.3 Generality of the approach 
Though the combination of IRM-SA and DEECo was used in this paper to demonstrate 
the concept of MTASs, there are other approaches to self-adaptation that can be 
extended by MTASs. An option is to extend Rainbow (Garlan et al. 2004) and Stitch 
(S.-W. Cheng, Garlan, and Schmerl 2012). Stitch is a language for specifying 
adaptation strategies, tailored for the domain of system administration. The strategy 
concept in Stitch encompasses tactics, which in turn consist of operators as system-
provided configuration commands (e.g., “start new virtual machine”). A tactic in Stitch 
is a specification of an activity with a pre- and post-condition and an associated action, 
while a strategy is a specification of a process, each step of which involves the 
conditional execution of a tactic. In this respect, a Stich strategy loosely corresponds 
to an IRM-SA model (but not to a MTAS, since it does not generate new strategies), 
while a Stitch tactic to an IRM-SA invariant. Given these facts, embedding the MTASs 
concept into Stitch is a viable and promising option. 

All in all, the concept of hoisting the handling of situations the system is not 
explicitly designed for at a separate architecture layer is fairly general. The particular 
MTASs are domain-specific and as a result, they can be applied to different 
applications of the same domain—CPS. In our recent work, we applied them to a 
robotic scenario featuring different CPS challenges (Gerostathopoulos et al. 2016).   

6.4 Other Meta-Adaptation Strategies  

In addition to the three MTASs introduced in Section 3 we describe here initial ideas 
on the formulation of additional MTASs, stemming from our consideration when it is 
both desirable and realistic to create new strategies at runtime.  

For instance, an idea for a potential MTAS is to allow a component to perform a 
process that is originally designed for a different component with similar knowledge. 
While from the perspective of a single component this is providing a way to extend its 
set of available strategies, from a system perspective this can be seen as a possibility 
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for runtime optimization of the data flow in the system. Along these lines, a “Data Flow 
Adjusting” (DFA) MTAS would be responsible for obtaining a system level view and 
instructing individual components to apply novel strategies that have the potential to 
optimize system-level properties such as latency and performance. For example, DFA 
could be useful in a case where component A cannot communicate with component B 
anymore (e.g., because of unreliable connection), which results into violating certain 
coordination requirements (captured by exchange invariants in IRM-SA). In such a 
case, the component A might obtain adequate data from a component C, or even create 
a process that senses the missing data directly.  

Another idea for a potential MTAS is rooted in the observation that traditional self-
adaptation approaches operating at a single component rely on sensing specific data 
either directly or indirectly (via communication with other components). When a faulty 
sensor starts emitting wrong data, a “Faulty Sensor Isolation” (FSI) MTAS could 
instruct the components that consume the wrong data to disregard it. In the context of 
IRM-SA and DEECo, FSI would take the form of creating a new ensemble that copies 
only the subset of “healthy” data from the component A (with the malfunctioning 
sensor) to component B, and using this new ensemble to replace the existing one 
mediating so far the communication of A and B.  

Self-adaptation is also often specified as switching between operational modes of 
components in a component-based system. Such switching is governed by mode guards 
and is usually deterministic. Nevertheless, having a MTAS that can introduce 
probabilistic mode switching and tryout different transition probabilities, holds the 
potential of more flexible reactions to corner cases where components get stuck into 
their over-constrained behavior specified by too rigid mode switching. 

Finally, a potential MTAS idea comes from the straightforward extension of PPA to 
consider adjusting not only the periods of component processes, but also the periods of 
communication activities (exchange invariants in IRM-SA, such as invariant (2) in Fig. 
2). In such a case, an “Exchange Period Adjusting” (EPA) MTAS would modify the 
communication activities and, at the same time, their effect would have to be evaluated 
via calculating the overall system fitness in a similar vein as in PPA and APA. 

6.5 A Classification Scheme for Meta-Adaptation Strategies  
In order to examine our experience with MTASs so far and systematize the efforts for 
deriving additional MTASs, we detail here a set of dimensions that form a preliminary 
classification scheme for MTASs (Fig. 13). The concepts of adaptation elements of 
detection and monitoring techniques, decision-making procedures (Berry, Cheng, and 
Zhang 2005) were used as inspiration for the first two dimensions. As to adaptive 
mechanisms (also Berry, Cheng, and Zhang 2005), all MTASs considered in this paper 
rely on architecture-based adaptation mechanisms, so that we do not explicitly include 
the adaptive mechanisms dimension in Fig. 13. 
Detection and monitoring techniques. The first step in meta-adapting a self-
adaptation mechanism is to determine the context of meta-adaptation, that is, the class 
of situations that warrant meta-adaptation in the system (MTAS context). It is 
important that we are not interested in identifying the situations themselves, but 
rather their class, since MTASs are (or should be) specific to a domain and not a specific 
application. In a naïve approach, we can advocate that the system should meta-adapt 
simply when the existing self-adaptation mechanism fails to deliver its goal, i.e., to 
adjust the system towards meeting its requirements. A key issue is in which situations 
does this happen, and, more importantly, what needs to be monitored in order to 
determine the class of such problematic situations at runtime. 
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In some MTAS contexts, the source of the fault is localized, so detection and 
identification can be localized as well. This is for example the case of DC; the situations 
belonging to the context of DC can be identified by looking at the outdatedness of data 
sensed by sensors. If the sensed data is outdated, there is evidence that the sensor 
stopped functioning. In MTAS contexts, data from different parts of a system need to 
be monitored, as the source of fault is not localized. This is, e.g. the case of DFA context: 
Monitoring a single component/sensor does not typically suffice in detecting a poorly 
performing data-flow architecture. Needless to say, system-level monitoring puts 
forward more design and operational challenges for a MTAS w.r.t. its overhead in the 
system. 
Decision-making procedures. Once a MTAS context is identified, the corresponding 
MTAS is activated (assuming at least one exists). A decision-making procedure then 
takes place in order to create new strategies at runtime and choose the most promising 
ones to add to the underlying self-adaptation mechanism. This procedure differs from 
among MTASs w.r.t to (i) the amount of data that needs to be collected, and (ii) the 
amount of effort that needs to be invested upfront in the configuration/customization 
of the MTAS’s decision-making procedure by the system designer.  

 For example, DC needs to collect an extensive amount of data in order to create 
new ensembles on-the-fly, and a considerable design effort to provide appropriate 
domain-specific distance metrics, tolerable distances, and confidence levels for each 
knowledge field in the system (cf. Fig. 9). Both PPA and APA need to collect a moderate 
amount of data to determine the adaptees and to measure the overall system fitness. 
Moreover, design effort is needed in choosing between the variation points of the PPA 
and APA algorithms (Fig. 6). On the other hand, FSI does not need to collect a lot of 
data as its decision-making is straightforward once a fault has been identified; no 
design effort is needed either.    

Meta-Adaptation 
Strategy 

Detection 
and 

monitoring 
techniques 

Decision-making 
procedures Applicability 

attributes  Amount of 
data 

Amount of 
design 
effort 

Knowledge Exchange by 
Data Classification (DC) localized  large moderate data correlation 

infrastructure 
Process Period 

Adjusting (PPA) localized moderate moderate time-scheduled 
processes 

Assumption Parameters 
Adjusting (APA)  localized moderate moderate 

domain knowledge 
captured by 

behavioral models  

Data Flow Adjusting 
(DFA) system-level large moderate 

data flow model 
and optimization 

criteria 
Faulty Sensor Isolation 

(FSI) system-level little almost 
none 

reliability models 
of sensors 

Exchange Period 
Adjusting (EPA) system-level moderate moderate time-scheduled 

communication 
 

Fig. 13.  Positioning of MTASs introduced in this paper in the tentative classification scheme comprised 
of three dimensions. All these MTASs rely on architecture-based adaptation mechanisms.
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Applicability attributes. Each MTAS makes a number of assumptions regarding the 
underlying system. These assumptions form the perimeter of applicability of each 
MTAS. For example, DC assumes that a data correlation infrastructure is available. 
PPA, resp. EPA, assume that there are some time-scheduled processes, resp. 
communication, in the system. APA assumes that assumptions modeling and 
monitoring relies on domain knowledge captured by timed automata or other 
behavioral models. DFA assumes that there is a data flow model of the whole system 
with inputs and outputs for each component. Finally, FSI assumes that the reliability 
of sensing devices is modeled a priori (so that incorrect output can be detected).     

7. CONCLUSION 
In this paper, we have focused on the problem of dealing with the large number of 
situations and corresponding self-adaption strategies which form the envelope of 
adaptability in self-adaptive cyber-physical systems. We claimed that explicitly 
designing for all the different situations is not viable and proposed to generate new 
self-adaptation strategies at runtime to reflect the changes in the environment. Our 
approach takes the form of a three-layer architectural style which hoists the handling 
of situations the system is not explicitly designed for to the architectural level. The top 
layer of our approach consists of a number of meta-adaptation strategies which 
collectively enhance the envelope of adaptability of a system. 

In addition to laying out the general concept of meta-adaptation strategies, we have 
exemplified the concept by three rather diverse such strategies: Knowledge Exchange 
by Data Classification, Process Period Adjusting, and Assumptions Parameters 
Adjusting. We have implemented the proposed approach on top of IRM-SA and DEECo 
as plugins to the IRM-SA and provided an evaluation which shows that a combination 
of such meta-adaptation strategies has indeed the result of extending the system’s 
adaptability and robustness. 

The meta-adaptation strategies presented in this paper (including the preliminary 
ones discussed in Sections 6.4 and 6.5) do not cover the whole space of potential meta-
adaptation strategies. We also note that even though the application of different meta-
adaptation strategies allows for systematic gradual design via separation of concerns, 
it has to be carefully designed and evaluated. Finally, we believe that by introducing 
the idea of meta-adaptation strategies as means for dynamically extending the limits 
of system’s adaptability we provide helpful inspiration for future research on self-
adaptive systems. 

REFERENCES 
Al Ali, Rima, Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and 

Frantisek Plasil. 2014. “DEECo: An Ecosystem for Cyber-Physical Systems.” In Companion Proc. of 
ICSE ’14, 610–11. ACM Press. doi:10.1145/2591062.2591140. 

Baresi, Luciano, and Liliana Pasquale. 2010. “Live Goals for Adaptive Service Compositions.” In Proc. of 
SEAMS ’10, 114–123. SEAMS ’10. New York, NY, USA: ACM. doi:10.1145/1808984.1808997. 

———. 2011. “Adaptation Goals for Adaptive Service-Oriented Architectures.” In Relating Software 
Requirements and Architectures, edited by Paris Avgeriou, John Grundy, Jon G. Hall, Patricia Lago, and 
Ivan Mistrík, 161–81. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-642- 
21001-3_10. 

Baresi, Luciano, Liliana Pasquale, and Paola Spoletini. 2010. “Fuzzy Goals for Requirements-Driven 
Adaptation.” In Proc. of RE ’10, 125–34. IEEE. doi:10.1109/RE.2010.25. 

Batista, Thais, Ackbar Joolia, and Geoff Coulson. 2005. “Managing Dynamic Reconfiguration in Component-
Based Systems.” In Software Architecture, edited by Ron Morrison and Flavio Oquendo, 1–17. Lecture 
Notes in Computer Science 3527. Springer Berlin Heidelberg. 
http://link.springer.com/chapter/10.1007/11494713_1. 

Baudry, B., M. Monperrus, C. Mony, F. Chauvel, F. Fleurey, and S. Clarke. 2014. “DIVERSIFY: Ecology-
Inspired Software Evolution for Diversity Emergence.” In Proc. of CSMR-WCRE ’14, 395–98. 



24                                                                                                                            I. Gerostathopoulos et al. 
 

 
ACM Transactions on Cyber-Physical Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

doi:10.1109/CSMR-WCRE.2014.6747203. 
Berry, Daniel M, Betty H C Cheng, and Ji Zhang. 2005. “The Four Levels of Requirements Engineering for 

and in Dynamic Adaptive Systems.” In Proc. of the 11th International Workshop on Requirements 
Engineering Foundation for Software Quality, Porto, Portugal, 95–100. 

Bredeche, N., E. Haasdijk, and A. E. Eiben. 2010. “On-Line, On-Board Evolution of Robot Controllers.” In 
Artifical Evolution, edited by Pierre Collet, Nicolas Monmarché, Pierrick Legrand, Marc Schoenauer, 
and Evelyne Lutton, 110–21. Lecture Notes in Computer Science 5975. Springer Berlin Heidelberg. 
http://link.springer.com/chapter/10.1007/978-3-642-14156-0_10. 

Bures, Tomas, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and Frantisek Plasil. 
2013. “DEECo – an Ensemble-Based Component System.” In Proc. of CBSE’13, 81–90. ACM. 
doi:10.1145/2465449.2465462. 

Cheng, Betty, Rogerio de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil Becker, 
et al. 2009. “Software Engineering for Self-Adaptive Systems: A Research Roadmap.” In Software 
Engineering for Self-Adaptive Systems, 1–26. Springer Berlin Heidelberg. 
http://www.springerlink.com/index/H380742725036312.pdf. 

Cheng, Betty, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. “A Goal-Based Modeling Approach to 
Develop Requirements of an Adaptive System with Environmental Uncertainty.” In Proc. of 
MODELS ’09, 1–15. Springer Berlin Heidelberg. doi:10.1007/978-3-642-04425-0_36. 

Cheng, Shang-Wen, David Garlan, and Bradley Schmerl. 2012. “Stitch: A Language for Architecture-Based 
Self-Adaptation.” Journal of Systems and Software 85 (12): 1–38. doi:10.1016/j.jss.2012.02.060. 

da Silva, Carlos Eduardo, and Rogério de Lemos. 2011. “Dynamic Plans for Integration Testing of Self-
Adaptive Software Systems.” In Proc. of SEAMS ’11, 148–157. SEAMS ’11. New York, NY, USA: ACM. 
doi:10.1145/1988008.1988029. 

David, Pierre-Charles, Thomas Ledoux, Marc Léger, and Thierry Coupaye. 2009. “FPath and FScript: 
Language Support for Navigation and Reliable Reconfiguration of Fractal Architectures.” Annals of 
Telecommunications 64 (1–2): 45–63. doi:10.1007/s12243-008-0073-y. 

de Lemos, Rogerio, Holger Giese, Hausi A. Muller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley 
Schmerl, et al. 2013. “Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.” 
In Software Engineering for Self-Adaptive Systems II, 7475:1–32. LNCS. Springer Berlin Heidelberg. 
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1. 

Elkhodary, Ahmed, Naeem Esfahani, and Sam Malek. 2010. “FUSION: A Framework for Engineering Self-
Tuning Self-Adaptive Software Systems.” In Proc. of FSE ’10, 7–16. FSE ’10. ACM. 
doi:10.1145/1882291.1882296. 

ERCIM. 2014. “Special Theme: Cyber-Physical Systems,” April. 
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns: Elements of 

Reusable Object-Oriented Software. Addison Wesley Professional. 
Fairbanks, George. 2014. “Architectural Hoisting.” IEEE Software 31 (4). 

doi:http://doi.ieeecomputersociety.org/10.1109/MS.2014.82. 
Filieri, Antonio, Carlo Ghezzi, Alberto Leva, Martina Maggio, and Politecnico Milano. 2011. “Self-Adaptive 

Software Meets Control Theory: A Preliminary Approach Supporting Reliability Requirements.” In Proc. 
of ASE ’11, 283–92. IEEE. doi:10.1109/ASE.2011.6100064. 

Filieri, Antonio, Henry Hoffmann, and Martina Maggio. 2014. “Automated Design of Self-Adaptive Software 
with Control-Theoretical Formal Guarantees.” In Proc. of ICSE ’14, 299–310. ACM Press. 
doi:10.1145/2568225.2568272. 

Filieri, Antonio, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’Ippolito, Ilias Gerostathopoulos, 
Andreas Berndt Hempel, Henry Hoffmann, et al. 2015. “Software Engineering Meets Control Theory.” 
In Proc. of SEAMS ’15, 71–82. IEEE. http://dl.acm.org/citation.cfm?id=2821357.2821370. 

Fredericks, Erik M., and Betty H. C. Cheng. 2015. “Automated Generation of Adaptive Test Plans for Self-
Adaptive Systems.” In Proc. of SEAMS ’15, 157–68. IEEE. 
http://dl.acm.org/citation.cfm?id=2821357.2821385. 

Fredericks, Erik M., Byron DeVries, and Betty H. C. Cheng. 2014. “Towards Run-Time Adaptation of Test 
Cases for Self-Adaptive Systems in the Face of Uncertainty.” In Proc. of SEAMS ’14, 17–26. ACM Press. 
doi:10.1145/2593929.2593937. 

Garlan, David, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste. 2004. 
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.” Computer 37 (10): 46–54. 
doi:10.1109/MC.2004.175. 

Gerostathopoulos, Ilias, Tomas Bures, Petr Hnetynka, Adam Hujecek, Frantisek Plasil, and Dominik Skoda. 
2015. “Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems.” In Proc. of ECSA ’15, 45–
52. Springer. doi:10.1007/978-3-319-23727-5_4. 

Gerostathopoulos, Ilias, Tomas Bures, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, Frantisek Plasil, and 
Noël Plouzeau. 2016. “Self-Adaptation in Software-Intensive Cyber–physical Systems: From System 
Goals to Architecture Configurations.” Journal of Systems and Software. Accessed June 15. 
doi:10.1016/j.jss.2016.02.028. 



Strengthening Adaptation in Cyber-Physical Systems via Meta-Adaptation Strategies 25  

 
ACM Transactions on Cyber-Physical Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

Gerostathopoulos, Ilias, Dominik Skoda, Frantisek Plasil, Tomas Bures, and Alessia Knauss. 2016. 
“Architectural Homeostasis in Self-Adaptive  Software-Intensive Cyber-Physical Systems.” In In Proc. 
of the 10th European Conference on Software Architecture, to Appear. 

Ghezzi, Carlo, Leandro Sales Pinto, Paola Spoletini, and Giordano Tamburrelli. 2013. “Managing Non-
Functional Uncertainty via Model-Driven Adaptivity.” In Proc. of ICSE’13, 33–42. ICSE ’13. IEEE. 
http://dl.acm.org/citation.cfm?id=2486788.2486794. 

Goldsby, HJ, and BHC Cheng. 2008. “Automatically Generating Behavioral Models of Adaptive Systems to 
Address Uncertainty.” In Proc. of MODELS’08, 568–83. Springer Berlin Heidelberg. doi:10.1007/978-3-
540-87875-9_40. 

Hirsch, Dan, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. 2006. “Modes for Software Architectures.” In 
Software Architecture, edited by Volker Gruhn and Flavio Oquendo, 113–26. Lecture Notes in Computer 
Science 4344. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/11966104_9. 

Kephart, Jeffrey, and David Chess. 2003. “The Vision of Autonomic Computing.” Computer 36 (1): 41–50. 
Keznikl, Jaroslav, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos, Petr Hnetynka, and Nicklas Hoch. 

2013. “Design of Ensemble-Based Component Systems by Invariant Refinement.” In Proc. of CBSE’13, 
91–100. ACM. doi:10.1145/2465449.2465457. 

Kramer, Jeff, and Jeff Magee. 2007. “Self-Managed Systems: An Architectural Challenge.” In Proc. of 
FOSE’07, 259–68. IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221625. 

———. 2009. “A Rigorous Architectural Approach to Adaptive Software Engineering.” Journal of Computer 
Science and Technology 24 (2): 183–88. doi:10.1007/s11390-009-9216-5. 

Lamsweerde, Axel Van. 2008. “Requirements Engineering: From Craft to Discipline.” In Proc. of FSE ’08, 
238–49. ACM. doi:10.1145/1453101.1453133. 

Morandini, Mirko, and Anna Perini. 2008. “Towards Goal-Oriented Development of Self-Adaptive Systems.” 
In Proc. of SEAMS ’08, 9–16. ACM. doi:10.1145/1370018.1370021. 

NIST. 2012. “Cyber-Physical Systems: Situation Analysis of Current Trends , Technologies , and Challenges.” 
Ofria, Charles, and Claus O. Wilke. 2004. “Avida: A Software Platform for Research in Computational 

Evolutionary Biology.” Artificial Life 10 (2): 191–229. doi:10.1162/106454604773563612. 
Patikirikorala, Tharindu, Alan Colman, Jun Han, and Liuping Wang. 2012. “A Systematic Survey on the 

Design of Self-Adaptive Software Systems Using Control Engineering Approaches.” In Proc. of 
SEAMS’12, 33–42. IEEE. doi:10.1109/SEAMS.2012.6224389. 

Perrouin, Gilles, Brice Morin, Franck Chauvel, Franck Fleurey, Jacques Klein, Yves Le Traon, Olivier 
Barais, and Jean-Marc Jezequel. 2012. “Towards Flexible Evolution of Dynamically Adaptive Systems.” 
In Proc. of ICSE ’12, 1353–56. IEEE. http://dl.acm.org/citation.cfm?id=2337223.2337416. 

Ramirez, Andres J., and Betty H. C. Cheng. 2010. “Design Patterns for Developing Dynamically Adaptive 
Systems.” In Proc. of SEAMS ’10, 49–58. SEAMS ’10. New York, NY, USA: ACM. 
doi:10.1145/1808984.1808990. 

Ramirez, Andres J., Betty HC Cheng, Philip K. McKinley, and Benjamin E. Beckmann. 2010. “Automatically 
Generating Adaptive Logic to Balance Non-Functional Tradeoffs during Reconfiguration.” In 
Proceedings of the 7th International Conference on Autonomic Computing, 225–234. ACM. 
http://dl.acm.org/citation.cfm?id=1809080. 

Ramirez, Andres J., David B. Knoester, Betty HC Cheng, and Philip K. McKinley. 2009. “Applying Genetic 
Algorithms to Decision Making in Autonomic Computing Systems.” In Proc. of ICAC ’09, 97–106. ACM. 
doi:10.1145/1555228.1555258. 

Salehie, Mazeiar, and Ladan Tahvildari. 2009. “Self-Adaptive Software: Landscape and Research 
Challenges.” ACM Transactions on Autonomous and Adaptive Systems 4 (2, May): 1–40. 
doi:10.1145/1516533.1516538. 

———. 2012. “Towards a Goal-Driven Approach to Action Selection in Self-Adaptive Software.” Softw. Pract. 
Exper. 42 (2): 211–233. doi:10.1002/spe.1066. 

Souza, Vítor E. Silva, Alexei Lapouchnian, Konstantinos Angelopoulos, and John Mylopoulos. 2012. 
“Requirements-Driven Software Evolution.” Computer Science - Research and Development 28 (4): 311–
29. doi:10.1007/s00450-012-0232-2. 

Souza, Vítor E. Silva, Alexei Lapouchnian, and John Mylopoulos. 2012. “(Requirement) Evolution 
Requirements for Adaptive Systems.” In Proc. of SEAMS ’12, 155–64. doi:10.1109/SEAMS.2012.6224402. 

Sykes, Daniel, William Heaven, Jeff Magee, and Jeff Kramer. 2008. “From Goals to Components: A 
Combined Approach to Self-Management.” In Proc. of SEAMS ’08, 1–8. ACM. 
doi:10.1145/1370018.1370020. 

Whittle, Jon, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel Bruel. 2010. “RELAX: A 
Language to Address Uncertainty in Self-Adaptive Systems Requirement.” Requirements Engineering 
15 (2): 177–96. doi:10.1007/s00766-010-0101-0. 

Yuan, Eric, Naeem Esfahani, and Sam Malek. 2014. “Automated Mining of Software Component 
Interactions for Self-Adaptation.” In Proc. of SEAMS ’14, 27–36. ACM. doi:10.1145/2593929.2593934. 

Zhang, Ji, and Betty H. C. Cheng. 2006. “Model-Based Development of Dynamically Adaptive Software.” In 
Proc. of ICSE ’06, 371–380. ICSE ’06. New York, NY, USA: ACM. doi:10.1145/1134285.1134337.  


