
Self-Adaptation in Software-Intensive Cyber-Physical
Systems: from System Goals to Architecture

Configurations
Ilias Gerostathopoulos1

gerostat@in.tum.de
 Tomas Bures2,3

bures@d3s.mff.cuni.cz
Petr Hnetynka2

hnetynka@d3s.mff.cuni.cz
Jaroslav Keznikl2,3

keznikl@d3s.mff.cuni.cz

Michal Kit2

kit@d3s.mff.cuni.cz
Frantisek Plasil2

plasil@d3s.mff.cuni.cz
 Noël Plouzeau4

noel.plouzeau@irisa.fr

1Technische Universität
München

Fakultät für Informatik
Munich, Germany

 2Charles University in
Prague

Faculty of Mathematics and
Physics

Prague, Czech Republic

3Insitute of Computer
Science

Academy of Sciences of the
Czech Republic

Prague, Czech Republic

4IRISA
University of Rennes 1

Rennes, France

ABSTRACT
Design of self-adaptive software-intensive Cyber-Physical
Systems (siCPS) operating in dynamic environments is a
significant challenge when a sufficient level of dependability is
required. This stems partly from the fact that the concerns of self-
adaptivity and dependability are to an extent contradictory. In this
paper, we introduce IRM-SA (Invariant Refinement Method for
Self-Adaptation) – a design method and associated formally
grounded model targeting siCPS – that addresses self-adaptivity
and supports dependability by providing traceability between
system requirements, distinct situations in the environment, and
predefined configurations of system architecture. Additionally,
IRM-SA allows for architecture self-adaptation at runtime and
integrates the mechanism of predictive monitoring that deals with
operational uncertainty. As a proof of concept, it was
implemented in DEECo, a component framework that is based on
dynamic ensembles of components. Furthermore, its feasibility
was evaluated in experimental settings assuming decentralized
system operation.

Keywords
Cyber-physical systems; Self-adaptivity; Dependability; System
design; Component architectures

1. INTRODUCTION
Cyber-physical systems (CPS) are characterized by a network of
distributed interacting elements which respond, by sensing and
actuating, to activities in the physical world (their environments).
Compared to traditional embedded systems, CPS are becoming
more modular, dynamic, networked, and large-scale. For already a
long time, many CPS have been also increasingly dependent on
software, their most intricate and extensive constituent [40] – so
that it is natural to talk about software-intensive CSP (siCPS). In
this paper, we consider a class of siCPS that are distributed at a
large scale and inherently dynamic. Examples of siCPS are
numerous: systems for intelligent car navigation, smart electric
grids, emergency coordination systems, to name just a few.
Designing such systems is a challenging task, as one has to deal
with the different, and to an extent contradictory, concerns of
dependability and self-adaptivity. Since they often host safety-
critical applications, they need to be dependable (safe and
predictable in the first place), even when being highly dynamic.

Since siCPS operate in diverse environments (parts of the ever-
changing physical world), they need be self-adaptive [54]. An
additional issue is the inherent operational uncertainty related to
their infrastructure. Indeed, siCPS need to remain operable even
in adversarial conditions, such as network unavailability,
hardware failures, resource scarcity, etc.
Achieving synergy of dependability and self-adaptivity in
presence of operational uncertainty is hard. Existing approaches
typically succeed in addressing just one aspect of the problem. For
example, agent-oriented methodologies address conceptual
autonomy [22, 56]; component-based mode-switching methods
bring dependability assurances with limited self-adaptivity [29,
39]. Operational uncertainty is typically viewed as a separate
problem [19]. What is missing is a design method and associated
model that would specifically target the development of
dependable and self-adaptive siCPS while addressing operational
uncertainty.
Self-adaptive siCPS need to be able to adapt to distinct runtime
situations in the environment (i.e., its states as observed by the
system). This takes the form of switching between distinct
architecture configurations of the system (products in SPLs [3]).
Being reflected in system requirements, these configurations and
the associated situations can be systematically identified and
addressed via requirement analysis and elaboration, similar to
identification of adaptation scenarios in a Dynamically Adaptive
System (DAS) [32].
A problem is that an exhaustive enumeration of configurations
and situations at design time is not a viable solution in the domain
of siCPS, where unanticipated situations can appear in the
environment (external uncertainty in [24]). Moreover, another
challenge is that self-adaptive siCPS need to base their adaptation
actions not only on the current situation, but also on how well the
system can currently operate, e.g., whether certain components
can properly communicate (issue similar to agent capabilities
[72]).
In this paper we tackle these challenges by proposing an extension
to IRM [47] – a design method and associated formally grounded
model targeting siCPS requirements and architecture design. This
extension (IRM for Self-Adaptation – IRM-SA) supports self-
adaptivity and, at the same time, accounts for dependability. In
particular, dependability is supported primarily at design time

*Manuscript
Click here to view linked References

through traceability between system requirements and
configurations. Self-adaptivity is supported in the form of
defining alternative configurations at design time and switching
between them at runtime (architecture self-adaptation) to address
specific situations. In order to select a configuration at runtime,
SAT solving is employed.
In general, siCPS are networked control systems facing difficult
open issues both in terms of control theory [37] and decentralized
decision-making [8]. In this paper, we focus on a large class of
siCPS for which the pace of changes and temporary
disagreements among nodes do not prevent a fully decentralized
self-adaptation. In Section 7 we discuss these issues in more detail
and describe criteria under which a siCPS is amenable to our
approach.
To evaluate the feasibility of IRM-SA we have applied it on a
firefighter coordination case study – Firefighter Tactical Decision
System (FTDS) – developed within the project DAUM1. As proof
of the concept, we implemented self-adaptation based on IRM-SA
by extending DEECo [15] – a component model facilitating open-
ended and highly dynamic siCPS architectures. We also evaluated
the design process of IRM-SA via a controlled experiment.

1.1 Contributions
In summary, key contributions of this paper include:

i. The description of a design method and associated model
that allow modeling design alternatives in the
architecture of a siCPS pertaining to distinct situations
via systematic elaboration of system requirements;

ii. An automated self-adaptation method that selects the
appropriate architecture configuration based on the
modeled design alternatives and the perceived situation;

iii. An evaluation of how well the proposed self-adaptation
method deals with operational uncertainty via predictive
monitoring;

iv. A discussion of strategies to deal with unanticipated
situations at design time and at runtime.

1.2 Structure
The paper is structured as follows. Section 2 describes the running
example, while Section 3 presents the background on which IRM-
SA is based. Then, Section 4 overviews the core ideas of IRM-
SA. Section 5 elaborates on the modeling of different design
alternatives in IRM-SA by extending IRM, while Section 6
focuses on the selection of applicable architecture configurations
at runtime. Section 7 focuses on the intricacies of self-adaptation
in distributed settings and describes criteria under which self-
adaptation can be performed in a decentralized manner, together
with an example case. Section 8 details on our prototype
implementation of IRM-SA in DEECo. Section 9 reports on an
empirical study of IRM-SA effectiveness via a controlled
experiment. Section 10 discusses the mechanisms to cope with
unanticipated situations and the generality of IRM-SA. Section 11
positions our work with respect to the state of the art, while
Section 12 concludes the paper and outlines some yet-to-be-
addressed challenges.

1 http://daum.gforge.inria.fr/

2. RUNNING EXAMPLE
In this paper, we use as running example a simple scenario from
the FTDS case study, which was developed in cooperation with
professional firefighters. In the scenario, the firefighters belonging
to a tactical group communicate with their group leader. The
leader aggregates the information about each group member’s
condition and his/her environment (parameters considered are
firefighter acceleration, external temperature, position and oxygen
level). This is done with the intention that the leader can infer
whether any group member is in danger so that specific actions
are to be taken to avoid casualties.
On the technical side, firefighters in the field communicate via
low-power nodes integrated into their personal protective
equipment. Each of these nodes is configured at runtime
depending on the task assigned to its bearer. For example, a
hazardous situation might need closer monitoring of a certain
parameter (e.g., temperature). The group leaders are equipped
with tablets; the software running on these tablets provides a
model of the current situation (e.g., on a map) based on the data
aggregated from the low-power nodes.
The main challenge of the case study is how to ensure that
individual firefighters (nodes) retain their (a) autonomy so that
they can operate in any situation, even entirely detached from the
network and (b) autonomicity so that they can operate optimally
without supervision, while still satisfying certain system-level
constraints and goals. Examples of challenging scenarios include
(i) loss of communication between a leader and members due to
location constraints, (ii) malfunctioning of sensors due to extreme
conditions or battery drainage, and (iii) data inaccuracy and
obsoleteness due to intermittent connections. In all these cases,
firefighters have to adjust their behavior according to the latest
information available. Such adjustments range from simple
adaptation actions (e.g., increasing the sensing rate in face of a
danger) to complex cooperative actions (e.g., relying on the
nearby nodes for strategic actions when communication with the
group leader is lost).

3. BACKGROUND
Invariant Refinement Method (IRM) [47] is a goal-oriented design
method targeting the domain of siCPS. IRM builds on the idea of
iterative refinement of system objectives yielding low-level
obligations which can be operationalized by system components.
Contrary to common goal-oriented modeling approaches (e.g.,
KAOS [50], Tropos/i* [12]), which focus entirely on the problem
space and on stakeholders’ intentions, IRM focuses on system
components and their contribution and coordination in achieving
system-level objectives. IRM also incorporates the notion of
feedback loops present in autonomic and control systems, i.e., all
“goals” in IRM are to be constantly maintained, not achieved just
once. A key advantage of IRM is that it allows capturing the
compliance of design decisions with the overall system goals and
requirements; this allows for design validation and verification.
The main idea of IRM is to capture high-level system goals and
requirements in terms of invariants and, by their systematic
refinement, to identify system components and their desired
interaction. In principle, invariants describe the operational
normalcy of the system-to-be, i.e., the desired state of the system-
to-be at every time instant. For example, the main goal of our
running example is expressed by INV-1: “GL keeps track of the
condition of his/her group’s members” (Figure 1).
IRM invariants are agnostic on the language used for their
specification. Ιn this paper, plain English is used for simplicity’s

sake; passive voice has been chosen in order to adopt
a more descriptive than prescriptive style. Other
possible choices include adopting a style based on
SHALL statements commonly used in requirements
specifications, or a complete textual requirements
specification language, such as RELAX [77].
In general, invariants are to be maintained by system
components and their cooperation. At the design
stage, a component is a participant/actor of the
system-to-be, comprising internal state. Contrary to
common goal-oriented approaches (e.g., [51], [12]),
only software-controlled actors are considered. The
two components identified in the running example are
Firefighter and Officer.
As a special type of invariant, an assumption
describes a condition expected to hold about the
environment; an assumption is not expected to be
maintained by the system-to-be. In the example, INV-8
in Figure 1 expresses what the designer assumes about
the monitoring equipment (e.g., GPS).
As a design decision, the identified top-level invariants are
decomposed via so-called AND-decomposition into conjunctions
of more concrete sub-invariants represented by a decomposition
model – IRM model. Formally, the IRM model is a directed
acyclic graph (DAG) with potentially multiple top-level
invariants, expressing concerns that are orthogonal. The AND-
decomposition is essentially a refinement, where the composition
(i.e., conjunction) of the children implies the fact expressed by the
parent (i.e., the fact expressed by the composition is in general a
specialization, following the traditional interpretation of
refinement). Formally, an AND-decomposition of a parent
invariant ܫ into the sub-invariants ܫ௦ଵ, … , ௦ is a refinement, if itܫ
holds that:
௦ଵܫ .1 ∧ … ∧ ௦ܫ ⇒ (entailment)ܫ
௦ଵܫ .2 ∧ … ∧ ௦ܫ ⇏ (consistency) ݁ݏ݈݂ܽ

For example, the top-level invariant in Figure 1 is refined to
express the necessity to keep the list of sensor data updated on the
Officer’s side (INV-4) and the necessity to filter the data to identify
group members that are in danger (INV-5).
Decomposition steps ultimately lead to a level of abstraction
where leaf invariants represent detailed design of the system
constituents. There are two types of leaf invariants: process
invariants (labeled P, e.g., INV-5) and exchange invariants
(labeled X, e.g., INV-7). A process invariant is to be maintained by
a single component (at runtime, in particular by a cyclic process
manipulating the component’s state – Section 8.1). Conversely,
exchange invariants are maintained by component interaction,
typically taking the form of knowledge exchange within a group
of components (Section 8.1). In this case, exchange invariants
express the necessity to keep a component’s belief over another
component’s internal state. Here, belief is defined as a snapshot of
another component’s internal state [47] – often the case in systems
of autonomous agents [72]; inherently, a belief can get outdated
and needs to be systematically updated by knowledge exchange in
the timeframe decided at the design stage.

4. IRM-SA – THE BIG PICTURE
To induce self-adaptivity by design so that the running system can
adapt to situations, it is necessary to capture and exploit the
architecture variability in situations that warrant self-adaptation.
Specifically, the idea is to identify and map applicable

configurations to situations by elaborating design alternatives
(alternative realizations of system’s requirements); then these
applicable configurations can be employed for architecture
adaptation at runtime.
Therefore, we extended the IRM design model and process to
capture the design alternatives and applicable configurations
along with their corresponding situations. For each situation there
can be one or more applicable configurations. To deal with
operational uncertainty, we also extend the model by reasoning on
the inaccuracies of the belief.
At runtime, the actual architecture self-adaptation is performed
via three recurrent steps: (i) determining the current situation, (ii)
selecting one of the applicable configurations, and (iii)
reconfiguring the architecture towards the selected configuration.
The challenge is that mapping configurations to situations
typically involves elaborating a large number of design
alternatives. This creates a scalability issue both at design-time
and runtime, especially when the individual design alternatives
have mutual dependencies or refer to different and possibly nested
levels of abstraction. To address scalability, we employ (i)
separation of concerns via decomposition at design time; (ii) a
formal base of the IRM-SA design model and efficient reasoning
based on SAT solving for the selection of applicable
configurations at runtime (Section 6).

5. MODELING DESIGN ALTERNATIVES
5.1 Concepts addressing Self-Adaptivity
Although providing a suitable formal base for architecture design
via elaboration of requirements, IRM in its pure form does not
allow modeling of design alternatives.
Therefore, we extended the IRM design model with the concepts
of alternative decomposition – OR-decomposition – and situation.
The running example as modelled in IRM-SA is depicted in
Figure 2.
Essentially, OR-decomposition denotes a variation point where
each of the children represents a design alternative. Technically,
OR-decomposition is a refinement, where each of the children
individually implies (i.e., refines) the fact expressed by the parent.
OR-decompositions can be nested, i.e., a design alternative can be
further refined via another OR-decomposition. Formally, an OR-

Figure 1: IRM decomposition of the running example.

+ id
+ groupLeaderId
+ sensorData
+ position
+ temperature
+ acceleration

Firefighter

+ id
+ sensorDataList
+ GMInDanger

Officer

INV-2
GM::groupLeaderId==GL::id

INV-1 GL keeps track of the condition
of his/her group’s members

INV-3 GL keeps track of the
condition of the relevant members

INV-4 Up-to-date GL::sensorDataList,
w.r.t. GM::sensorData, is available

INV-6 GM::sensorData is
determined

INV-5 GL::GMInDanger is determined
from the GL::sensorDataList every 4 secs

P

INV-7 GL::sensorDataList - GL’s belief over the
GM::sensorData – is updated every 2 secs

X

INV-8 Monitoring
equipment is functioning

INV-9 GM::acceleration is
monitored every 1 sec

P
INV-11 GM::position is
determined every 1 sec

P

[GL]

1[GM]

*[GM]

1[GL]

[GM]

INV-10 GM::temperature
is monitored every 1 sec

P

Takes-role
relation

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposition

Component

PX [GM]

GroupMember
role

GroupLeader
role

[GL]

decomposition of a parent invariant ܫ into the sub-invariants
,௦ଵܫ … , :௦ is a refinement if it holds thatܫ
௦ଵܫ .1 ∨ … ∨ ௦ܫ ⇒ (alternative entailment)ܫ
௦ଵܫ .2 ∨ … ∨ ௦ܫ ⇏ (alternative consistency) ݁ݏ݈݂ܽ

Each design alternative addresses a specific situation which is
characterized via an assumption. Thus, each ܫ௦ contains at its top-
most level a characterizing assumption as illustrated in Figure 2.
For example, consider the left-most part of the refinement of INV-
3: “GL keeps track of the condition of the relevant members”,
which captures two design alternatives corresponding to the
situations where either some firefighter in the group is in danger
or none is. In the former case (left alternative), INV-7 is also
included – expressing the necessity to inform the other firefighters
in the group that a member is in danger. In this case, INV-6 and
INV-8 are the characterizing assumptions in this OR-
decomposition.
The situations addressed in an OR-decomposition may overlap,
i.e., their charactering assumptions can hold at the same time. This
is the case of INV-13 and INV-18 capturing that both one
Firefighter is in danger and a nearby colleague as well.
Consequently, there are more than one applicable configurations
and therefore a prioritization is needed (Section 6.2). As an aside,
allowing situations in an OR-decomposition to overlap also
provides a built-in fault-tolerance mechanism (Section 10.1.1).
Technically, if a design alternative in an OR-decomposition is
further refined in terms of an AND-decomposition (or vice-versa),
we omit the invariant representing the alternative and connect the
AND-decomposition directly to the OR-decomposition to
improve readability (e.g., design alternatives of INV-12).

We distinguish two kinds of invariants: computable and non-
computable. While a computable invariant can be
programmatically evaluated at runtime, a non-computable
invariant serves primarily for design and review-based validation
purposes. Thus, the characterizing assumptions need to be either
computable or decomposed into computable assumptions.
An example of a non-computable characterizing assumption is
INV-16: “No life threat”. It is AND-decomposed into the
computable assumptions INV-20 and INV-21, representing two
orthogonal concerns, which can be evaluated by monitoring the
Firefighter’s internal state.
Dependencies may also exist between invariants in design
alternatives across different OR-decompositions (cross-tree
dependencies), reflecting constraints of the physical world. These
dependencies are captured in the IRM-SA model by directed links
between invariants labeled with “requires”, resp. “collides”, which
capture the constraint that the source invariant can appear in a
configuration only with, resp. without, the target invariant. For
example, in order for INV-32 to appear in a configuration, INV-30
has to be included as well, capturing the real-life constraint where
the Personal Alert Safety System (PASS) is attached to the self-
contained breathing apparatus (SCBA) of a firefighter; thus if the
SCBA is not used, then the PASS cannot be used as well. The
“collides” dependency is not illustrated in our running example.

5.2 Concepts Addressing Dependability
In IRM-SA, dependability is mainly pursued by tracing the low-
level processes to high-level invariants. Moreover, to deal with
the operational uncertainty in dynamic siCPS, IRM-SA goes
beyond the classical goal-modeling approaches and allows self-
adaptation based not only on valuations of belief (snapshot of a
remote component’s internal data), but also on valuations of

 Figure 2: IRM-SA model of the running example.

+ id
+ groupLeaderId
+ sensorData
+ position
+ temperature
+ acceleration
+ oxygenLevel
+ nearbyGMsStatus

Firefighter

+ id
+ sensorDataList
+ GMInDanger

Officer

INV-2
GM::groupLeaderId==GL::id

INV-1 GL keeps track of the condition
of his/her group’s members

INV-3 GL keeps track of the
condition of the relevant members

INV-7 GM::nearbyGMInDanger – GMs’ belief of
GL::GMInDanger – is updated every 4 secs

X

INV-6
GL::GMInDanger > 0

X

INV-8
GL::GMInDanger==0

INV-5 Up-to-date GL::sensorDataList,
w.r.t. GM::sensorData, is available

INV-10 GL::sensorDataList - GL’s belief over the
GM::sensorData – is updated every 2 secs

X
INV-9 GM::sensorData is
determined

INV-18 Nearby GM in
danger/critical stateINV-13 GM in danger

INV-15
GM::temperature is
monitored every 1 sec

P

INV-11
GM::acceleration is
monitored every 1 sec

P

INV-17
GM::temperature is
monitored every 5 secs

P

INV-19
AVG(GM::acceleration)==0 in
 past 20 sec

INV-12 GM::position is
determined

INV-16 No life threat

INV-14 GM::oxygenLevel is
monitored when possible

INV-20
AVG(GM::acceleration)>0 in
 past 20 sec

INV-21
GM:nearbyGMsStatus==OK

INV-22
 GM::nearbyGMsStatus==DANGER

INV-29 Breathing
apparatus is used

INV-28 Breathing apparatus is
not used

INV-30 GM::oxygenLevel
is monitored every 1 sec

P

INV-24 GM indoors INV-26 GM outdoors

INV-27 GM::position is
determined from GPS
every 1 sec

PINV-25 GM::position is
determined from indoors tracking
system every 1 sec

P

Subtree for
“Search and Rescue”

situation

INV-31 PASS alert is sounded
when needed

INV-32 PASS alert is
sounded every 5 secs

P

requires

INV-23
 possibility(GM::nearbyGMsStatus==CRITICAL)

w
INV-4 GL::GMInDanger is determined from
the GL::sensorDataList every 4 secs

P

*[GM]

[GM]

[GL]

1[GL]

1[GM]

[GM]
GroupMember

role
GroupLeader

role

[GL]

Takes-role
relation

Invariant Process
invariant

Exchange
invariant

Assumption AND
decomposit ion

Component

PX

Dependency
relation

OR
decomposit ion

Characterizing
Assumption

associated metadata (timestamp of belief, timestamp of
sending/receiving the belief over the network, etc.). This
functionality also adds to the dependability by self-adapting in
anticipation of critical situations. Nevertheless, IRM-SA support
for dependability does not cover other dependability aspects, such
as privacy and security.
A key property here is that a belief is necessarily outdated,
because of the distribution and periodic nature of real-time
sensing in siCPS. For example, the position of a Firefighter as
perceived by his/her Officer would necessarily deviate from the
actual position of the Firefighter if he/she were on the move.
Instead of reasoning directly on the degree of belief outdatedness
(on the time domain), we rely on models that predict the evolution
of the real state (e.g., state-space models if this evolution is
governed by a physical process), translate the outdatedness from
the time domain to the data domain of the belief (e.g., position
inaccuracy in meters) and reason on the degree of belief
inaccuracy. We call this type of reasoning proactive reasoning.
To enable proactive reasoning, we build on our previous work in
quantifying the degree of belief inaccuracy in dynamic siCPS
architectures [1].
For illustration, consider an assumption “inaccuracy(GM::
position) < 20 m”, which models the situation where the
difference of the measured and actual positions is less than 20
meters. In this case, belief inaccuracy is both (i) inherent to the
sensing method (more GPS satellites visible determine more
accurate position), and (ii) related to the network latencies when
disseminating the position data (more outdated data yield more
inaccurate positions – since firefighters are typically on the move,
their position data are subject to outdating). As a result, an Officer
has to reason on the cumulative inaccuracy of the position of
his/her Firefighter.
When the domain of the belief field is discrete instead of
continuous, we rely on models that capture the evolution of
discrete values in time, such as timed automata. For illustration,
consider assumption INV-23: “possibility(GM::nearbyGMsStatus
== CRITICAL)”, which models the situation where the
nearbyGMsStatus enumeration field with values OK, DANGER,
and CRITICAL is possible to evaluate to CRITICAL. This presumes
that the designer relies on a simple timed automaton such as the
one depicted in Figure 3, which encodes the domain knowledge
that a firefighter gets into a critical situation (and needs rescuing)
at least 5 seconds after he/she gets in danger.
All in all, the invariants that are formulated with inaccuracy and
possibility provide a fail-safe mechanism for adversarial
situations, when the belief of a component gets so inaccurate that
special adaptation actions have to be triggered. This proactive
reasoning adds to the overall dependability of the self-adaptive
siCPS.

5.3 The Modeling Process

Figure 3: Timed automaton capturing the transitions in the
valuation of the nearbyGMsStatus field.

Figure 4: Steps in the IRM-SA modeling process.

Figure 5: Steps in a single invariant refinement.

DANGER

OK

CRITICAL
t>5 sec

t:=0
t>0 sec

(1) Identify the situations that warrant self-
adaptation from main scenarios and extensions

(4) Identify components' knowledge and
takes-role relations by asking “which

knowledge does each invariant involve and
from which component is the knowledge

obtained from?”

(3) Identify the components of the system

(2) Identify the top-level goals of the system and
specify the top-level invariants

(6) Compose dangling invariant trees together by
asking “why should their roots be satisfied?”

(5) Refine each invariant into sub-invariants
that correspond to activities that can be

performed in isolation by asking “how can
this invariant be satisfied?”

(7) Merge subtrees that reuse the same situations
to create a directed acyclic graph (DAG)

(8) Add any cross-tree dependencies (requires/
collides) to the DAG

Is it a process/invariant/exchange
invariant/computable assumption?

[YES]

[NO]

OR-decompose invariant into
sub-invariants

AND-decompose invariant
into sub-invariants

Specify the characterizing
assumption for each situation

[YES]

Does the invariant cover more than one situations?

[NO]

As is usually the case with software engineering processes, IRM-
SA modeling process is a mixed top-down and bottom-up process.
As input, the process requires a set of use cases/user stories
covering both the main success scenarios and the associated
extensions. The main steps of the process are illustrated in
Figure 4. After the identification of the main situations, goals and
components, the architect starts to specify the knowledge of each
component together with its takes-role relations (step 4), while, in
parallel, he/she starts refining the invariants (step 5). These two
steps require potentially several iterations to complete. In step 6,
the architect composes the dangling invariant trees that may have
resulted from the previous steps, i.e., the trees the roots of which
are not top-level invariants. Contrary to the previous steps, this is
a bottom-up design activity. In the final steps, as an optimization,
the subtrees produced in the previous steps that are identical are
merged together, and “requires”/“collides” dependencies are
added. The result is a DAG – this optimization was applied also in
Figure 2.
The workings of a single refinement are depicted in Figure 5.
Based on whether the invariant under question is to be satisfied in
a different way in different situations (e.g., “position reading” will
be satisfied by using the GPS sensor when outdoors and by using
the indoor positioning system when indoors), the architect
chooses to refine the invariant by OR- or AND-decomposition.
Obviously, in the former case, the refinement involves specifying
the characterizing assumption for each design alternative
(situation). Note that, if the characterizing assumption is not
computable, it will get refined in a next step as any other invariant
in such a case.
The process of systematic identification of all the possible
variation points and modeling the corresponding design
alternatives and situations is closely related to the identification of
adaptation scenarios in a Dynamically Adaptive System (DAS)
[32]. Here, one can leverage existing approaches in requirements
engineering ranging from documentation of main use-case
scenarios and extensions to obstacle/threat analysis on goal
models [52]. Performance and resource optimization concerns can
also guide the identification of variation points and corresponding
design alternatives.
For example, the rationale behind the OR-decomposition of the
left-most part of the AND-decomposition of INV-9 is resource
optimization: under normal conditions the accuracy of external
temperature monitoring can be traded off for battery consumption
of the low-power node; this, however, does not hold in danger
(e.g., a firefighter is not moving, INV-19), when higher accuracy
of external temperature monitoring is needed.
On the contrary, the OR-decomposition of INV-12 has its rationale
in a functional constraint: since GPS is usually not available
within a building, a firefighter’s position has to be monitored
differently in such a case, e.g., through an indoors tracking system
[17]. This is an example of a technology-driven process of
identification of design alternatives, where the underlying
infrastructure significantly influences the possible range of
adaptation scenarios [32]. For example, it would not make sense
to differentiate between the situations of being indoors and
outdoors, if there were no way to mitigate the “GPS lost signal”
problem using the available infrastructure.
This highlights an important point: IRM-SA allows for modeling
the environment via assumptions, but, at the same time, guides the
designer into specifying only the pertinent features of the
environment, avoiding over-specification.

For a complete example of this modeling process, we refer the
reader to the online IRM-SA User Guide2. To support the
modeling process, we have also developed a prototype of a GMF-
based IRM-SA design tool [42].

6. SELECTING ARCHITECTURE
CONFIGURATIONS BY SAT SOLVING
As outlined in Section 4, given an IRM-SA model, the selection
of a configuration for a situation can be advantageously done by
directly reasoning on the IRM-SA model at runtime. In this
section we describe how we encode the problem of selecting an
applicable configuration into a Boolean satisfiability (SAT)
problem (6.1), our prioritizing strategy with multiple applicable
configurations (6.2), and how we bind variables in the SAT
instance based on monitoring (6.3).
To simplify the explanation, we use the term “clause” in this
section even for formulas which are not necessarily valid clauses
in the sense of CNF (Conjunctive Normal Form – the default
input format for SAT), but rely on the well-known fact that every
propositional formula can be converted to an equisatisfiable CNF
formula in polynomial time.

6.1 Applicable Configurations
Formally, the problem of selecting an applicable configuration is
the problem of constructing a set ܥ of selected invariants from an
IRM-SA model such that the following rules are satisfied: (i) all
the top-level invariants are in ܥ; (ii) if an invariant ܫ is
decomposed by an AND-decomposition to ܫଵ, … , ܫ , thenܫ ∈ ܥ
iff all ܫଵ, … , ܫ ∈ is decomposed by anܫ if an invariant (iii) ;ܥ
OR-decomposition to ܫଵ, … , ܫ , thenܫ ∈ iff at least one of ܥ
,ଵܫ … , requires, resp. collidesܫ if an invariant (iv) ;ܥ is inܫ
(with), ܫ, then ܫ ∈ ܫ iff ܥ ∈ ܫ .resp ,ܥ ∉ The set C .ܥ
represents an applicable configuration. The rules above ensure
that ܥ is well-formed with respect to decomposition and cross-tree
dependencies semantics. Figure 6 shows a sample applicable
configuration (selected invariants are outlined in grey
background).
Technically, for the sake of encoding configuration selection as a
SAT problem, we first transform the IRM-SA model to a forest by
duplicating invariants on shared paths. (This is possible because
the IRM-SA model is a DAG.) Then we encode the configuration

2 http://www.ascens-ist.eu/irm

Figure 6: An architecture configuration of the running example.

2
1

3

7 X
6

X
8

5
10 X9

1813 15 P

11 P

17 P

19

12

16
14

20
21

22

29
28

30 P

24 26
27 P25 P

31

32 P

requires

23

4 P

Process & Ensemble Invariants involved in
the architecture configuration

,ଵݏ we are looking for by introducing Boolean variables ܥ … , ,ݏ
such that ݏ = ܫ iff ݁ݑݎݐ ∈ is well-formed, we ܥ To ensure .ܥ
introduce clauses over ݏଵ, … , . reflecting the rules (i)-(iv) aboveݏ
For instance, the IRM-SA model from Figure 2 will be encoded as
shown in Figure 7, lines 1-26.
To ensure that ܥ is an applicable configuration w.r.t. a given
situation, we introduce Boolean variables ܽଵ, … , ܽ and add a
clause ݏ ⇒ ܽ for each ݅ ∈ {1 … ݊} (Figure 7, line 29). The value
of ܽ captures whether the invariant ܫ is acceptable; i.e., ݁ݑݎݐ
indicates that it can be potentially included in ݁ݏ݈݂ܽ ,ܥ indicates
otherwise. The variables ܽଵ, … , ܽ are bound to reflect the state of
the system and environment (Figure 7, lines 31-39). This binding
is described in Section 6.3.
In the resulting SAT instance, the variable ݏ௧ for each top-level
invariant ܫ௧ is bound to true to enforce the selection of at least one
applicable configuration. A satisfying valuation of such a SAT
instance encodes one applicable configuration (or more than one
in case of overlapping situations – see Section 6.2), while
unsatisfiability of the instance indicates nonexistence of an
applicable configuration in the current situation.

6.2 Prioritizing Applicable Configurations
Since the situations in an OR-decomposition do not need to be
exclusive but can overlap, SAT solving could yield more than one
applicable configurations. In this case, we assume a post-
processing process that takes as input the IRM-SA model with the
applicable configurations and outputs the selected configuration
based on analysis of preferences between design alternatives. For
this purpose, one can use strategies that range from simple total
preorder of alternatives in each decomposition to well-established
soft-goal-based techniques for reasoning on goal-models [20]. In
the rest of the section, we detail on the prioritization strategy used
in our experiments, which we view as just one of the many
possible.
In our experiments (Section 7.2), we have used a simple
prioritization strategy based on total preorder of design
alternatives in each OR-decomposition. Here, for simplicity, a
total preorder – numerical ranking – is considered (1 corresponds
to the most preferred design alternative, 2 to the second most
preferred, etc.). The main idea of the strategy is that the
preferences loose significance by an order of magnitude from top
to bottom, i.e., preferences of design alternatives that are lower in
an IRM-SA tree cannot impact the selection of a design
alternative that is above them on a path from the top-level
invariant.
More precisely, given an IRM-SA tree, every sub-invariant ܫ of
an OR-decomposition is associated with its OR-level number ݀,
which expresses that ܫ is a design alternative of a ݀-th OR-
decomposition on a path from the top-level invariant (level 1) to a
leaf. For each OR-level, there is its cost base ܾ defined in the
following way: (a) the lowest OR-level has cost base equal to 1,
(b) the ݆-th OR-level has its cost base ܾ = ܾାଵ ∗ (݊ାଵ + 1),
where ݊ାଵ denotes the number of all design alternatives at the
level ݆ + 1 (i.e., considering all OR-decomposition at this level).
For example, the 2nd OR-level in the running example has
ܾଶ = ܾଷ ∗ (݊ଷ + 1) = 1 ∗ (4 + 1) = 5, since the 3rd OR-level
(lowest) has in total 4 design alternatives (2 from the OR-
decomposition of INV-14 and 2 from that of INV-18).
Having calculated the base for each OR-level, the cost of a child
invariant ܫ of a ݀-th OR-decomposition with a cost ܾௗ is defined
as ݇݊ܽݎ ∗ ܾௗ, where ݇݊ܽݎ denotes the rank of the design

alternative that the invariant ܫ corresponds to. Finally, a simple
graph traversal algorithm is the employed to calculate the cost of
each applicable configuration as the sum of the cost of the
selected invariants in the applicable configuration. The applicable
configuration with the smallest cost is the preferred one –
becomes the current configuration.

6.3 Determining Acceptability
Determining acceptability of an invariant ܫ (i.e., determining the
valuation of ܽ) is an essential step. In principle, a valuation of ܽ
reflects whether ܫ is applicable w.r.t. the current state of the
system and the current situation. Essentially, ܽ = implies ݁ݏ݈݂ܽ
that ܫ cannot infer an applicable configuration.
We determine the valuation of ܽ in one of the following ways
(alternatively):
(1) Active monitoring. If ܫ belongs to the current configuration
and is computable, we determine ܽ by evaluating ܫ w.r.t. the
current knowledge of the components taking a role in ܫ.
(2) Predictive monitoring. If ܫ does not belong to the current
configuration and is computable, it is assessed whether ܫ would
be satisfied in another configuration if chosen.
In principle, if ܫ is not computable, its acceptability can be
inferred from the computable sub-invariants.
For predictive monitoring, two evaluation approaches are
employed: (a) The invariant to be monitored is extended by a

1. // 1. configuration constraints based of the IRM model
2. // top level decomposition in Figure 2
ଵଵ_ଵݏ .3 ∧ ଶݏ ∧ ଶ଼ݏ ⇔ ଵଵ // sଵଵ_ଵ represents the anonymousݏ

 invariant in the AND decomposition of INV-9
∨ ଷଷ_ଵݏ .4 ଷଷ_ଶݏ ∨ sଶ

ᇱ ⇔ ଷଷ // sଶݏ
ᇱ is a copy of sଶ

5.
6. // decomposition level 1 in Figure 2
ଵଵ_ଵ_ଵݏ .7 ∨ ଵଵ_ଵ_ଶݏ ∨ ଵଵ_ଵ_ଷݏ ⇔ ଵଵ_ଵݏ
ଶ଼_ଵݏ .8 ∨ ଶ଼_ଶݏ ⇔ ଶ଼ݏ
ଷସݏ .9 ∧ ଵଷݏ

ᇱ ⇔ ଷଷ_ଶ // sଵଷݏ
ᇱ is a copy of sଵଷ

10.
11. // decomposition level 2 in Figure 2
ଵଷݏ .12 ∧ ଵସݏ ∧ ଵହݏ ⇔ ଵଵ_ଵ_ଵݏ
ଶݏ .13 ∧ ଶଵݏ ⇔ ଵଵ_ଵ_ଶݏ
ଶସݏ .14 ∧ … ⇔ ଵଵ_ଵ_ଷݏ
ଷݏ .15 ∧ ଶଽݏ ⇔ ଶ଼_ଵݏ
ଷଶݏ .16 ∧ ଷଵݏ ⇔ ଶ଼_ଶݏ
17.
18. // decomposition level 3 in Figure 2
ଵݏ .19 ⇔ ଵଷݏ
ଵݏ .20

ᇱ ⇔ ଵଷݏ
ᇱ

ଵସ_ଵݏ .21 ∨ ଵଽݏ ⇔ ଵସݏ
ଶଶݏ .22 ∧ ଶଷݏ ⇔ ଶݏ
23. … // similar for ݏଶ

ᇱ , ଶସݏ
24.
25. // decomposition level 4 in Figure 2
ଵݏ .26 ∧ ଵ଼ݏ ⇔ ଵସ_ଵݏ
27.
28. // 2. only applicable invariants may be selected into a configuration
ଵଵݏ) .29 ⇒ ܽଵଵ) ∧ … ∧ ଷଶݏ) ⇒ ܽଷଶ) ∧ …
30.
31. // 3. determining acceptability according to monitoring
32. // (current configuration as shown in Figure 6)
33. // 3.1. active monitoring
34. ܽଵଵ = ⋯ // true or false based on the monitoring of INV-9
35. … // repeat for ܽଵ, ܽଵ

ᇱ , ܽଵ, ܽଵଽ, ܽଶଵ, ܽଶଶ, ܽଶଶ
ᇱ , ܽଶଷ, ܽଶଷ

ᇱ , ܽଶହ, ܽଶ, ܽଶ଼, ܽଷଶ, ܽଷଷ
36.
37. // 3.2. predictive monitoring
38. ܽଵହ = ⋯
39. … // repeat for the rest

Figure 7: Encoding the IRM-SA model of running example into

SAT.

monitor predicate (which is translated into a monitor – Section
8.4) that assesses whether the invariant would be satisfied if
selected, and (b) the history of the invariant evaluation is observed
in order to prevent oscillations in current configuration settings by
remembering that active monitoring found an invariant not
acceptable in the past.
Certainly, (a) provides higher accuracy and thus is the preferred
option. It is especially useful for process invariants, where the
monitor predicate may assess not only the validity of process
invariant (e.g., by looking at knowledge valuations of the
component that take a role in it), but also whether the underlying
process would be able to perform its computation at all. This can
be illustrated on the process invariant INV-27, where the process
maintaining it can successfully complete (and thus satisfy the
invariant) only if GPS is operational and at least three GPS
satellites are visible.

7. SOLVING THE SAT PROBLEM IN
DISTRIBUTED SETTINGS
When implementing self-adaptation via IRM-SA in a distributed
siCPS such as the firefighter tactical decision system, there are
three main choices to consider:
1. Centralized self-adaptation (CA). A selected arbiter collects

all the necessary knowledge from components, solves the
SAT problem, and reliably communicates the result back to
the components. This assumes that the system can be paused
for the whole duration of the above process (strict
synchronization), so that each component receives self-
adaptation decisions that are relevant to its current state.

2. Decentralized self-adaptation with distributed consensus
(DADC). Each component performs SAT solving locally
based on its local knowledge (local view of system state),
without requiring this knowledge to be synchronized across
components. The results of SAT solving are then
communicated and agreed upon between all components.
This relaxes the assumption on strict synchronization, but
still assumes that a component can be paused from the point
that it solves the SAT problem until a consensus is built.

3. Decentralized self-adaptation with no distributed consensus
(DANC). Similar to DADC, each component performs SAT
solving locally based on its local knowledge, (local view of
system state), without requiring this knowledge to be
synchronized across nodes. However, the results of SAT
solving are not communicated and no consensus is built. This
allows components to keep their autonomy even detached
from the network.

CA and DADC are both well-known solutions, documented in the
state of the art of distributed systems [27, 28], multi-agent
systems and autonomous agents [43, 62], and cooperative and
networked control systems [33, 36]; they are also widely used in
practice. They work well in systems with limited dynamicity,
where network communication and the consequent timing issues
(e.g., delays) can be mostly ignored or bounded. These
assumptions are however not plausible in many siCPS, which are
spatial systems deployed on top of ad-hoc wireless infrastructures
with no communication guarantees and comprised of components
that can dynamically appear and disappear. In such contexts,
DANC is a more fitting choice, as it can be easily combined with
proactive reasoning (Section 5.2) at the level of each individual
component. This combination allows each component to make
individual decisions that can help deal with threats related to
network disconnections and delays.

In the rest of this section we detail on DANC by identifying and
formalizing the criteria that establish the perimeter of its
applicability. We also exemplify the combination of DANC and
proactive reasoning in our running example and discuss its ability
to deal with threats related to network disconnections.

7.1 Decentralized Self-Adaptation with no
Distributed Consensus
DANC can be employed in systems that are by nature resilient to
situations when the system is de-synchronized. During de-
synchronization, some nodes of the system arrive at different
decisions due to their differently outdated knowledge
(divergence). This can result into inconsistencies, e.g., cases
where there are assumptions in the IRM-SA model that one
component considers satisfied, while another considers violated.
As an example, depicted in Figure 8, a property P of component A
may reach some critical value (which invalidates an assumption)
at time t1; this is observed only after some time (divergence
window Δt) in components B and C. A respective divergence
window again exists in the case when P’s value falls back within a
“normal” range. It is important to note that data outdatedness does
not always lead to divergence, because though different, they can
lead to the same decision – this can be observed in Figure 8 in the
areas outside the two intervals.
DANC specifically targets systems where temporary divergence
of the SAT solving input and, consequently, of its results has only
negligible effect in the performance of the system (what is
considered “negligible” in this case depends on particular domain
requirements). This prerequisite characterizes the type of systems
that can employ DANC – when it does not hold, CA or DADC
has to be chosen instead.

time

va
lu

e
of

 p
ro

pe
rt

y P

t1

Divergence
windows

t2

component
A

B’s view of A

C’s view of A

Δt Δt

time

time

va
lu

e
of

 p
ro

pe
rt

y P
va

lu
e

of
 p

ro
pe

rt
y P

Figure 8: Connection between outdated views and divergence
windows.

We formalize the above prerequisite and describe the criteria that
imply it below. Figure 9 provides a graphical summary.
Definition 1 (Utility of a system run). For a given run of a
system:
– Let ܽ(ݐ) be a function that for time ݐ returns the set of

active processes as selected by the SAT procedure.
– Let ݀(ݐ, ݇) be function that for time ݐ and a knowledge field

݇ returns the time Ǽݐ that has elapsed since the knowledge
value contained in ݇ was sensed/created by the component
where the knowledge value originated from.

– Let ܽ,ௗ(ݐ) be a function that for given time ݐ returns a set
of active processes of component ܿ as selected by the SAT
procedure assuming that knowledge values outdated by
,ݐ)݀ ݇) have been used. Further, we denote ܽௗభ,…,ௗ

(ݐ) =
⋃ ܽ,ௗ(ݐ) as the combination over components existing in
the system. (In other words, each component selects active
processes itself based on its belief, which is differently
outdated for each component.)

– Let ݑ(ܽ) be a cumulative utility function that returns the
overall system utility when performing processes ܽ(ݐ) at
each time instant ݐ.

– Let ݑ(ܽ, Δݐmax) be a cumulative utility function constructed
as min൛ݑ൫ܽௗభ,…,ௗ൯ ห ݀(݇) ≤ Δݐmax}. (In other words,
,ܽ)ݑ Δݐmax) denotes the lowest utility if components decide
independently based on knowledge at most Δݐmax old.)

Definition 2 (Expected relative utility). Let E(ݑ(ܽ)) be the
expected value of ݑ(ܽ) and E(ݑ(ܽ, Δݐmax)) be the expected value
of ݑ(ܽ, Δݐmax). Assuming that E൫ݑ(ܽ)൯ > 0 (i.e., in the ideal case
of zero communication delays the system provides a positive
value), we define expected relative utility as ݎ(Δݐmax) =
E൫ݑ(ܽ, Δݐmax)൯/E൫ݑ(ܽ)൯.
We assume systems where ݎ(Δݐmax) is close to 1 (and definitely
non-negative) for given upper bound on communication delays
Δݐmax. In fact ݎ(Δݐmax) provides a continuous measure of how
well the method works in a distributed environment.
Considering that the communication in the system happens
periodically and that an arriving message obsoletes all previous
not-yet-arrived messages from the same source, Δݐmax can be set
to ݍ is a close-to-100% quantile of theݍ ௗܶ, whereݍ +
distribution of message latencies, ܶ is the period of message
sending and ݍௗ is a close-to-100% quantile of the distribution of
the length of sequences of consecutive message drops. Naturally,
if there is a chance of some (not necessarily reliable
communication), Δݐmax can be set relatively low while still
covering the absolute majority of situations.

There are several factors that influence the value of ݎ(Δݐmax).
Essentially, it depends on the shape of the utility function (since
the utility function is cumulative), on the duration of divergence,
and on the robustness of the utility function with respect to
divergence. Following this argument, we identify three criteria for
the applicability of IRM-SA with DANC. Essentially, “ݎ(Δݐmax)
close to 1” is achieved when:
Criticality of a particular system operation affected by
divergence is small. For critical operations, the utility function
tends to get extreme negative values, thus even a short operation
under divergence yields very low overall utility. On the other
hand, if the environment has revertible and gradual responses, it
hardly matters whether the system is in divergence for a limited
time (e.g., if the system controls a firefighter walking around a
building, then walking in a wrong direction for a few seconds
does not cause any harm and its effect can be easily reverted).
Rate of changes in the monitored values and the duration of
adaptations w.r.t. this rate are slow and steady. As the system
reacts to changes in the environment, it is impacted by the speed
these changes happen. Such a change creates potential divergence
in the system. What matters then is the ratio between the time
needed to converge after the divergence and the interval between
two consecutive changes. For instance, if house numbers were to
be observed by firefighters when passaging by, then walking
speed would yield much slower rate of changes then passing by in
a car.
Evaluation of assumptions is not sensitive to frequent changes
in the environment. This is a complementary aspect of the
previous property. Depending on the way assumptions are refined
into computable ones, one can detect fine-grained changes in the
environment. For example, consider an assumption that relies on
computing position changes of a firefighter moving in a city.
Computing position changes based on changes in the house
number obviously yields more frequent (observable) changes in
the environment than computing changes based on the current
street number.

7.2 A Case for Decentralized Self-Adaptation
with no Distributed Consensus
We now provide a particular scenario where DANC is the most
fitting choice, and exemplify the combination of DANC with
proactive reasoning.
Consider the scenario where teams of firefighters consisting of
three members and one leader were deployed. A firefighter A
senses temperature higher than a pre-specified threshold
(indication of being “in danger”); this information is propagated
to the A’s leader who in turn propagates the information that A is
in danger to a firefighter B; then, B performs self-adaptation in the
anticipation of the harmful situation of having a group member in
danger (proactive self-adaptation) and switches the mode to
“Search and Rescue” (the situation captured by INV-18 in
Figure 2). At the point when the leader determines that A is in
danger (and just before the leader communicates it to B), a
temporary network disconnection occurs. The overall
performance was measured by reaction time – the interval
between the time that A sensed high temperature and the time that
B switches to “Search and Rescue”. Note that, by setting ݑ(ܽ) to
be the inverse of the reaction time, we obtain values for the
expected relative utility r that range from (1000)ݎ = ଷ

଼
=

0.37 to (12000)ݎ = ଷ
ଶ

= 0.15.

Criticality of operation
affected by divergence is small

Rate of changes in the
monitored values and the
duration of adaptations w.r.t.
this rate are slow and steady

Evaluation of IRM assumptions
is not sensitive to frequent
changes in the environment

I

II

III

Prerequisite

Divergence has only
negligible effect on overall
performance of the system

“Expected relative utility” close to 1
Formally:

Figure 9: The three criteria that imply the prerequisite for

We performed several simulations of the above scenario in order
to delineate the limits of proactive self-adaptation. In particular,
the questions that we investigated by the experiments were the
following.
 Q1: Do temporary network disconnections (and associated

communication delays) reduce the overall performance
of an application that employs DANC?

 Q2: Does proactive self-adaptation in IRM-SA method in
combination with DANC increase the overall
performance of an application in face of temporary
disconnections?

Simulation setup. In the experiments we employed an extended
version of the running example. This IRM-SA model of consists
of 4 components, 39 invariants, and 23 decompositions [42]. The
experiments were carried out using the jDEECo simulation engine
[44] together with the prototype implementation of IRM-SA in
jDEECo (Section 8). Several simulation parameters (such as
interleaving of scheduled processes) that were not relevant to our
experiment goals were set to fixed values. The simulation code,
along with all the parameters and raw measurements, are available
online [42].
To obtain a baseline, the case of no network disconnections was
also measured. The result is depicted in dashed line in Figure 10.
To investigate Q1 and Q2, a number of network disconnections
with preset lengths were considered; this was based on a prior
experience of working with deployment of DEECo on mobile ad-
hoc networks [14].
To answer Q2, the timed automaton (Figure 3) associated with
INV-23: “possibility(GM::nearbyGMsStatus == CRITICAL)” was
modified: the transition from DANGER to CRITICAL was made

parametric to experiment with different critical threshold values –
critical threshold in the context of the experiments is the least time
needed for a firefighter to get into a critical situation after he/she
gets in danger (in Figure 3 the critical threshold is set to 5 sec).
The reaction times for different critical thresholds and different
disconnection lengths are in Figure 10.
To answer Q1 (as well as obtain the baseline), the critical
threshold was set to infinity – effectively omitting INV-23 from
the IRM-SA model – in order to measure the vanilla case where
self-adaptation is based only on the values of data transmitted
(belief) and not on other parameters such as belief outdatedness
and its consequent inaccuracy.
Analysis of results. From Figure 10 it is evident that the reaction
time (a measure of the overall performance of the system)
strongly depends on communication delays caused by temporary
disconnections. Specifically, in the vanilla case the performance is
inversely proportional to the disconnection length, i.e., it
decreases together with the quality of the communication links.
This is in favor of a positive answer to Q1.
Also, to cope with operational uncertainty – temporary network
disconnections in particular – the IRM-SA mechanisms are indeed
providing a solution towards reducing the overall performance
loss. Proactive self-adaptation yields smaller reaction times
(Figure 10) – this is in favor of a positive answer to Q2. In
particular, for the lowest critical threshold (2000ms) the reaction
time is fast; this threshold configuration can, however, result into
overreactions, since it hardly tolerates any disconnections. When
setting the critical threshold to 5000ms, proactive self-adaptation
is triggered in case of larger disconnections (5000ms and more)
only. A critical threshold of 8000ms triggers proactive self-
adaptation in case of even larger disconnections (8000ms or
more). Finally, when critical threshold is set to infinity, proactive
self-adaptation is not triggered at all.
When disconnection times grow larger and larger, proactive self-
adaptation can help in bounding the amount of performance loss.
In our case, predictions were based on the timed automaton of
Figure 3; in case the possibility of a life-critical situation was
predicted, the system switched to the “Search and Rescue” mode.
Although several simplifying assumptions were made (e.g., a
single, simple automaton was used, all predictions were assumed
correct), the experiments provide evidence on the applicability of
DANC with proactive self-adaptation within the frame of IRM-
SA. Extending the monitoring and prediction capabilities of our
framework is subject to future work.

8. PROTOTYPE IMPLEMENTATION
We implemented the self-adaptation method of IRM-SA as a
plugin (publicly available [42]) into the jDEECo framework [44].
This framework is a realization of the DEECo component model
[15, 48] . For developing components and ensembles, jDEECo
provides an internal Java DSL and allows their distributed
execution. To give a better insight in the prototype
implementation, we briefly first overview jDEECo below and
then describe the main points of the implementation of IRM-SA.

8.1 DEECo Component Model
Dependable Emergent Ensemble of Components (DEECo) is
component model (including specification of deployment and
runtime computation semantics) tailored for building siCPS with a
high degree of dynamicity in their operation. In DEECo,
components are autonomous units of deployment and
computation. Each of them comprises knowledge and processes.
Knowledge is a hierarchical data structure representing the

Figure 10: Reaction times for different network disconnection
lengths and different critical thresholds. The results for each
case have been averaged for different DEECo component
knowledge publishing periods (400, 500 and 600 ms).

0

5000

10000

15000

20000

25000

1000 3000 5000 8000 12000

re
ac

ht
ion

 tim
e (

ms
)

disconnection length (ms)
critical threshold: 2000 ms
critical threshold: 5000 ms
critical threshold: 8000 ms
critical threshold: infinity
no network disconnections

internal state of the component. A process operates upon the
knowledge and features cyclic execution based on the concept of
feedback loop [60], being thus similar to a process in real-time
systems. As an example, consider the two DEECo components in
Figure 11, lines 7-13 and 15-23. They also illustrate that
separation of concerns is brought to such extent that individual
components do not explicitly communicate with each other.
Instead, interaction among components is determined by their
composition into ensembles – groups of components cooperating
to achieve a particular goal [23, 40] (e.g., PositionUpdate
ensemble in Figure 11, lines 27-34). Ensembles are dynamically
established/disbanded based on the state of components and
external situation (e.g., when a group of firefighters are physically
close together, they form an ensemble). At runtime, knowledge
exchange is performed between the components within an
ensemble (lines 32-33) – essentially updating their beliefs
(Section 3).

8.2 jDEECo Runtime
Each node in a jDEECo application contains a jDEECo runtime,
which in turn contains one or more local components – serving as
a container (Figure 13). The runtime is responsible for periodical
scheduling of component processes and knowledge exchange
functions (lines 12, 23, 34). It also possesses reflective capabilities
in the form of a DEECo runtime model that provides runtime
support for dynamic reconfigurations (e.g., starting and stopping
of process scheduling). Each runtime manages the knowledge of
both local components, i.e., components deployed on the same
node, and replicas, i.e., copies of knowledge of the components
that are deployed on different nodes but interact with the local
components via ensembles.

8.3 Self-Adaptation in jDEECo
For integration of the self-adaptation method of IRM-SA
(jDEECo self-adaptation) with jDEECo, a models-at-runtime
approach [57] is employed, leveraging on EMF-based models
(Figure 12). In particular, a Traceability model is created at
deployment, providing the association of entities of the DEECo
runtime model (i.e., components, component processes, and
ensembles) with the corresponding constructs of the IRM-SA
design model (i.e., components and invariants). This allows
traceability between entities of requirements, design, and
implementation – a feature essential for self-adaptation. For
example, the process measurePositionGPS in Figure 11 is traced
back to INV-27 (line 7), while the Firefighter component is traced
back to its IRM-SA counterpart (line 2). Based on the Traceability
model and the DEECo runtime model, an IRM-SA runtime model
is generated by “instantiating” the IRM-SA design components
with local components and replicas. Once the IRM-SA runtime
model gets used for selecting an architecture configuration, the
selected configuration is imposed to the DEECo runtime model as
the current one.

A central role in performing jDEECo self-adaptation is played by
a specialized jDEECo component Adaptation Manager (AM). Its
functionality comprises the following steps (Figure 13): (1)
Aggregation of monitoring results from local components and
replicas and creation of IRM-SA runtime model. (2) Invocation of
the SAT solver (Sections 6.1-6.3). (3) Translation of the SAT
solver output into an applicable configuration (including
prioritization). (4) Triggering the actual architecture adaptation –
applying the current configuration. As an aside, internally, AM
employs the SAT4J solver [53], mainly due to its seamless
integration with Java.

The essence of step (4) lies in instrumenting the scheduler of the
jDEECo runtime. Specifically, for every process, resp. exchange
invariant in the current configuration, AM starts/resumes the
scheduling of the associated component process, resp. knowledge
exchange function. The other processes and knowledge exchange
functions are not scheduled any more.

8.4 Monitoring
AM can handle both active and predictive monitoring techniques
(Section 6.3). In the experiments described in Section 7.2,
predictive monitoring was used for both component processes and
knowledge exchange functions (based on observing the history of

1. role PositionSensor:
2. missionID, position
3.
4. role PositionAggregator:
5. missionID, positions
6.
7. component Firefighter42 features PositionSensor, …:
8. knowledge:
9. ID = 42, missionID = 2, position = {51.083582, 17.481073}, …
10. process measurePositionGPS (out position):
11. position ← Sensor.read()
12. scheduling: periodic(500ms)
13. … /* other process definitions */
14.
15. component Officer13 features PositionAggregator, …:
16. knowledge:
17. ID = 13, missionID = 2, position = {51.078122, 17.485260},
18. firefightersNearBy = {42, …}, positions = {{42, {51.083582,
19. 17.481073}},…}
20. process findFirefightersNearBy(in positions, in position, out
21. firefightersNearBy):
22. firefightersNearBy← checkDistance(position, positions)
23. scheduling: periodic(1000ms)
24. … /* other process definitions */
25. … /* other component definitions */
26.
27. ensemble PositionUpdate:
28. coordinator: PositionAggregator
29. member: PositionSensor
30. membership:
31. member.missionID == coordinator.missionID
32. knowledge exchange:
33. coordinator.positions ← { (m.ID, m.position) | m ∈ members }
34. scheduling: periodic(1000ms)
35. … /* other ensemble definitions */

Figure 11: Example of possible DEECo components and

ensembles in the running example.

Figure 12: Models and their meta-models employed for self-
adaptation in jDEECo.

Solver

Running System

Generated at deployment, kept
in sync with EMF listeners

Generated at
deployment

Generated at runtime by
knowledge valuation of

active components

Processes to run

Predicate logic
formula

DEECo runtime
metamodel

IRM-SA runtime
metamodel

Traceability
metamodel

IRM-SA design
metamodel

conforms toconforms toconforms toconforms to

Traceability
model

IRM-SA runtime
model

DEECo runtime
model

IRM-SA design
model

M1 level

M2 level

Outcome of the design phase

invariants evaluation), while for assumptions, only active
monitoring was employed.

Technically, monitors are realized as Boolean methods associated
with invariants in the Traceability model. For instance, a monitor
for INV-27: “GM::position is determined from GPS” is illustrated
in Figure 14, lines 16-22; it checks whether the corresponding
process operates correctly by checking the health of the GPS
device and the number of available satellites. The execution of
monitors is driven directly by AM and is part of the first step of
the jDEECo self-adaptation (Figure 13).

9. IRM-SA MODELING: FEASIBILITY
AND EFFECTIVENESS
To evaluate the feasibility of the IRM-SA modeling process,
described in Section 5.3, and the impact of using IRM-SA on the
effectiveness of the architects, we carried out an empirical study
in the form of a controlled experiment.

9.1 Experiment Design
The experiment involved 20 participants: 12 Master’s and 8 Ph.D.
students of computer science. The participants were split into
treatment (IRM-SA) and control groups. Each participant was
assigned the same task, which involved coming up with a
specification (on paper) of system architecture comprised of
DEECo components and ensembles for a small system-to-be. The
requirements of the system-to-be were provided in the form of
user stories. The task’s effort was comparable in size of
invariants, situations and decompositions to the running example
in this paper. The suggested time to accomplish the task was 4
hours, although no strict limit was imposed.
The independent variable/main factor of the experiment was the
design method used: Participants in the IRM-SA group followed

the IRM-SA modeling process to come up with an IRM-SA
model, and then manually translated it to the system architecture,
whereas participants in the control group were not recommended
to use any specific method for designing the system architecture.
The dependent variables of the experiment are mapped to the
hypotheses in Tables 1 and 2. We assessed (i) the correctness of
system architecture [0-100] ratio scale, and (ii) several other
variables capturing the intuitiveness of IRM-SA, perceived
effort, adequateness of the experiment settings, etc. in Likert 5-

Figure 13: Steps in jDEECo self-adaptation: (1) Aggregate monitoring results from local component and replicas and create
IRM-SA runtime model; (2) Translate into SAT formula, bind monitoring variables; (3) Translate SAT solver output to
current configuration; (4) Activate/ deactivate component processes and knowledge exchange processes according to current
configuration. At each node, self-adaptation is a periodically-invoked process of the “Adaptation Manager” system component
(which is deployed on each node along with the application components).

1. @Component
2. @IRMComponent(“Firefighter”)
3. public class Firefighter {
4. public Position position;
5. ...
6.
7. @Invariant(“27”)
8. @PeriodicScheduling(period=500)
9. public static void monitorPositionGPS(
10. @Out("position") Position position
11.) {
12. // read current position from the GPS device
13. }
14. ...
15.
16. @InvariantMonitor(“27”)
17. public static boolean monitorPositionGPSMonitor(
18. @In("position") Position position
19.) {
20. // check health of GPS device
21. // check if at least 3 satellites are visible
22. }
23. ...
24. }

Figure 14: Firefighter component definition and process-
monitor definition in the internal Java DSL of jDEECo.

. . .

Pr
oc

es
s2

in
ac

tiv
e

As
su

m
pt

io
n

M
on

ito
r1

M
on

ito
r

Pr
oc

es
s1

ac
tiv

e

M
on

ito
r

Kn
ow

le
dg

e
Ex

ch
an

ge
1

ac
tiv

e
Node #3

Adaptation Manager

IRM-SA design model

DEECo runt ime model

Traceability model

Se
lf-

ad
ap

ta
tio

n

Ar
ch

ite
ct

ur
e

Re
co

nf
igu

ra
to

r

SA
T S

ol
ve

r

4

jDEECo runtime

Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

ru
nt

im
e

m
od

el
 g

en
er

at
or

. . .

Pr
oc

es
s2

in
ac

tiv
e

As
su

m
pt

io
n

M
on

ito
r1

M
on

ito
r

Pr
oc

es
s1

ac
tiv

e

M
on

ito
r

Kn
ow

le
dg

e
Ex

ch
an

ge
1

ac
tiv

e

Node #2

Adaptation Manager

IRM-SA design model

DEECo runtime model

Traceability model

Se
lf-

ad
ap

ta
tio

n

Ar
ch

ite
ct

ur
e

Re
co

nf
igu

ra
to

r

SA
T S

ol
ve

r

jDEECo runtime

Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

ru
nt

im
e

m
od

el
 g

en
er

at
or

2 e tio
n

or
1

Pr
oc

es
s1

ac
tiv

e

M
on

ito
rge

Ex
ch

an
ge

1
e Nod #3

tio
n

Ar
ch

ite
ct

ur
e

Re
co

nf
igu

ra
to

r
g

L
L

Loca

Kno

S

tim
e

ra
to

r

3

M
on

ito
r

al

ow

.

Pr
oc

es
s2

in
ac

tiv
e

As
su

m
pt

io
n

M
on

ito
r1

Pr
oc

es
s1

ac
tiv

e

M
on

ito
r

Kn
ow

le
dg

e
Ex

ch
an

ge
1

ac
tiv

e

e Nod #2

Se
lf-

ad
ap

ta
tio

n

Ar
ch

ite
ct

ur
e

Re
co

nf
igu

ra
to

r

r

g

L
L

Loca

Kno

Scheduler

nt
im

e
er

at
or

2

P
2

MM
on

itoito
rr

al

oww

. . .

Pr
oc

es
s2

in
ac

tiv
e

As
su

m
pt

io
n

M
on

ito
r1

M
on

ito
r

Pr
oc

es
s1

ac
tiv

e

M
on

ito
r

Kn
ow

le
dg

e
Ex

ch
an

ge
1

ac
tiv

e

Node #1

Adaptation Manager

IRM-SA design model

DEECo runtime model

Traceability model

1

Se
lf-

ad
ap

ta
tio

n

Ar
ch

ite
ct

ur
e

Re
co

nf
igu

ra
to

r

SA
T S

ol
ve

r

g

23

4

jDEECo runtime

Replica

Knowledge

R
Replica

Knowledge

Replica

Knowledge

Replica

KnowledgeLocal component

Knowledge

L
Local component

Knowledge

Local component

Knowledge

Local component

Knowledge

Scheduler

IR
M

-S
A

ru
nt

im
e

m
od

el
 g

en
er

at
or

point ordinal scale (1: Strongly disagree, 2: Disagree, 3: Not
certain, 4: Agree, 5: Strongly agree). While (i) was based on
manual grading each architecture based on a strict grading
protocol where each error (missing knowledge, missing role,
wrong process condition, wrong process period, wrong ensemble
membership condition, etc.) was penalized by reducing certain
number of points, assessment of (ii) was provided by the
participants in pre- and post-questionnaires.

9.2 Results and Interpretation
To analyze the results and draw conclusions, for each hypothesis,
we formulated a null hypothesis and ran a one-sided statistical test
to reject it. In the case of two-sample tests (Table 1), the null
hypothesis stated that the medians of the two groups were
significantly different, whereas in the case of one-sample tests
(Table 2) it stated that the answer is not significantly more
positive than “Not certain” (point 3 in Likert). We adopted a 5%
significance level, accepting the null hypothesis if p-value<0.05.
(The p-value denotes the lowest possible significance with which
it is possible to reject the null hypothesis [78]).
The correctness of the system architectures showed a statistically
significant difference (with p=0.0467) in favor of the IRM-SA
group (Table 1, H1). Figure 15 depicts the dispersion of grades

around the medians for the two groups, while Figure 16 depicts
the frequencies of grades per group. From H9 (Table 2) we can
also conclude that participants of the IRM-SA group perceived
IRM-SA as an important factor of their confidence on the
correctness of the system architecture they proposed. These two
results allow us to conclude that IRM-SA increased both the
actual and the perceived effectiveness of the modeling process to
a statistically significant extent.
Regarding the rest of the conclusive results, participants of the
IRM-SA group found the IRM-SA modeling process intuitive
(H4) and the IRM-SA concepts rich enough to capture design
choices (H6).

9.3 Threats to Validity
Conclusion validity. To perform the parametric t-test for
interval/ratio data for H1, we assumed normal distribution of
samples [71]. Since Likert data were treated as ordinal, we used
the non-parametric Mann-Whitney tests for H2-H3 and Wilcoxon
tests for H4, H6 and H9 [71]. Grading was based on a strict pre-
defined protocol, which we made available together with the
anonymized raw data and the replication packages in the
experiment kit [42].
Internal validity. We adopted a simple “one factor with two
treatments” design [78] to avoid learning effects. The number of
participants (20) was high enough to reach a basic statistical
validity. We used a semi-randomized assignment of participants

Figure 15: Box-and-whisker diagrams of the two samples
measuring correctness of system architectures.

Figure 16: Histogram with distribution of grades per group.

Table 1: Two-sample tests to compare the populations of IRM-SA and control groups.

id Alternative (Null) Hypothesis test median
control

median
IRM-SA

reject
null-H? p-value

1 The correctness of the final system architectures is lower (null: the same)
in the control group than in the IRM-SA group t-test 81.30 86.09 Y 0.0467

2 The IRM-SA group witnessed less (null: the same) difficulties in coming
up with a DEECo architecture than the control group

Mann-
Whitney 4 4 N 0.5164

3 The IRM-SA group perceived the design effort as more (null: equally)
likely to be too high for an efficient use of the methodology in practice

Mann-
Whitney 2 2.5 N 0.4361

Table 2: One-sample Wilcoxon Signed-Rank tests to assess a hypothesis specific to a group. Only conclusive results are shown; for

the complete list of results we refer the interested reader to the experiment kit [42].
id Alternative Hypothesis median p-value
4 IRM-SA group will find it easy to think of a system in IRM-SA concepts (invariants, assumptions) 3.5 0.02386
6 IRM-SA group will find IRM-SA concepts detailed enough to captured the design choices 4 0.00176
9 IRM-SA group will have increased confidence over the correctness of the architecture via IRM-SA 4 0.00731

0

1

2

3

4

5

<75 75-80 80-85 85-90 90-95 95-100

Nu
mb

er
 of

 sy
ste

m
ar

ch
ite

ctu
re

s

Grades [0-100]

control IRM-SA

to groups so that each group is balanced both in terms of Master’s
vs Ph.D. students and in terms of their experience with DEECo.
Although the average time to completion of the assignment varied
greatly, the mean (140 mins) and minimum (75 mins) values
indicate that participants spent enough time to understand, think
about and perform the task and fill in the questionnaires. The
material and the experiment process was beta-tested with 4
participants beforehand.
Construct validity. We dealt with mono-method bias by using
both subjective (questionnaires) and objective (grades) measures.
We also measured more constructs than needed for H1 in order to
obtain multiple sources of evidence. However, we introduced
mono-operation bias by using only one treatment (IRM-SA) and
one task. Mitigating this threat is subject of additional future
studies.
External validity. Our population can be categorized as junior
software engineers, since it was formed by graduate students in
the last years of their studies [41]. Nevertheless, we used a rather
simple example and no group assignments. Therefore, the results
can be generalized mainly in academic settings.

10. DISCUSSION
In this section, we reflect on our experience with designing with
IRM-SA and discuss the ways to cope with unanticipated
situations in IRM-SA (Section 10.1). We also delineate the
applicability of IRM-SA beyond DEECo (Section 10.2) and
provide a critical review of the contributions of our work (Section
10.3).

10.1 Coping with Unanticipated Situations
Although IRM-SA modeling and self-adaptation as described in
the previous sections relies on anticipated situations, we are aware
of the fact that siCPS often need to operate in situations that reside
out of their “envelope of adaptability” [10]. In this section, we
explain how IRM-SA tackles this problem both at runtime and
design time. The driving idea is to control the decline of
dependability in the system caused by unanticipated situations, so
that the system’s operations degrade gradually in a controlled
manner.
To illustrate the problem using the running example, consider a
scenario of a vegetation fire where firefighters, as a part of
coordinating their actions, periodically update their group leader
with information about their position as captured by personal GPS
devices. A problem arises when GPS monitoring fails for
whatever reasons (battery drainage, etc.) – the system would no
longer be able to adapt, since this failure was not anticipated at the
design time. Below, we explain several strategies we propose to
cope with such unanticipated situations in IRM-SA.

10.1.1 Runtime Strategy
The principal strategy for coping with unanticipated situations is
to specify alternatives of OR-decompositions in such a way that
they cover situations in an overlapping manner. This increases
overall system robustness and fault-tolerance by providing a
number of alternatives to be selected in a particular situation.
A special case is when an IRM-SA model contains one or more
design alternatives that have very weak assumptions, i.e.,
assumptions that are very easily satisfied at runtime, and
minimum preference in an OR-decomposition. Such a design
alternative is chosen only as the last option as a fail-safe mode,
typical for the design of safety-critical systems. Figure 17 (a)
depicts such a case, where the situation 3, reflecting a fail-safe
mode, overlaps with both the situation 1 and 2.

In the running example, the runtime strategy is employed in two
OR-decompositions (Figure 2). The left-most part of the
decomposition of INV-9 “GM::sensorData is determined” has to
be maintained differently when the associated group member is in
danger (INV-13), when a nearby group member is in
danger/critical state (INV-18), and when no life is in threat (INV-
16). The situation characterized by INV-16 stands as a counterpart
of the other two, nevertheless they are not mutually exclusive.
This case is depicted in Figure 17.b.
Further, the INV-12: “GM::position is determined” has to be
maintained in the two situations characterized by the INV-24: “GM
indoors” and INV-26: “GM outdoors”. The last two also
potentially overlap, corresponding to the real-life scenario where a
firefighter repeatedly enters and exits a building. In this case, the
firefighter can also use the indoors tracking system to track his
position; this design alternative is automatically chosen when the
GPS unexpectedly malfunctions.

10.1.2 Re-design Strategy
The re-design strategy is applied in the design evolution process –
occurrences of the adaptation actions that led to a failure in the
system are analyzed and the IRM-SA model is revised
accordingly. Such a revision can range from inclusion of a single
invariant to restructuring of the whole IRM-SA model.
In such a revision, an important aid for the designer is the fact that
each invariant refinement implies relationship between the sub-
invariants and the parent invariant (Section 5.1). By monitoring
the satisfaction of the parent invariant ܫ and sub-
invariants ܫଵ, … , , it is possible to narrow down the adaptationܫ
failure and infer a suitable way of addressing it. In particular, an
adaptation failure occurs when:
(a) ܫ is AND-decomposed, all non-process invariants among
,ଵܫ … , does not hold. This points to a concealedܫ hold butܫ
assumption in the refinement of ܫ.

(b) ܫ is OR-decomposed, none of its alternatives holds, but ܫ
holds. This points to the fact that the refinement of ܫ is likely to
have more strict assumptions than necessary.
(c) ܫ is OR-decomposed, none of its alternatives holds, and ܫ
does not hold as well. This points to such an unanticipated
situation, which requires either a new alternative to be introduced
or an alternative that provides “close” results to be extended.

Figure 17: Overlap of situations when (a) situation 3 is a “fail-
safe” mode, (b) situations overlap in the running example.

(a)

Situation 1 Situation 2

Situation 3

(b)

Overlapping
of situations

1 & 2

Situation 1
(INV-13)

Situation 2
(INV-18)

Situation 3 (INV-16)

For illustration (of the case (c) in particular), consider the scenario
of a non-responsive GPS. In this case, both “GM::position is
determined from GPS every 1 sec” (INV-27 in Figure 2) and its
parent “GM::position is determined” (INV-12) do not hold, which
is a symptom for an unanticipated situation. Indeed, the root cause
is that GPS signal was considered accurate. To mitigate this
problem, we employ the evolution of the running example as
presented in Figure 18. There, the unanticipated situation has
become explicit and is used to drive the adaptation. Specifically,
in this new situation, the system still satisfies INV-12 by switching
to the right-most alternative. In such a case, the Firefighter’s
position is determined by aggregating the positions of the nearby
firefighters (INV-36) and estimating its own position based on
these positions and the radius of search, through determining the
maximum overlapping area (INV-37).

10.2 Applicability of IRM-SA beyond DEECo
The IRM-SA concepts of design components and invariants, and
the process of elaborating invariants via AND- and OR-
decomposition are implementation-agnostic. The outcome
therefore of the design – the IRM-SA model – can be mapped to a
general-purpose (e.g., OSGi [34], Fractal [13], SOFA 2 [16]) or
real-time component model (e.g., RTT [75], ProCom [68]) that
provides explicit support for modeling entities that encapsulate
computation (components) and interaction (connectors). In a
simple case, the mapping involves translating the process and
exchange invariants to local component activities and to
connectors, respectively.
That said, the mapping of IRM-SA to DEECo is particularly
smooth. This is because IRM-SA is tailored to the domain of
dynamic self-adaptive siCPS, where the management of belief of
individual components via soft-real-time operation and dynamic
grouping has a central role. In this regard, component models
tailored to self-adaptive siCPS (e.g., DEECo) and architectural
styles for group-based coordination (e.g., A-3 [4]), are good
candidates for a smooth mapping, since they provide direct
implementation-level counterparts of the IRM-SA abstractions.

10.3 Limits of Contributions
We now critically review each of the four key contributions of
this paper, as articulated in Section 1.1.

With respect to (i), modeling with IRM-SA has been shown via a
controlled experiment to be in principle feasible and effective for
the design of software for siCPS. However, the running example,
the system used in our experiments with jDEECo, and the system
the participants modeled in the empirical study were all of
considerably small size. A question remains as to how the
modeling approach scales in terms of the requirements and
situations that need to be elaborated and considered at design
time. A key to this is to support the modeling task with
appropriate tooling, such as graphical editors with advanced
features (e.g., allowing for IRM-SA subtrees to be referenced at
different nodes in the graph).
With respect to (ii), the automated self-adaptation method relies
on SAT solving to find an applicable configuration, and therefore
potentially hindered by the computational limitations of SAT
solvers. Nevertheless, contemporary solvers can easily scale to
several thousands of variables and clauses [7]. (In our experiments
(Section 7.2), the SAT instances handled were in the order of
hundreds (approx. 100 variables and 200 clauses)). When using
DANC, we assume that the IRM-SA reasoning will be localized
to groups of connected nodes, so that the resulting SAT instances
will be manageable.
With respect to (iii), we provided a set of experiments showing
how the DANC implementation of IRM-SA deals with network
disconnections in specific, but non-trivial settings. The lesson is
that DANC can be employed specifically in a class of “well-
behaved” systems, as detailed in Section 7.1. When the siCPS in
question does not belong to this class, techniques from networked
control systems [33] resp. their wireless variants [36], and multi-
agent coordination [43, 62] have to be sought out.
With respect to (iv), we provided two strategies to deal with
unanticipated situations; the first one refers primarily to designing
with fail-safe modes – a strategy widely used in CPS [70]; the
second one refers to error detection and principled design
evolution that take advantage of the position of assumptions in the
IRM-SA graph. We acknowledge that these strategies do not cope
with fully unanticipated situations and environmental uncertainty.
In our current and future work, we are focusing on devising new
architecture alternatives at runtime to cope with such cases [31].
Finally, there are several difficult research topics related to
control theory [37], such as timeliness of adaptation triggering,
sequential decision-making issues, and timing issues related to
observing the effects of adaptations on the monitored values in
order to plan further adaptations. Nevertheless, these issues lie out
of the scope of this paper.

11. RELATED WORK
Recently, there has been a growing interest in software
engineering research for software-intensive systems with self-
adaptive and autonomic capabilities [65]. Since our approach is
especially close to software product lines approaches and their
dynamic counterparts, we first position IRM-SA against these
approaches; we then split the comparison into three essential
views of self-adaptation [18], namely requirements, assurances,
and engineering.

11.1 IRM-SA vs. Dynamic Software Product
Lines
Variability modeling at design time has been in the core of
research in software product lines (SPLs) [21]. Recently,
numerous approaches have proposed to apply the proven SPL
techniques of managing variability in the area of runtime

Figure 18: Design evolution scenario – the new
“inaccuracy(GM::position) < 20m” situation is added to the
model and drives the adaptation.

INV-33
inaccuracy(GM::position)<20m

INV-34
inaccuracy(GM::position)>=20m

INV-27 GM::position is
determined from GPS
every 1 sec

P

INV-37 GM::position is estimated based
on GM::nearbyGMsPositions and on the
search radius for nearby FFs

P

+ id
+ sensorData
+ position
+ temperature
+ acceleration
+ groupLeaderId
+ oxygenLevel
+ nearbyGMsStatus
+ nearbyGMsPositions

Firefighter

INV-36 GM::nearbyGMsPositions – belief of
GM over nearby FFs’ positions – is up-to-date

X

INV-12 GM::position is
determined

INV-26 GM outdoors

INV-35 GM::position is
determined by nearby GMs

...

1[GM]

[GM]

*[GM]

adaptation, leading to the concept of dynamic SPL (DSPL) [38].
The idea behind DSPL is to delay the binding of variants from
design to runtime, to focus on a single product than a family of
products, and to have configurations be driven by changes in the
environment than by market needs and stakeholders. In this spirit,
IRM-SA can be considered as a DSPL instance.
Within DSPLs, feature models are an effective means to model
the common features, the variants, and the variability points of a
self-adapting system [45]. However, they fall short in identifying
and modeling the situations that the system may encounter during
operation [67]. This results in maintaining an additional artifact as
a context model (e.g., an ontology [59]) in parallel with the
feature model at runtime, in order to bind the monitoring and
planning phases of the MAPE-K loop [46]. IRM-SA provides an
explicit support for capturing situations, pertinent to system
operation and self-adaptation, via the assumption concept. At the
same time, by building on the iterative refinement of invariants
and the assignment of leaf invariants to design components, IRM-
SA integrates the problem space view (requirements models) with
the solution space view (feature models) into a single manageable
artifact (IRM-SA model).
Finally, compared to existing approaches in DSPLs that use goal
models to describe the configuration space [67], IRM-SA does not
focus on the prioritization between applicable configurations, but
on the gradual degradation of overall system performance when
dealing with operational uncertainty in decentralized settings.

11.2 Requirements and Assurances
In an effort to study the requirements that lead to the feedback
loop functionality of adaptive systems, Souza et al. defined a new
class of requirements, termed “awareness requirements” [73],
which refer to the runtime success/failure/quality-of-service of
other requirements (or domain assumptions). Awareness
requirements are expressed in an OCL-like language, based on the
Tropos goal models [12] produced at design time, and monitored
at runtime by the requirements monitoring framework ReqMon
[64]. The idea is to have a highly sophisticated logging
framework, on top of which a full MAPE-K feedback loop [46]
can be instantiated. Our approach, on the other hand, features a
tighter coupling between monitoring and actuating, since both
aspects are captured in the IRM-SA model.
Extending goal-based requirements models with alternative
decompositions to achieve self-adaptivity has been carried out in
the frame of Tropos4AS [55, 56]. System agents, together with
their goals and their environment are first modeled and then
mapped to agent-based implementation in Jadex platform.
Although IRM-SA is technically similar to Tropos4AS, it does
not capture the goals and intentions of individual actors, but the
desired operation of the system as a whole, thus promoting
dependable operation, key factor in siCPS.
For dealing with uncertainty in the requirements of self-adaptive
systems, the RELAX [77] and FLAGS [5] languages have been
proposed. RELAX syntax is in the form of structured natural
language with Boolean expressions; its semantics is defined in a
fuzzy temporal logic. The RELAX approach distinguishes
between invariant and non-invariant requirements, i.e.,
requirements that may not have to be satisfied at all times. In [19],
RELAX specifications are integrated into KAOS goal models.
Threat modeling à la KAOS [52] is employed to systematically
explore (and subsequently mitigate) uncertainty factors that may
impact the requirements of a DAS. FLAGS is an extension to the
classical KAOS goal model that features both crisp goals (whose
satisfaction is Boolean) and fuzzy goals (whose satisfaction is

represented by fuzzy constrains) that correspond to invariant and
non-invariant requirements of RELAX. The idea of using a
FLAGS model at runtime to guide system adaptation has been
briefly sketched in [5], but to the best of our knowledge not yet
pursued. Compared to IRM-SA, both RELAX and FLAGS focus
on the requirements domain and do not go beyond goals and
requirements to design and implementation.
One of the first attempts to bind requirements, captured in KAOS,
with runtime monitoring and reconciliation tactics is found in the
seminal work of Fickas and Feather [25, 26]. Their approach is
based on capturing alternative designs and their underlying
assumptions via goal decomposition, translating them into
runtime monitors, and using them to enact runtime adaptation.
Specifically, breakable KAOS assumptions (captured in LTL) are
translated into the FLEA language, which provides constructs for
expressing a temporal combination of events. When requirements
violation events occur, corrective actions apply, taking the form of
either parameter tuning or shifting to alternative designs. There
are two main differences to our approach: (i) in KAOS-FLEA the
designer has to manually write and tune the reconciliation tactics,
whereas we rely on the structure of an IRM-SA model and the
solver for a solution; (ii) contrary to KAOS-FLEA we do not treat
alternative designs as correcting measures, but as different system
modes, which is more suitable for siCPS environments.

11.3 Design and Implementation
At the system design and implementation phases, the component-
based architectural approach towards self-adaptivity is favored in
several works [29, 63]. Here, mode switching stands as a widely
accepted enabling mechanism, introduced by Kramer and Magee
[39, 49]. The main shortcoming is that mode switching is
triggered via a finite state machine with pre-defined triggering
conditions, which is difficult to trace back to system requirements.
Also, although partially addressed in [58], modes and the
triggering conditions are usually designed via explicit
enumeration, which may cause scalability problems given the
number and complex mutual relations of the variation points
involved. In IRM-SA, architecture configurations act as modes.
However, IRM-SA complements mode switching by enabling for
compositional definition of architecture configurations and
providing the traceability links, which in turn allows for self-
explanation [66].
Another large area of related work focusing specifically on
decentralized operation to achieve a common joint goal is found
in distributed and multi-agent planning. Here the main questions
are centered around the issue of how to compute a close-to-
optimal plan for decentralized operation of agents with partially
observable domains. The typical solution is to model the
environment of an agent via a Decentralized Partially Observable
Markov Decision Process (DEC-POMDP) [8]. This is further
extended to include imperfect communication [74, 80] and taken
even a step further, when decentralization is strengthened by not
requiring prior coordination (and strict synchronization) – either
by resigning on the inter-agent communication [6, 79] or by
performing communication simultaneously to planning [76]. A
disadvantage is that decentralized approaches to MDP do not
scale beyond a few number of agents [6, 76] – standard
benchmark problems in the DEC-POMDP community typically
involve just two agents (e.g., [2, 9, 69]). The major difference to
our work is that multi-agent planning requires a model of the
environment in order to predict the effect of an action. A complete
model of an environment becomes a rather infeasible requirement.
IRM-SA does not require the complete model of an environment

as the plan is not computed, but specified by a designer. By
including high-level invariants, the IRM-SA however still able to
reason about the efficiency of the configuration being currently
executed and it also drives decentralized decisions on the
configuration selection.
Finally, architecture adaptation based on various constraint
solving techniques is not a new idea. A common
conceptualization, e.g., in [30, 35], is based on the formal
definition of architecture constraints (e.g., architecture styles,
extra-functional properties), individual architecture elements (e.g.,
components), and, most importantly, adaptation operations that
are supported by an underlying mechanism (e.g., addition/removal
of a component binding). Typically, the objective is to find an
adaptation operation that would bring the architecture from an
invalid state to a state that conforms to the architecture constraints
(architecture planning). Although these methods support
potentially unbounded architecture evolution (since they are based
on the supported adaptation operations rather than predefined
architecture configurations), they typically consider only
structural and extra-functional properties rather than system goals.
Consequently, they support neither smooth, gradual degradation
in unanticipated situations, nor offline evolution of the design.

12. CONCLUSION AND FUTURE WORK
In this paper, we have presented the IRM-SA method – an
extension to IRM that allows designing of self-adaptive software-
intensive Cyber-Physical Systems (siCPS) with a focus on
dependability aspects. The core idea of the method is to describe
variability of a system by alternative invariant decompositions and
then to drive system adaptation by employing the knowledge of
high-level system’s goals and their refinement to computational
activities.

A novel feature of IRM-SA is that it allows adaptation in presence
of operational uncertainty caused by inaccuracies of sensed data
and by unreliable communication. This is achieved by reasoning
not only on the values of belief on component knowledge, but
also on the degree of belief inaccuracy, which is based on the
degree of belief outdatedness and the model that governs the
evolution of belief.

As a proof of concept, we have implemented IRM-SA within
jDEECo (a Java realization of the DEECo component model) and
showed its feasibility by modeling a real-life scenario from an
emergency coordination case study. Moreover, we have provided
a proof-of-concept demonstration of the benefits of IRM-SA by
experiments carried out by simulation. We have also tested the
feasibility and effectiveness of the IRM-SA modeling process via
a controlled experiment.

Future work. When the SAT solver fails to find an applicable
configuration, self-adaptation based on IRM-SA reaches its limits.
In our current work we aim at extending the envelope of
adaptability of architecture-based self-adaptive systems. We do so
by introducing new architecture alternatives (tactics) to the
running system when no applicable IRM_SA configuration exists
[31]. For example, one of the ways of introducing new
alternatives exploits the fact that sensed data are often correlated
(e.g. in siCPS, certain measurable attributes are typically location-
dependent), which creates the possibility of employing
“collaborative sensing” when direct (local) sensing is not possible.

Another promising idea is to build on the fact that, in siCPS
physical laws govern the evolution of the values of specific
physical-environment magnitudes (e.g. speed, position). Such

laws can be employed in predicting such evolution. We have
already introduced the inaccuracy construct (Section 5.2) to
integrate the results of such predictions with IRM-SA. This idea
aligns well with research in stochastic hybrid systems, and also
complies with our vision to employ Multi-Paradigm Modeling
(MPM) in siCPS [61]. MPM that will allow to work with different
types of models (such as physical-world, communication,
mechanical, and adaptability models) which would be integrated
into a single rich software architecture model (similar to [11]). For
instance, this would significantly help in cases when new
alternatives in the adaptability model are to be introduced while
being subject to safety constraints in the physical-world model.

Finally, focusing on the important distributed control aspects of
siCPS and modeling them in software-engineering models such as
IRM-SA is another interesting topic for future work.

13. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their
constructive and detailed feedback on earlier versions of this
manuscript.
This work was partially supported by the EU project ASCENS
257414 and by Charles University institutional funding SVV-
2015-260222. The research leading to these results has received
funding from the European Union Seventh Framework
Programme FP7-PEOPLE-2010-ITN under grant agreement
n°264840. This work was partially supported by the project no.
LD15051 from COST CZ (LD) programme by the Ministry of
Education, Youth and Sports of the Czech Republic.

14. REFERENCES
[1] Ali, R. Al, Bures, T., Gerostathopoulos, I., Keznikl, J. and

Plasil, F. 2014. Architecture Adaptation Based on Belief
Inaccuracy Estimation. Proc. of WICSA’14 (Sydney,
Australia, Apr. 2014), 1–4.

[2] Amato, C. and Zilberstein, S. 2009. Achieving Goals in
Decentralized POMDPs. Proceedings of The 8th
International Conference on Autonomous Agents and
Multiagent Systems (Richland, SC, 2009), 593–600.

[3] Arcaini, P., Gargantini, A. and Vavassori, P. 2015.
Generating Tests for Detecting Faults in Feature Models.
Proc. of the 8th IEEE International Conference on
Software Testing, Verification and Validation (ICST ’15),
to appear. (Apr. 2015).

[4] Baresi, L. and Guinea, S. 2011. A-3: An Architectural
Style for Coordinating Distributed Components. 2011 9th
Working IEEE/IFIP Conference on Software Architecture
(WICSA) (Jun. 2011), 161–170.

[5] Baresi, L., Pasquale, L. and Spoletini, P. 2010. Fuzzy
Goals for Requirements-Driven Adaptation. 2010 18th
IEEE International Requirements Engineering Conference.
(Sep. 2010), 125–134.

[6] Barrett, S., Stone, P., Kraus, S. and Rosenfeld, A. 2013.
Teamwork with Limited Knowledge of Teammates.
Proceedings of the 27th AAAI Conference on Artificial
Intelligence (Jul. 2013).

[7] Belov, A., Diepold, D., Heule, M.J.H. and Järvisalo, M.
2014. Proceedings of SAT Competition 2014: Solver and
Benchmark Descriptions. (2014).

[8] Bernstein, D.S., Givan, R., Immerman, N. and Zilberstein,
S. 2002. The Complexity of Decentralized Control of
Markov Decision Processes. Math. Oper. Res. 27, 4 (Nov.
2002), 819–840.

[9] Bernstein, D.S., Hansen, E.A. and Zilberstein, S. 2005.
Bounded Policy Iteration for Decentralized POMDPs.
Proceedings of the 19th International Joint Conference on
Artificial Intelligence (San Francisco, CA, USA, 2005),
1287–1292.

[10] Berry, D.M., Cheng, B.H.C. and Zhang, J. 2005. The Four
Levels of Requirements Engineering for and in Dynamic
Adaptive Systems. Proc. of the 11th International
Workshop on Requirements Engineering Foundation for
Software Quality, Porto, Portugal (2005), 95–100.

[11] Bhave, A., Krogh, B.H., Garlan, D. and Schmerl, B. 2011.
View Consistency in Architectures for Cyber-Physical
Systems. 2011 IEEE/ACM International Conference on
Cyber-Physical Systems (ICCPS) (Apr. 2011), 151–160.

[12] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and
Mylopoulos, J. 2004. Tropos: An Agent-Oriented Software
Development Methodology. Autonomous Agents and
Multi-Agent Systems. 8, 3 (May 2004), 203–236.

[13] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V. and
Stefani, J.-B. 2006. The Fractal component model and its
support in Java. Software: Practice & Experience. 36, 11-
12 (2006), 1257–1284.

[14] Bures, T., Gerostathopoulos, I., Hnetynka, P. and Keznikl,
J. 2014. Gossiping Components for Cyber-Physical
Systems. Proc. of 8th European Conference on Software
Architecture (2014), 250–266.

[15] Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J.,
Kit, M. and Plasil, F. 2013. DEECo – an Ensemble-Based
Component System. Proc. of CBSE’13 (Vancouver,
Canada, Jun. 2013), 81–90.

[16] Bures, T., Hnetynka, P. and Plasil, F. 2006. SOFA 2.0 :
Balancing Advanced Features in a Hierarchical Component
Model. SERA ’06 (2006), 40–48.

[17] Chang, N., Rashidzadeh, R. and Ahmadi, M. 2010. Robust
indoor positioning using differential wi-fi access points.
IEEE Transactions on Consumer Electronics. 56, 3 (Aug.
2010), 1860–1867.

[18] Cheng, B. et al. 2009. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. Software
Engineering for Self-Adaptive Systems. Springer Berlin
Heidelberg. 1–26.

[19] Cheng, B.H.C., Sawyer, P., Bencomo, N. and Whittle, J.
2009. A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with Environmental
Uncertainty. Proc. of the 12th International Conference on
Model Driven Engineering Languages and Systems,
MoDELS ’09 (2009), 1–15.

[20] Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. 1999.
Non-Functional Requirements in Software Engineering.
Springer.

[21] Clements, P. and Northrop, L. 2002. Software Product
Lines: Practices and Patterns. Addison Wesley
Professional.

[22] Dalpiaz, F., Chopra, A.K., Giorgini, P. and Mylopoulos, J.
2010. Adaptation in Open Systems: Giving Interaction its
Rightful Place. Proceedings of the 29th International
Conference on Conceptual Modeling (ER ’10) (Vancouver,
Canada, Nov. 2010), 31–45.

[23] DeNicola, R., Ferrari, G., Loreti, M. and Pugliese, R. 2013.
A Language-based Approach to Autonomic Computing.
Formal Methods for Components and Objects. 7542,
(2013), 25–48.

[24] Esfahani, N., Kouroshfar, E. and Malek, S. 2011. Taming
Uncertainty in Self-Adaptive Software. SIGSOFT/FSE ’11:

Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software
engineering (2011), 234–244.

[25] Feather, M.S., Fickas, S., van Lamsweerde, A. and
Ponsard, C. 1998. Reconciling System Requirements and
Runtime Behavior. Proceedings of the 9th International
Workshop on Software Specification and Design (1998),
50–59.

[26] Fickas, S. and Feather, M.S. 1995. Requirements
monitoring in dynamic environments. Proceedings of 1995
IEEE International Symposium on Requirements
Engineering (RE’95). (1995), 140–147.

[27] Fischer, M.J., Lynch, N.A. and Paterson, M.S. 1985.
Impossibility of Distributed Consensus with One Faulty
Process. J. ACM. 32, 2 (Apr. 1985), 374–382.

[28] Fouquet, F., Daubert, E. and Plouzeau, N. 2012.
Dissemination of reconfiguration policies on mesh
networks. Distributed Applications and Interoperable
Systems (2012), 16–30.

[29] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. and
Steenkiste, P. 2004. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. Computer. 37, 10
(2004), 46–54.

[30] Georgiadis, I., Magee, J. and Kramer, J. 2002. Self-
organising software architectures for distributed systems.
Proceedings of the first workshop on Self-healing systems -
WOSS ’02 (2002), 33–38.

[31] Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A.,
Plasil, F. and Skoda, D. 2015. Meta-Adaptation Strategies
for Adaptation in Cyber-Physical Systems. Technical
Report #D3S-TR-2015-01. Department of Distributed and
Dependable Systems, D3S-TR-2015-01.

[32] Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C.
and Hughes, D. 2008. Goal-Based Modeling of
Dynamically Adaptive System Requirements. Proc. of the
15th Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems (ECBS
2008) (Mar. 2008), 36–45.

[33] Gupta, R.A. and Chow, M.-Y. 2010. Networked Control
System: Overview and Research Trends. IEEE
Transactions on Industrial Electronics. 57, 7 (Jul. 2010),
2527–2535.

[34] Hall, R., Pauls, K., McCulloch, S. and Savage, D. 2011.
OSGi in Action: Creating Modular Applications in Java.
Manning Publications, Stamford, CT.

[35] Hansen, K.M. 2012. Modeling and Analyzing
Architectural Change with Alloy. SAC ’10 (2012), 2257–
2264.

[36] Hasan, M.S., Yu, H., Carrington, A. and Yang, T.C. 2009.
Co-simulation of wireless networked control systems over
mobile ad hoc network using SIMULINK and OPNET.
IET Communications. 3, 8 (2009), 1297.

[37] Hellerstein, J., Diao, Y., Parekh, S. and Tilbury, D. 2004.
Feedback Control of Computing Systems.

[38] Hinchey, M., Park, S. and Schmid, K. 2012. Building
Dynamic Software Product Lines. Computer. 45, 10 (Oct.
2012), 22–26.

[39] Hirsch, D., Kramer, J., Magee, J. and Uchitel, S. 2006.
Modes for software architectures. Proc. of the 3rd
European conference on Software Architecture, EWSA ’06
(2006), 113–126.

[40] Hoelzl, M., Rauschmayer, A. and Wirsing, M. 2008.
Engineering of Software-Intensive Systems: State of the

Art and Research Challenges. Software-Intensive Systems
and New Computing Paradigms. 1–44.

[41] Höst, M., Regnell, B. and Wohlin, C. 2000. Using Students
as Subjects—A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment. Empirical
Software Engineering. 214, (2000), 201–214.

[42] IRM-SA Website: 2015.
http://d3s.mff.cuni.cz/projects/irm-sa. Accessed: 2015-04-
23.

[43] Jadbabaie, A., Lin, J. and Morse, A.S. 2003. Coordination
of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on Automatic Control.
48, 6 (Jun. 2003), 988–1001.

[44] jDEECo Website: 2015.
https://github.com/d3scomp/JDEECo. Accessed: 2015-04-
23.

[45] Kang, K.C., Jaejoon, L. and Donohoe, P. 2002. Feature-
oriented product line engineering. IEEE Software. 19, 4
(2002), 58–65.

[46] Kephart, J. and Chess, D. 2003. The Vision of Autonomic
Computing. Computer. 36, 1 (2003), 41–50.

[47] Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I.,
Hnetynka, P. and Hoch, N. 2013. Design of Ensemble-
Based Component Systems by Invariant Refinement. Proc.
of CBSE’13 (Vancouver, Canada, Jun. 2013), 91–100.

[48] Keznikl, J., Bures, T., Plasil, F. and Kit, M. 2012. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. Proc. of WICSA/ECSA’12
(Aug. 2012), 249–252.

[49] Kramer, J. and Magee, J. 2007. Self-managed systems: an
architectural challenge. Proc. of FOSE’07 (Minneapolis,
USA, May 2007), 259–268.

[50] Lamsweerde, A. Van 2008. Requirements engineering:
from craft to discipline. 16th ACM Sigsoft Intl. Symposium
on the Foundations of Software Engineering (Atlanta,
USA, Nov. 2008), 238–249.

[51] Lamsweerde, A. Van 2009. Requirements Engineering:
From System Goals to UML Models to Software
Specifications. John Wiley and Sons.

[52] Lamsweerde, A. Van and Letier, E. 2000. Handling
obstacles in goal-oriented requirements engineering. IEEE
Transactions on Software Engineering. 26, 10 (2000),
978–1005.

[53] LeBerre, D. and Parrain, A. 2010. The Sat4j Library,
release 2.2. Journal on Satisfiability, Boolean Modeling
and Computation. 7, (2010), 59–64.

[54] McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng,
B.H.C. 2004. Composing adaptive software. Computer. 37,
7 (2004), 56–64.

[55] Morandini, M., Penserini, L. and Perini, A. 2008.
Automated Mapping from Goal Models to Self-Adaptive
Systems. 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering (Sep. 2008), 485–486.

[56] Morandini, M. and Perini, A. 2008. Towards Goal-
Oriented Development of Self-Adaptive Systems.
Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-managing
Systems - SEAMS ’08 (Leipzig, Germany, May 2008), 9–
16.

[57] Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and
Solberg, A. 2009. Models at Runtime to Support Dynamic
Adaptation. Computer. 42, 10 (2009), 44–51.

[58] Morin, B., Barais, O., Nain, G. and Jezequel, J. 2009.
Taming Dynamically Adaptive Systems Using Models and

Aspects. Proc. of the 31st International Conference in
Software Engineering, ICSE ’09 (2009), 122–132.

[59] Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó. and
Lopez-Herrejon, R.E. 2014. Context Variability Modeling
for Runtime Configuration of Service-based Dynamic
Software Product Lines. Proceedings of the 18th
International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and
Tools - Volume 2 (New York, NY, USA, 2014), 2–9.

[60] Murray, R.M., Astrom, K.J., Boyd, S.P., Brockett, R.W.
and Stein, G. 2003. Future Directions in Control in an
Information-Rich World. Control Systems, IEEE. 23, 2
(2003), 1–21.

[61] Mustafiz, S., Denil, J., Lúcio, L. and Vangheluwe, H.
2012. The FTG+ PM framework for multi-paradigm
modelling: An automotive case study. Proceedings of the
6th International Workshop on Multi-Paradigm Modeling
(2012), 13–18.

[62] Olfati-Saber, R., Fax, J.A. and Murray, R.M. 2007.
Consensus and Cooperation in Networked Multi-Agent
Systems. Proceedings of the IEEE. 95, 1 (Jan. 2007), 215–
233.

[63] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.
and Wolf, A.L. 1999. An Architecture-Based Approach to
Self-Adaptive Software. Intelligent Systems and their
Applications, IEEE. 14, 3 (1999), 54 – 62.

[64] Robinson, W.N. 2005. A requirements monitoring
framework for enterprise systems. Requirements
Engineering. 11, 1 (Nov. 2005), 17–41.

[65] Salehie, M. and Tahvildari, L. 2009. Self-Adaptive
Software: Landscape and Research Challenges. ACM
Transactions on Autonomous and Adaptive Systems. 4, 2,
May (2009), 1–40.

[66] Sawyer, P., Bencomo, N., Whittle, J., Letier, E. and
Finkelstein, A. 2010. Requirements-Aware Systems: A
Research Agenda for RE for Self-adaptive Systems. Proc.
of the 18th IEEE International Requirements Engineering
Conference (Sep. 2010), 95–103.

[67] Sawyer, P., Rocquencourt, I., Mazo, R., Diaz, D., Salinesi,
C. and Paris, U. 2012. Using Constraint Programming to
Manage Configurations in Self-Adaptive Systems.
Computer. 45, 10 (2012), 56–63.

[68] Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J. and
Crnkovic, I. 2008. A component model for control-
intensive distributed embedded systems. Proc. of the 11th
International Symposium on Component-Based Software
Engineering (Oct. 2008), 310–317.

[69] Seuken, S. and Zilberstein, S. 2012. Improved Memory-
Bounded Dynamic Programming for Decentralized
POMDPs. Proc. of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence (2012).

[70] Sha, L. and Meseguer, J. 2008. Design of Complex Cyber
Physical Systems with Formalized Architectural Patterns.
Software-Intensive Systems and New Computing
Paradigms. M. Wirsing, J.-P. Banâtre, M. Hölzl, and A.
Rauschmayer, eds. Springer. 92–100.

[71] Sheskin, D.J. 2011. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman and
Hall/CRC.

[72] Shoham, Y. and Leyton-Brown, K. 2008. Multiagent
systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press.

[73] Souza, V.E.S., Lapouchnian, A., Robinson, W.N. and
Mylopoulos, J. 2013. Awareness Requirements. Software
Engineering for Self-Adaptive Systems II. Springer Berlin
Heidelberg. 133–161.

[74] Spaan, M.T.J., Oliehoek, F.A. and Vlassis, N. 2008.
Multiagent Planning under Uncertainty with Stochastic
Communication Delays. Proc. of Int. Conf. on Automated
Planning and Scheduling (2008), 338–345.

[75] The Orocos Real-Time Toolkit:
http://www.orocos.org/wiki/orocos/rtt-wiki.

[76] Valtazanos, A. and Steedman, M. 2014. Improving
Uncoordinated Collaboration in Partially Observable
Domains with Imperfect Simultaneous Action
Communication. Proc. of the Workshop on Distributed and
Multi-Agent Planning in ICAPS (2014), 45–54.

[77] Whittle, J., Sawyer, P. and Bencomo, N. 2010. RELAX: A
Language to Address Uncertainty in Self-Adaptive
Systems Requirements. Requirements Engineering. 15, 2
(2010), 177–196.

[78] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C.,
Regnell, B. and Wesslen, A. 2012. Experimentation in
Software Engineering. Springer.

[79] Wu, F., Zilberstein, S. and Chen, X. 2011. Online Planning
for Ad Hoc Autonomous Agent Teams. Proc. of the 22nd
International Joint Conference on Artificial Intelligence
(2011), 439–445.

[80] Wu, F., Zilberstein, S. and Chen, X. 2011. Online planning
for multi-agent systems with bounded communication.
Artificial Intelligence. 175, 2 (Feb. 2011), 487–511.

