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ABSTRACT 
Design of self-adaptive software-intensive Cyber-Physical 
Systems (siCPS) operating in dynamic environments is a 
significant challenge when a sufficient level of dependability is 
required.  This stems partly from the fact that the concerns of self-
adaptivity and dependability are to an extent contradictory. In this 
paper, we introduce IRM-SA (Invariant Refinement Method for 
Self-Adaptation) – a design method and associated formally 
grounded model targeting siCPS – that addresses self-adaptivity 
and supports dependability by providing traceability between 
system requirements, distinct situations in the environment, and 
predefined configurations of system architecture. Additionally, 
IRM-SA allows for architecture self-adaptation at runtime and 
integrates the mechanism of predictive monitoring that deals with 
operational uncertainty. As a proof of concept, it was 
implemented in DEECo, a component framework that is based on 
dynamic ensembles of components. Furthermore, its feasibility 
was evaluated in experimental settings assuming decentralized 
system operation. 
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1. INTRODUCTION 
Cyber-physical systems (CPS) are characterized by a network of 
distributed interacting elements which respond, by sensing and 
actuating, to activities in the physical world (their environments). 
Compared to traditional embedded systems, CPS are becoming 
more modular, dynamic, networked, and large-scale. For already a 
long time, many CPS have been also increasingly dependent on 
software, their most intricate and extensive constituent [40] – so 
that it is natural to talk about software-intensive CSP (siCPS). In 
this paper, we consider a class of siCPS that are distributed at a 
large scale and inherently dynamic. Examples of siCPS are 
numerous: systems for intelligent car navigation, smart electric 
grids, emergency coordination systems, to name just a few.  
Designing such systems is a challenging task, as one has to deal 
with the different, and to an extent contradictory, concerns of 
dependability and self-adaptivity. Since they often host safety-
critical applications, they need to be dependable (safe and 
predictable in the first place), even when being highly dynamic. 

Since siCPS operate in diverse environments (parts of the ever-
changing physical world), they need be self-adaptive [54]. An 
additional issue is the inherent operational uncertainty related to 
their infrastructure. Indeed, siCPS need to remain operable even 
in adversarial conditions, such as network unavailability, 
hardware failures, resource scarcity, etc.  
Achieving synergy of dependability and self-adaptivity in 
presence of operational uncertainty is hard. Existing approaches 
typically succeed in addressing just one aspect of the problem. For 
example, agent-oriented methodologies address conceptual 
autonomy [22, 56]; component-based mode-switching methods 
bring dependability assurances with limited self-adaptivity [29, 
39]. Operational uncertainty is typically viewed as a separate 
problem [19]. What is missing is a design method and associated 
model that would specifically target the development of 
dependable and self-adaptive siCPS while addressing operational 
uncertainty. 
Self-adaptive siCPS need to be able to adapt to distinct runtime 
situations in the environment (i.e., its states as observed by the 
system). This takes the form of switching between distinct 
architecture configurations of the system (products in SPLs [3]). 
Being reflected in system requirements, these configurations and 
the associated situations can be systematically identified and 
addressed via requirement analysis and elaboration, similar to 
identification of adaptation scenarios in a Dynamically Adaptive 
System (DAS) [32].  
A problem is that an exhaustive enumeration of configurations 
and situations at design time is not a viable solution in the domain 
of siCPS, where unanticipated situations can appear in the 
environment (external uncertainty in [24]). Moreover, another 
challenge is that self-adaptive siCPS need to base their adaptation 
actions not only on the current situation, but also on how well the 
system can currently operate, e.g., whether certain components 
can properly communicate (issue similar to agent capabilities 
[72]).  
In this paper we tackle these challenges by proposing an extension 
to IRM [47] – a design method and associated formally grounded 
model targeting siCPS requirements and architecture design. This 
extension (IRM for Self-Adaptation – IRM-SA) supports self-
adaptivity and, at the same time, accounts for dependability. In 
particular, dependability is supported primarily at design time 
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through traceability between system requirements and 
configurations. Self-adaptivity is supported in the form of 
defining alternative configurations at design time and switching 
between them at runtime (architecture self-adaptation) to address 
specific situations. In order to select a configuration at runtime, 
SAT solving is employed. 
In general, siCPS are networked control systems facing difficult 
open issues both in terms of control theory [37] and decentralized 
decision-making [8]. In this paper, we focus on a large class of 
siCPS for which the pace of changes and temporary 
disagreements among nodes do not prevent a fully decentralized 
self-adaptation. In Section 7 we discuss these issues in more detail 
and describe criteria under which a siCPS is amenable to our 
approach. 
To evaluate the feasibility of IRM-SA we have applied it on a 
firefighter coordination case study – Firefighter Tactical Decision 
System (FTDS) – developed within the project DAUM1. As proof 
of the concept, we implemented self-adaptation based on IRM-SA 
by extending DEECo [15] – a component model facilitating open-
ended and highly dynamic siCPS architectures. We also evaluated 
the design process of IRM-SA via a controlled experiment. 

1.1 Contributions 
In summary, key contributions of this paper include: 

i. The description of a design method and associated model  
that allow modeling design alternatives in the 
architecture of a siCPS pertaining to distinct situations 
via systematic elaboration of system requirements; 

ii. An automated self-adaptation method that selects the 
appropriate architecture configuration based on the 
modeled design alternatives and the perceived situation;  

iii. An evaluation of how well the proposed self-adaptation 
method deals with operational uncertainty via predictive 
monitoring;    

iv. A discussion of strategies to deal with unanticipated 
situations at design time and at runtime. 

1.2 Structure 
The paper is structured as follows. Section 2 describes the running 
example, while Section 3 presents the background on which IRM-
SA is based. Then, Section 4 overviews the core ideas of IRM-
SA. Section 5 elaborates on the modeling of different design 
alternatives in IRM-SA by extending IRM, while Section 6 
focuses on the selection of applicable architecture configurations 
at runtime. Section 7 focuses on the intricacies of self-adaptation 
in distributed settings and describes criteria under which self-
adaptation can be performed in a decentralized manner, together 
with an example case. Section 8 details on our prototype 
implementation of IRM-SA in DEECo. Section 9 reports on an 
empirical study of IRM-SA effectiveness via a controlled 
experiment. Section 10 discusses the mechanisms to cope with 
unanticipated situations and the generality of IRM-SA. Section 11  
positions our work with respect to the state of the art, while 
Section 12 concludes the paper and outlines some yet-to-be-
addressed challenges. 

                                                                 
1 http://daum.gforge.inria.fr/   

2.  RUNNING EXAMPLE 
In this paper, we use as running example a simple scenario from 
the FTDS case study, which was developed in cooperation with 
professional firefighters. In the scenario, the firefighters belonging 
to a tactical group communicate with their group leader. The 
leader aggregates the information about each group member’s 
condition and his/her environment (parameters considered are 
firefighter acceleration, external temperature, position and oxygen 
level). This is done with the intention that the leader can infer 
whether any group member is in danger so that specific actions 
are to be taken to avoid casualties. 
On the technical side, firefighters in the field communicate via 
low-power nodes integrated into their personal protective 
equipment. Each of these nodes is configured at runtime 
depending on the task assigned to its bearer. For example, a 
hazardous situation might need closer monitoring of a certain 
parameter (e.g., temperature). The group leaders are equipped 
with tablets; the software running on these tablets provides a 
model of the current situation (e.g., on a map) based on the data 
aggregated from the low-power nodes. 
The main challenge of the case study is how to ensure that 
individual firefighters (nodes) retain their (a) autonomy so that 
they can operate in any situation, even entirely detached from the 
network and (b) autonomicity so that they can operate optimally 
without supervision, while still satisfying certain system-level 
constraints and goals. Examples of challenging scenarios include 
(i) loss of communication between a leader and members due to 
location constraints, (ii) malfunctioning of sensors due to extreme 
conditions or battery drainage, and (iii) data inaccuracy and 
obsoleteness due to intermittent connections. In all these cases, 
firefighters have to adjust their behavior according to the latest 
information available. Such adjustments range from simple 
adaptation actions (e.g., increasing the sensing rate in face of a 
danger) to complex cooperative actions (e.g., relying on the 
nearby nodes for strategic actions when communication with the 
group leader is lost).  

3. BACKGROUND 
Invariant Refinement Method (IRM) [47] is a goal-oriented design 
method targeting the domain of siCPS. IRM builds on the idea of 
iterative refinement of system objectives yielding low-level 
obligations which can be operationalized by system components. 
Contrary to common goal-oriented modeling approaches (e.g., 
KAOS [50], Tropos/i* [12]), which focus entirely on the problem 
space and on stakeholders’ intentions, IRM focuses on system 
components and their contribution and coordination in achieving 
system-level objectives. IRM also incorporates the notion of 
feedback loops present in autonomic and control systems, i.e., all 
“goals” in IRM are to be constantly maintained, not achieved just 
once. A key advantage of IRM is that it allows capturing the 
compliance of design decisions with the overall system goals and 
requirements; this allows for design validation and verification.  
The main idea of IRM is to capture high-level system goals and 
requirements in terms of invariants and, by their systematic 
refinement, to identify system components and their desired 
interaction. In principle, invariants describe the operational 
normalcy of the system-to-be, i.e., the desired state of the system-
to-be at every time instant. For example, the main goal of our 
running example is expressed by INV-1: “GL keeps track of the 
condition of his/her group’s members” (Figure 1).  
IRM invariants are agnostic on the language used for their 
specification. Ιn this paper, plain English is used for simplicity’s 



sake; passive voice has been chosen in order to adopt 
a more descriptive than prescriptive style. Other 
possible choices include adopting a style based on 
SHALL statements commonly used in requirements 
specifications, or a complete textual requirements 
specification language, such as RELAX [77].  
In general, invariants are to be maintained by system 
components and their cooperation. At the design 
stage, a component is a participant/actor of the 
system-to-be, comprising internal state. Contrary to 
common goal-oriented approaches (e.g., [51], [12]), 
only software-controlled actors are considered. The 
two components identified in the running example are 
Firefighter and Officer. 
As a special type of invariant, an assumption 
describes a condition expected to hold about the 
environment; an assumption is not expected to be 
maintained by the system-to-be. In the example, INV-8 
in Figure 1 expresses what the designer assumes about 
the monitoring equipment (e.g., GPS). 
As a design decision, the identified top-level invariants are 
decomposed via so-called AND-decomposition into conjunctions 
of more concrete sub-invariants represented by a decomposition 
model – IRM model. Formally, the IRM model is a directed 
acyclic graph (DAG) with potentially multiple top-level 
invariants, expressing concerns that are orthogonal. The AND-
decomposition is essentially a refinement, where the composition 
(i.e., conjunction) of the children implies the fact expressed by the 
parent (i.e., the fact expressed by the composition is in general a 
specialization, following the traditional interpretation of 
refinement). Formally, an AND-decomposition of a parent 
invariant ܫ into the sub-invariants ܫ௦ଵ, … ,  ௦ is a refinement, if itܫ
holds that: 
௦ଵܫ .1 ∧ … ∧ ௦ܫ ⇒     (entailment)ܫ
௦ଵܫ .2 ∧ … ∧ ௦ܫ ⇏  (consistency)  ݁ݏ݈݂ܽ

For example, the top-level invariant in Figure 1 is refined to 
express the necessity to keep the list of sensor data updated on the 
Officer’s side (INV-4) and the necessity to filter the data to identify 
group members that are in danger (INV-5). 
Decomposition steps ultimately lead to a level of abstraction 
where leaf invariants represent detailed design of the system 
constituents. There are two types of leaf invariants: process 
invariants (labeled P, e.g., INV-5) and exchange invariants 
(labeled X, e.g., INV-7). A process invariant is to be maintained by 
a single component (at runtime, in particular by a cyclic process 
manipulating the component’s state – Section 8.1). Conversely, 
exchange invariants are maintained by component interaction, 
typically taking the form of knowledge exchange within a group 
of components (Section 8.1). In this case, exchange invariants 
express the necessity to keep a component’s belief over another 
component’s internal state. Here, belief is defined as a snapshot of 
another component’s internal state [47] – often the case in systems 
of autonomous agents [72]; inherently, a belief can get outdated 
and needs to be systematically updated by knowledge exchange in 
the timeframe decided at the design stage.  

4. IRM-SA – THE BIG PICTURE 
To induce self-adaptivity by design so that the running system can 
adapt to situations, it is necessary to capture and exploit the 
architecture variability in situations that warrant self-adaptation. 
Specifically, the idea is to identify and map applicable 

configurations to situations by elaborating design alternatives 
(alternative realizations of system’s requirements); then these 
applicable configurations can be employed for architecture 
adaptation at runtime. 
Therefore, we extended the IRM design model and process to 
capture the design alternatives and applicable configurations 
along with their corresponding situations. For each situation there 
can be one or more applicable configurations. To deal with 
operational uncertainty, we also extend the model by reasoning on 
the inaccuracies of the belief.  
At runtime, the actual architecture self-adaptation is performed 
via three recurrent steps: (i) determining the current situation, (ii) 
selecting one of the applicable configurations, and (iii) 
reconfiguring the architecture towards the selected configuration.  
The challenge is that mapping configurations to situations 
typically involves elaborating a large number of design 
alternatives. This creates a scalability issue both at design-time 
and runtime, especially when the individual design alternatives 
have mutual dependencies or refer to different and possibly nested 
levels of abstraction. To address scalability, we employ (i) 
separation of concerns via decomposition at design time; (ii) a 
formal base of the IRM-SA design model and efficient reasoning 
based on SAT solving for the selection of applicable 
configurations at runtime (Section 6).  

5. MODELING DESIGN ALTERNATIVES  
5.1 Concepts addressing Self-Adaptivity 
Although providing a suitable formal base for architecture design 
via elaboration of requirements, IRM in its pure form does not 
allow modeling of design alternatives. 
Therefore, we extended the IRM design model with the concepts 
of alternative decomposition – OR-decomposition – and situation. 
The running example as modelled in IRM-SA is depicted in 
Figure 2. 
Essentially, OR-decomposition denotes a variation point where 
each of the children represents a design alternative. Technically, 
OR-decomposition is a refinement, where each of the children 
individually implies (i.e., refines) the fact expressed by the parent. 
OR-decompositions can be nested, i.e., a design alternative can be 
further refined via another OR-decomposition. Formally, an OR-

 
Figure 1: IRM decomposition of the running example. 
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decomposition of a parent invariant ܫ into the sub-invariants 
,௦ଵܫ … ,  :௦ is a refinement if it holds thatܫ
௦ଵܫ .1 ∨ … ∨ ௦ܫ ⇒     (alternative entailment)ܫ
௦ଵܫ .2 ∨ … ∨ ௦ܫ ⇏  (alternative consistency)  ݁ݏ݈݂ܽ

Each design alternative addresses a specific situation which is 
characterized via an assumption. Thus, each ܫ௦ contains at its top-
most level a characterizing assumption as illustrated in Figure 2. 
For example, consider the left-most part of the refinement of INV-
3: “GL keeps track of the condition of the relevant members”, 
which captures two design alternatives corresponding to the 
situations where either some firefighter in the group is in danger 
or none is. In the former case (left alternative), INV-7 is also 
included – expressing the necessity to inform the other firefighters 
in the group that a member is in danger. In this case, INV-6 and 
INV-8 are the characterizing assumptions in this OR-
decomposition.  
The situations addressed in an OR-decomposition may overlap, 
i.e., their charactering assumptions can hold at the same time. This 
is the case of INV-13 and INV-18 capturing that both one 
Firefighter is in danger and a nearby colleague as well. 
Consequently, there are more than one applicable configurations 
and therefore a prioritization is needed (Section 6.2). As an aside, 
allowing situations in an OR-decomposition to overlap also 
provides a built-in fault-tolerance mechanism (Section 10.1.1).  
Technically, if a design alternative in an OR-decomposition is 
further refined in terms of an AND-decomposition (or vice-versa), 
we omit the invariant representing the alternative and connect the 
AND-decomposition directly to the OR-decomposition to 
improve readability (e.g., design alternatives of INV-12).  

We distinguish two kinds of invariants: computable and non-
computable. While a computable invariant can be 
programmatically evaluated at runtime, a non-computable 
invariant serves primarily for design and review-based validation 
purposes. Thus, the characterizing assumptions need to be either 
computable or decomposed into computable assumptions. 
An example of a non-computable characterizing assumption is 
INV-16: “No life threat”. It is AND-decomposed into the 
computable assumptions INV-20 and INV-21, representing two 
orthogonal concerns, which can be evaluated by monitoring the 
Firefighter’s internal state. 
Dependencies may also exist between invariants in design 
alternatives across different OR-decompositions (cross-tree 
dependencies), reflecting constraints of the physical world. These 
dependencies are captured in the IRM-SA model by directed links 
between invariants labeled with “requires”, resp. “collides”, which 
capture the constraint that the source invariant can appear in a 
configuration only with, resp. without, the target invariant. For 
example, in order for INV-32 to appear in a configuration, INV-30 
has to be included as well, capturing the real-life constraint where 
the Personal Alert Safety System (PASS) is attached to the self-
contained breathing apparatus (SCBA) of a firefighter; thus if the 
SCBA is not used, then the PASS cannot be used as well. The 
“collides” dependency is not illustrated in our running example. 

5.2 Concepts Addressing Dependability  
In IRM-SA, dependability is mainly pursued by tracing the low-
level processes to high-level invariants. Moreover, to deal with 
the operational uncertainty in dynamic siCPS, IRM-SA goes 
beyond the classical goal-modeling approaches and allows self-
adaptation  based not only on valuations of belief (snapshot of a 
remote component’s internal data), but also on valuations of 

 
 Figure 2: IRM-SA model of the running example. 
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associated metadata (timestamp of belief, timestamp of 
sending/receiving the belief over the network, etc.). This 
functionality also adds to the dependability by self-adapting in 
anticipation of critical situations. Nevertheless, IRM-SA support 
for dependability does not cover other dependability aspects, such 
as privacy and security.  
A key property here is that a belief is necessarily outdated, 
because of the distribution and periodic nature of real-time 
sensing in siCPS. For example, the position of a Firefighter as 
perceived by his/her Officer would necessarily deviate from the 
actual position of the Firefighter if he/she were on the move. 
Instead of reasoning directly on the degree of belief outdatedness 
(on the time domain), we rely on models that predict the evolution 
of the real state (e.g., state-space models if this evolution is 
governed by a physical process), translate the outdatedness from 
the time domain to the data domain of the belief (e.g., position 
inaccuracy in meters) and reason on the degree of belief 
inaccuracy. We call this type of reasoning proactive reasoning. 
To enable proactive reasoning, we build on our previous work in 
quantifying the degree of belief inaccuracy in dynamic siCPS 
architectures [1].  
For illustration, consider an assumption “inaccuracy(GM:: 
position) < 20 m”, which models the situation where the 
difference of the measured and actual positions is less than 20 
meters. In this case, belief inaccuracy is both (i) inherent to the 
sensing method (more GPS satellites visible determine more 
accurate position), and (ii) related to the network latencies when 
disseminating the position data (more outdated data yield more 
inaccurate positions – since firefighters are typically on the move, 
their position data are subject to outdating). As a result, an Officer 
has to reason on the cumulative inaccuracy of the position of 
his/her Firefighter. 
When the domain of the belief field is discrete instead of 
continuous, we rely on models that capture the evolution of 
discrete values in time, such as timed automata. For illustration, 
consider assumption INV-23: “possibility(GM::nearbyGMsStatus 
== CRITICAL)”, which models the situation where the 
nearbyGMsStatus enumeration field with values OK, DANGER, 
and CRITICAL is possible to evaluate to CRITICAL. This presumes 
that the designer relies on a simple timed automaton such as the 
one depicted in Figure 3, which encodes the domain knowledge 
that a firefighter gets into a critical situation (and needs rescuing) 
at least 5 seconds after he/she gets in danger.  
All in all, the invariants that are formulated with inaccuracy and 
possibility provide a fail-safe mechanism for adversarial 
situations, when the belief of a component gets so inaccurate that 
special adaptation actions have to be triggered. This proactive 
reasoning adds to the overall dependability of the self-adaptive 
siCPS.  

5.3 The Modeling Process 

  
Figure 3: Timed automaton capturing the transitions in the 
valuation of the nearbyGMsStatus field. 

 
Figure 4: Steps in the IRM-SA modeling process. 

 
Figure 5: Steps in a single invariant refinement. 
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As is usually the case with software engineering processes, IRM-
SA modeling process is a mixed top-down and bottom-up process. 
As input, the process requires a set of use cases/user stories 
covering both the main success scenarios and the associated 
extensions. The main steps of the process are illustrated in 
Figure 4. After the identification of the main situations, goals and 
components, the architect starts to specify the knowledge of each 
component together with its takes-role relations (step 4), while, in 
parallel, he/she starts refining the invariants (step 5). These two 
steps require potentially several iterations to complete. In step 6, 
the architect composes the dangling invariant trees that may have 
resulted from the previous steps, i.e., the trees the roots of which 
are not top-level invariants. Contrary to the previous steps, this is 
a bottom-up design activity. In the final steps, as an optimization, 
the subtrees produced in the previous steps that are identical are 
merged together, and “requires”/“collides” dependencies are 
added. The result is a DAG – this optimization was applied also in 
Figure 2. 
The workings of a single refinement are depicted in Figure 5. 
Based on whether the invariant under question is to be satisfied in 
a different way in different situations (e.g., “position reading” will 
be satisfied by using the GPS sensor when outdoors and by using 
the indoor positioning system when indoors), the architect 
chooses to refine the invariant by OR- or AND-decomposition. 
Obviously, in the former case, the refinement involves specifying 
the characterizing assumption for each design alternative 
(situation). Note that, if the characterizing assumption is not 
computable, it will get refined in a next step as any other invariant 
in such a case.  
The process of systematic identification of all the possible 
variation points and modeling the corresponding design 
alternatives and situations is closely related to the identification of 
adaptation scenarios in a Dynamically Adaptive System (DAS) 
[32]. Here, one can leverage existing approaches in requirements 
engineering ranging from documentation of main use-case 
scenarios and extensions to obstacle/threat analysis on goal 
models [52]. Performance and resource optimization concerns can 
also guide the identification of variation points and corresponding 
design alternatives.  
For example, the rationale behind the OR-decomposition of the 
left-most part of the AND-decomposition of INV-9 is resource 
optimization: under normal conditions the accuracy of external 
temperature monitoring can be traded off for battery consumption 
of the low-power node; this, however, does not hold in danger 
(e.g., a firefighter is not moving, INV-19), when higher accuracy 
of external temperature monitoring is needed. 
On the contrary, the OR-decomposition of INV-12 has its rationale 
in a functional constraint: since GPS is usually not available 
within a building, a firefighter’s position has to be monitored 
differently in such a case, e.g., through an indoors tracking system 
[17]. This is an example of a technology-driven process of 
identification of design alternatives, where the underlying 
infrastructure significantly influences the possible range of 
adaptation scenarios [32]. For example, it would not make sense 
to differentiate between the situations of being indoors and 
outdoors, if there were no way to mitigate the “GPS lost signal” 
problem using the available infrastructure. 
This highlights an important point: IRM-SA allows for modeling 
the environment via assumptions, but, at the same time, guides the 
designer into specifying only the pertinent features of the 
environment, avoiding over-specification.  

For a complete example of this modeling process, we refer the 
reader to the online IRM-SA User Guide2. To support the 
modeling process, we have also developed a prototype of a GMF-
based IRM-SA design tool [42]. 

6. SELECTING ARCHITECTURE 
CONFIGURATIONS BY SAT SOLVING 
As outlined in Section 4, given an IRM-SA model, the selection 
of a configuration for a situation can be advantageously done by 
directly reasoning on the IRM-SA model at runtime. In this 
section we describe how we encode the problem of selecting an 
applicable configuration into a Boolean satisfiability (SAT) 
problem (6.1), our prioritizing strategy with multiple applicable 
configurations (6.2), and how we bind variables in the SAT 
instance based on monitoring (6.3).   
To simplify the explanation, we use the term “clause” in this 
section even for formulas which are not necessarily valid clauses 
in the sense of CNF (Conjunctive Normal Form – the default 
input format for SAT), but rely on the well-known fact that every 
propositional formula can be converted to an equisatisfiable CNF 
formula in polynomial time.    

6.1 Applicable Configurations 
Formally, the problem of selecting an applicable configuration is 
the problem of constructing a set ܥ of selected invariants from an 
IRM-SA model such that the following rules are satisfied: (i) all 
the top-level invariants are in ܥ; (ii) if an invariant ܫ is 
decomposed by an AND-decomposition to ܫଵ, … , ܫ , thenܫ ∈  ܥ
iff all ܫଵ, … , ܫ ∈   is decomposed by anܫ if an invariant (iii) ;ܥ
OR-decomposition to ܫଵ, … , ܫ , thenܫ ∈  iff at least one of ܥ
,ଵܫ … ,   requires, resp. collidesܫ if an invariant (iv) ;ܥ  is inܫ
(with), ܫ, then ܫ ∈ ܫ iff ܥ ∈ ܫ .resp ,ܥ ∉  The set C .ܥ
represents an applicable configuration. The rules above ensure 
that ܥ is well-formed with respect to decomposition and cross-tree 
dependencies semantics. Figure 6 shows a sample applicable 
configuration (selected invariants are outlined in grey 
background).  
Technically, for the sake of encoding configuration selection as a 
SAT problem, we first transform the IRM-SA model to a forest by 
duplicating invariants on shared paths. (This is possible because 
the IRM-SA model is a DAG.) Then we encode the configuration 

                                                                 
2 http://www.ascens-ist.eu/irm 

 
Figure 6: An architecture configuration of the running example. 
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,ଵݏ we are looking for by introducing Boolean variables ܥ … ,  ,ݏ
such that ݏ = ܫ iff ݁ݑݎݐ ∈  is well-formed, we ܥ To ensure .ܥ
introduce clauses over ݏଵ, … ,  . reflecting the rules (i)-(iv) aboveݏ
For instance, the IRM-SA model from Figure 2 will be encoded as 
shown in Figure 7, lines 1-26. 
To ensure that ܥ is an applicable configuration w.r.t. a given 
situation, we introduce Boolean variables ܽଵ, … , ܽ and add a 
clause ݏ ⇒ ܽ for each ݅ ∈ {1 … ݊} (Figure 7, line 29). The value 
of ܽ captures whether the invariant ܫ is acceptable; i.e., ݁ݑݎݐ 
indicates that it can be potentially included in ݁ݏ݈݂ܽ ,ܥ indicates 
otherwise. The variables ܽଵ, … , ܽ are bound to reflect the state of 
the system and environment (Figure 7, lines 31-39). This binding 
is described in Section 6.3. 
In the resulting SAT instance, the variable ݏ௧ for each top-level 
invariant ܫ௧ is bound to true to enforce the selection of at least one 
applicable configuration. A satisfying valuation of such a SAT 
instance encodes one applicable configuration (or more than one 
in case of overlapping situations – see Section 6.2), while 
unsatisfiability of the instance indicates nonexistence of an 
applicable configuration in the current situation.  

6.2 Prioritizing Applicable Configurations 
Since the situations in an OR-decomposition do not need to be 
exclusive but can overlap, SAT solving could yield more than one 
applicable configurations. In this case, we assume a post-
processing process that takes as input the IRM-SA model with the 
applicable configurations and outputs the selected configuration 
based on analysis of preferences between design alternatives. For 
this purpose, one can use strategies that range from simple total 
preorder of alternatives in each decomposition to well-established 
soft-goal-based techniques for reasoning on goal-models [20]. In 
the rest of the section, we detail on the prioritization strategy used 
in our experiments, which we view as just one of the many 
possible.  
In our experiments (Section 7.2), we have used a simple 
prioritization strategy based on total preorder of design 
alternatives in each OR-decomposition. Here, for simplicity, a 
total preorder – numerical ranking – is considered (1 corresponds 
to the most preferred design alternative, 2 to the second most 
preferred, etc.). The main idea of the strategy is that the 
preferences loose significance by an order of magnitude from top 
to bottom, i.e., preferences of design alternatives that are lower in 
an IRM-SA tree cannot impact the selection of a design 
alternative that is above them on a path from the top-level 
invariant.  
More precisely, given an IRM-SA tree, every sub-invariant ܫ of 
an OR-decomposition is associated with its OR-level number ݀, 
which expresses that ܫ is a design alternative of a ݀-th OR-
decomposition on a path from the top-level invariant (level 1) to a 
leaf. For each OR-level, there is its cost base ܾ  defined in the 
following way: (a) the lowest OR-level has cost base equal to 1, 
(b) the ݆-th OR-level has its cost base ܾ = ܾାଵ ∗ ( ݊ାଵ + 1), 
where ݊ାଵ denotes the number of all design alternatives at the 
level ݆ + 1 (i.e., considering all OR-decomposition at this level). 
For example, the 2nd OR-level in the running example has 
ܾଶ = ܾଷ ∗ (݊ଷ + 1) = 1 ∗ (4 + 1) = 5, since the 3rd OR-level 
(lowest) has in total 4 design alternatives (2 from the OR-
decomposition of INV-14 and 2 from that of INV-18).  
Having calculated the base for each OR-level, the cost of a child 
invariant ܫ of a ݀-th OR-decomposition with a cost ܾௗ is defined 
as ݇݊ܽݎ ∗ ܾௗ, where ݇݊ܽݎ denotes the rank of the design 

alternative that the invariant ܫ corresponds to. Finally, a simple 
graph traversal algorithm is the employed to calculate the cost of 
each applicable configuration as the sum of the cost of the 
selected invariants in the applicable configuration. The applicable 
configuration with the smallest cost is the preferred one – 
becomes the current configuration. 

6.3 Determining Acceptability 
Determining acceptability of an invariant ܫ  (i.e., determining the 
valuation of ܽ) is an essential step. In principle, a valuation of ܽ 
reflects whether ܫ is applicable w.r.t. the current state of the 
system and the current situation. Essentially, ܽ =  implies ݁ݏ݈݂ܽ
that ܫ cannot infer an applicable configuration.  
We determine the valuation of ܽ in one of the following ways 
(alternatively):  
(1) Active monitoring. If ܫ belongs to the current configuration 
and is computable, we determine ܽ by evaluating ܫ w.r.t. the 
current knowledge of the components taking a role in ܫ.  
(2) Predictive monitoring. If ܫ does not belong to the current 
configuration and is computable, it is assessed whether ܫ would 
be satisfied in another configuration if chosen.     
In principle, if ܫ is not computable, its acceptability can be 
inferred from the computable sub-invariants.  
For predictive monitoring, two evaluation approaches are 
employed: (a) The invariant to be monitored is extended by a 

1. // 1. configuration constraints based of the IRM model 
2. // top level decomposition in Figure 2 
ଵଵ_ଵݏ .3 ∧ ଶݏ ∧ ଶ଼ݏ  ⇔  ଵଵ // sଵଵ_ଵ represents the anonymousݏ

                                                        invariant in the AND decomposition of INV-9  
∨ ଷଷ_ଵݏ  .4 ଷଷ_ଶݏ   ∨  sଶ

ᇱ  ⇔ ଷଷ  // sଶݏ
ᇱ   is a copy of sଶ 

5.  
6. // decomposition level 1 in Figure 2 
ଵଵ_ଵ_ଵݏ .7  ∨ ଵଵ_ଵ_ଶݏ  ∨ ଵଵ_ଵ_ଷݏ   ⇔      ଵଵ_ଵݏ
ଶ଼_ଵݏ .8  ∨ ଶ଼_ଶݏ ⇔  ଶ଼ݏ
ଷସݏ .9  ∧ ଵଷݏ

ᇱ ⇔ ଷଷ_ଶ    // sଵଷݏ
ᇱ   is a copy of sଵଷ 

10.  
11. // decomposition level 2 in Figure 2 
ଵଷݏ .12  ∧ ଵସݏ ∧ ଵହݏ ⇔  ଵଵ_ଵ_ଵݏ
ଶݏ .13  ∧ ଶଵݏ ⇔  ଵଵ_ଵ_ଶݏ
ଶସݏ .14  ∧ … ⇔  ଵଵ_ଵ_ଷݏ
ଷݏ .15 ∧ ଶଽݏ ⇔    ଶ଼_ଵݏ
ଷଶݏ .16 ∧ ଷଵݏ ⇔  ଶ଼_ଶݏ
17.   
18. // decomposition level 3 in Figure 2 
ଵݏ .19 ⇔  ଵଷݏ
ଵݏ .20

ᇱ ⇔ ଵଷݏ
ᇱ  

ଵସ_ଵݏ .21  ∨ ଵଽݏ ⇔  ଵସݏ
ଶଶݏ .22 ∧ ଶଷݏ ⇔  ଶݏ
23. … // similar for ݏଶ

ᇱ ,  ଶସݏ
24.  
25. // decomposition level 4 in Figure 2 
ଵݏ .26 ∧ ଵ଼ݏ ⇔    ଵସ_ଵݏ
27.  
28. // 2. only applicable invariants may be selected into a configuration 
ଵଵݏ) .29 ⇒ ܽଵଵ) ∧ … ∧ ଷଶݏ) ⇒ ܽଷଶ) ∧ … 
30.   
31. // 3. determining acceptability according to monitoring  
32. // (current configuration as shown in Figure 6) 
33. // 3.1. active monitoring 
34. ܽଵଵ = ⋯ // true or false based on the monitoring of INV-9 
35. … // repeat for ܽଵ, ܽଵ

ᇱ , ܽଵ, ܽଵଽ, ܽଶଵ, ܽଶଶ, ܽଶଶ
ᇱ , ܽଶଷ, ܽଶଷ

ᇱ , ܽଶହ, ܽଶ, ܽଶ଼, ܽଷଶ, ܽଷଷ 
36.  
37. // 3.2. predictive monitoring 
38. ܽଵହ = ⋯ 
39. … // repeat for the rest 

 
Figure 7: Encoding the IRM-SA model of running example into 

SAT. 



monitor predicate (which is translated into a monitor – Section 
8.4) that assesses whether the invariant would be satisfied if 
selected, and (b) the history of the invariant evaluation is observed 
in order to prevent oscillations in current configuration settings by 
remembering that active monitoring found an invariant not 
acceptable in the past. 
Certainly, (a) provides higher accuracy and thus is the preferred 
option. It is especially useful for process invariants, where the 
monitor predicate may assess not only the validity of process 
invariant (e.g., by looking at knowledge valuations of the 
component that take a role in it), but also whether the underlying 
process would be able to perform its computation at all. This can 
be illustrated on the process invariant INV-27, where the process 
maintaining it can successfully complete (and thus satisfy the 
invariant) only if GPS is operational and at least three GPS 
satellites are visible.   

7. SOLVING THE SAT PROBLEM IN 
DISTRIBUTED SETTINGS 
When implementing self-adaptation via IRM-SA in a distributed 
siCPS such as the firefighter tactical decision system, there are 
three main choices to consider: 
1. Centralized self-adaptation (CA). A selected arbiter collects 

all the necessary knowledge from components, solves the 
SAT problem, and reliably communicates the result back to 
the components. This assumes that the system can be paused 
for the whole duration of the above process (strict 
synchronization), so that each component receives self-
adaptation decisions that are relevant to its current state.  

2. Decentralized self-adaptation with distributed consensus 
(DADC). Each component performs SAT solving locally 
based on its local knowledge (local view of system state), 
without requiring this knowledge to be synchronized across 
components. The results of SAT solving are then 
communicated and agreed upon between all components. 
This relaxes the assumption on strict synchronization, but 
still assumes that a component can be paused from the point 
that it solves the SAT problem until a consensus is built.  

3. Decentralized self-adaptation with no distributed consensus 
(DANC). Similar to DADC, each component performs SAT 
solving locally based on its local knowledge, (local view of 
system state), without requiring this knowledge to be 
synchronized across nodes. However, the results of SAT 
solving are not communicated and no consensus is built. This 
allows components to keep their autonomy even detached 
from the network.  

CA and DADC are both well-known solutions, documented in the 
state of the art of distributed systems [27, 28], multi-agent 
systems and autonomous agents [43, 62], and cooperative and 
networked control systems [33, 36]; they are also widely used in 
practice. They work well in systems with limited dynamicity, 
where network communication and the consequent timing issues 
(e.g., delays) can be mostly ignored or bounded. These 
assumptions are however not plausible in many siCPS, which are 
spatial systems deployed on top of ad-hoc wireless infrastructures 
with no communication guarantees and comprised of components 
that can dynamically appear and disappear. In such contexts, 
DANC is a more fitting choice, as it can be easily combined with 
proactive reasoning (Section 5.2) at the level of each individual 
component. This combination allows each component to make 
individual decisions that can help deal with threats related to 
network disconnections and delays.  

In the rest of this section we detail on DANC by identifying and 
formalizing the criteria that establish the perimeter of its 
applicability. We also exemplify the combination of DANC and 
proactive reasoning in our running example and discuss its ability 
to deal with threats related to network disconnections.  

7.1 Decentralized Self-Adaptation with no 
Distributed Consensus 
DANC can be employed in systems that are by nature resilient to 
situations when the system is de-synchronized. During de-
synchronization, some nodes of the system arrive at different 
decisions due to their differently outdated knowledge 
(divergence). This can result into inconsistencies, e.g., cases 
where there are assumptions in the IRM-SA model that one 
component considers satisfied, while another considers violated. 
As an example, depicted in Figure 8, a property P of component A 
may reach some critical value (which invalidates an assumption) 
at time t1; this is observed only after some time (divergence 
window Δt) in components B and C. A respective divergence 
window again exists in the case when P’s value falls back within a 
“normal” range. It is important to note that data outdatedness does 
not always lead to divergence, because though different, they can 
lead to the same decision – this can be observed in Figure 8 in the 
areas outside the two intervals. 
DANC specifically targets systems where temporary divergence 
of the SAT solving input and, consequently, of its results has only 
negligible effect in the performance of the system (what is 
considered “negligible” in this case depends on particular domain 
requirements). This prerequisite characterizes the type of systems 
that can employ DANC – when it does not hold, CA or DADC 
has to be chosen instead.  

time

va
lu

e 
of

 p
ro

pe
rt

y P

t1

Divergence 
windows

t2

component 
A

B’s view of A

C’s view of A

Δt Δt

time

time

va
lu

e 
of

 p
ro

pe
rt

y P
va

lu
e 

of
 p

ro
pe

rt
y P

Figure 8: Connection between outdated views and divergence 
windows. 



We formalize the above prerequisite and describe the criteria that 
imply it below. Figure 9  provides a graphical summary.  
Definition 1 (Utility of a system run). For a given run of a 
system:  
– Let ܽ(ݐ) be a function that for time ݐ returns the set of 

active processes as selected by the SAT procedure. 
– Let ݀(ݐ, ݇) be function that for time ݐ and a knowledge field 

݇ returns the time Ǽݐ that has elapsed since the knowledge 
value contained in ݇ was sensed/created by the component 
where the knowledge value originated from. 

– Let ܽ,ௗ(ݐ) be a function that for given time ݐ returns a set 
of active processes of component ܿ as selected by the SAT 
procedure assuming that knowledge values outdated by 
,ݐ)݀ ݇) have been used. Further, we denote ܽௗభ,…,ௗ

(ݐ) =
⋃ ܽ,ௗ(ݐ)  as the combination over components existing in 
the system. (In other words, each component selects active 
processes itself based on its belief, which is differently 
outdated for each component.) 

– Let ݑ(ܽ) be a cumulative utility function that returns the 
overall system utility when performing processes ܽ(ݐ) at 
each time instant ݐ. 

– Let ݑ(ܽ, Δݐmax) be a cumulative utility function constructed 
as min൛ݑ൫ܽௗభ,…,ௗ൯ ห ݀(݇) ≤ Δݐmax}. (In other words, 
,ܽ)ݑ Δݐmax) denotes the lowest utility if components decide 
independently based on knowledge at most Δݐmax old.) 

Definition 2 (Expected relative utility). Let E(ݑ(ܽ)) be the 
expected value of ݑ(ܽ) and E(ݑ(ܽ, Δݐmax)) be the expected value 
of ݑ(ܽ, Δݐmax). Assuming that E൫ݑ(ܽ)൯ > 0 (i.e., in the ideal case 
of zero communication delays the system provides a positive 
value), we define expected relative utility as ݎ(Δݐmax) =
E൫ݑ(ܽ, Δݐmax)൯/E൫ݑ(ܽ)൯. 
We assume systems where ݎ(Δݐmax) is close to 1 (and definitely 
non-negative) for given upper bound on communication delays 
Δݐmax. In fact ݎ(Δݐmax) provides a continuous measure of how 
well the method works in a distributed environment.  
Considering that the communication in the system happens 
periodically and that an arriving message obsoletes all previous 
not-yet-arrived messages from the same source, Δݐmax can be set 
to ݍ   is a close-to-100% quantile of theݍ ௗܶ, whereݍ +
distribution of message latencies, ܶ is the period of message 
sending and ݍௗ is a close-to-100% quantile of the distribution of 
the length of sequences of consecutive message drops. Naturally, 
if there is a chance of some (not necessarily reliable 
communication), Δݐmax can be set relatively low while still 
covering the absolute majority of situations. 

There are several factors that influence the value of ݎ(Δݐmax). 
Essentially, it depends on the shape of the utility function (since 
the utility function is cumulative), on the duration of divergence, 
and on the robustness of the utility function with respect to 
divergence. Following this argument, we identify three criteria for 
the applicability of IRM-SA with DANC. Essentially, “ݎ(Δݐmax) 
close to 1” is achieved when: 
Criticality of a particular system operation affected by 
divergence is small. For critical operations, the utility function 
tends to get extreme negative values, thus even a short operation 
under divergence yields very low overall utility. On the other 
hand, if the environment has revertible and gradual responses, it 
hardly matters whether the system is in divergence for a limited 
time (e.g., if the system controls a firefighter walking around a 
building, then walking in a wrong direction for a few seconds 
does not cause any harm and its effect can be easily reverted). 
Rate of changes in the monitored values and the duration of 
adaptations w.r.t. this rate are slow and steady. As the system 
reacts to changes in the environment, it is impacted by the speed 
these changes happen. Such a change creates potential divergence 
in the system. What matters then is the ratio between the time 
needed to converge after the divergence and the interval between 
two consecutive changes. For instance, if house numbers were to 
be observed by firefighters when passaging by, then walking 
speed would yield much slower rate of changes then passing by in 
a car. 
Evaluation of assumptions is not sensitive to frequent changes 
in the environment. This is a complementary aspect of the 
previous property. Depending on the way assumptions are refined 
into computable ones, one can detect fine-grained changes in the 
environment. For example, consider an assumption that relies on 
computing position changes of a firefighter moving in a city. 
Computing position changes based on changes in the house 
number obviously yields more frequent (observable) changes in 
the environment than computing changes based on the current 
street number.  

7.2 A Case for Decentralized Self-Adaptation 
with no Distributed Consensus 
We now provide a particular scenario where DANC is the most 
fitting choice, and exemplify the combination of DANC with 
proactive reasoning.  
Consider the scenario where teams of firefighters consisting of 
three members and one leader were deployed. A firefighter A 
senses temperature higher than a pre-specified threshold 
(indication of being “in danger”); this information is propagated 
to the A’s leader who in turn propagates the information that A is 
in danger to a firefighter B; then, B performs self-adaptation in the 
anticipation of the harmful situation of  having a group member in 
danger (proactive self-adaptation) and switches the mode to 
“Search and Rescue” (the situation captured by INV-18 in 
Figure 2). At the point when the leader determines that A is in 
danger (and just before the leader communicates it to B), a 
temporary network disconnection occurs. The overall 
performance was measured by reaction time – the interval 
between the time that A sensed high temperature and the time that 
B switches to “Search and Rescue”. Note that, by setting ݑ(ܽ) to 
be the inverse of the reaction time, we obtain values for the 
expected relative utility r that range from  (1000)ݎ = ଷ

଼
=

0.37 to (12000)ݎ = ଷ
ଶ

= 0.15. 
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Figure 9: The three criteria that imply the prerequisite for 



We performed several simulations of the above scenario in order 
to delineate the limits of proactive self-adaptation. In particular, 
the questions that we investigated by the experiments were the 
following. 
 Q1: Do temporary network disconnections (and associated 

communication delays) reduce the overall performance 
of an application that employs DANC? 

 Q2: Does proactive self-adaptation in IRM-SA method in 
combination with DANC increase the overall 
performance of an application in face of temporary 
disconnections? 

Simulation setup. In the experiments we employed an extended 
version of the running example. This IRM-SA model of consists 
of 4 components, 39 invariants, and 23 decompositions [42]. The 
experiments were carried out using the jDEECo simulation engine 
[44] together with the prototype implementation of IRM-SA in 
jDEECo (Section 8). Several simulation parameters (such as 
interleaving of scheduled processes) that were not relevant to our 
experiment goals were set to fixed values. The simulation code, 
along with all the parameters and raw measurements, are available 
online [42]. 
To obtain a baseline, the case of no network disconnections was 
also measured. The result is depicted in dashed line in Figure 10. 
To investigate Q1 and Q2, a number of network disconnections 
with preset lengths were considered; this was based on a prior 
experience of working with deployment of DEECo on mobile ad-
hoc networks [14].   
To answer Q2, the timed automaton (Figure 3) associated with 
INV-23: “possibility(GM::nearbyGMsStatus == CRITICAL)” was 
modified: the transition from DANGER to CRITICAL was made 

parametric to experiment with different critical threshold values – 
critical threshold in the context of the experiments is the least time 
needed for a firefighter to get into a critical situation after he/she 
gets in danger (in Figure 3 the critical threshold is set to 5 sec). 
The reaction times for different critical thresholds and different 
disconnection lengths are in Figure 10. 
To answer Q1 (as well as obtain the baseline), the critical 
threshold was set to infinity – effectively omitting INV-23 from 
the IRM-SA model – in order to measure the vanilla case where 
self-adaptation is based only on the values of data transmitted 
(belief) and not on other parameters such as belief outdatedness 
and its consequent inaccuracy. 
Analysis of results. From Figure 10 it is evident that the reaction 
time (a measure of the overall performance of the system) 
strongly depends on communication delays caused by temporary 
disconnections. Specifically, in the vanilla case the performance is 
inversely proportional to the disconnection length, i.e., it 
decreases together with the quality of the communication links. 
This is in favor of a positive answer to Q1.  
Also, to cope with operational uncertainty – temporary network 
disconnections in particular – the IRM-SA mechanisms are indeed 
providing a solution towards reducing the overall performance 
loss. Proactive self-adaptation yields smaller reaction times 
(Figure 10) – this is in favor of a positive answer to Q2. In 
particular, for the lowest critical threshold (2000ms) the reaction 
time is fast; this threshold configuration can, however, result into 
overreactions, since it hardly tolerates any disconnections. When 
setting the critical threshold to 5000ms, proactive self-adaptation 
is triggered in case of larger disconnections (5000ms and more) 
only. A critical threshold of 8000ms triggers proactive self-
adaptation in case of even larger disconnections (8000ms or 
more). Finally, when critical threshold is set to infinity, proactive 
self-adaptation is not triggered at all.  
When disconnection times grow larger and larger, proactive self-
adaptation can help in bounding the amount of performance loss. 
In our case, predictions were based on the timed automaton of 
Figure 3; in case the possibility of a life-critical situation was 
predicted, the system switched to the “Search and Rescue” mode. 
Although several simplifying assumptions were made (e.g., a 
single, simple automaton was used, all predictions were assumed 
correct), the experiments provide evidence on the applicability of 
DANC with proactive self-adaptation within the frame of IRM-
SA. Extending the monitoring and prediction capabilities of our 
framework is subject to future work. 

8. PROTOTYPE IMPLEMENTATION 
We implemented the self-adaptation method of IRM-SA as a 
plugin (publicly available [42]) into the jDEECo framework [44]. 
This framework is a realization of the DEECo component model 
[15, 48] . For developing components and ensembles, jDEECo 
provides an internal Java DSL and allows their distributed 
execution. To give a better insight in the prototype 
implementation, we briefly first overview jDEECo below and 
then describe the main points of the implementation of IRM-SA. 

8.1 DEECo Component Model 
Dependable Emergent Ensemble of Components (DEECo) is 
component model (including specification of deployment and 
runtime computation semantics) tailored for building siCPS with a 
high degree of dynamicity in their operation. In DEECo, 
components are autonomous units of deployment and 
computation. Each of them comprises knowledge and processes. 
Knowledge is a hierarchical data structure representing the 

 
Figure 10: Reaction times for different network disconnection 
lengths and different critical thresholds. The results for each 
case have been averaged for different DEECo component 
knowledge publishing periods (400, 500 and 600 ms). 
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internal state of the component. A process operates upon the 
knowledge and features cyclic execution based on the concept of 
feedback loop [60], being thus similar to a process in real-time 
systems. As an example, consider the two DEECo components in 
Figure 11, lines 7-13 and 15-23. They also illustrate that 
separation of concerns is brought to such extent that individual 
components do not explicitly communicate with each other. 
Instead, interaction among components is determined by their 
composition into ensembles – groups of components cooperating 
to achieve a particular goal [23, 40] (e.g., PositionUpdate 
ensemble in Figure 11, lines 27-34). Ensembles are dynamically 
established/disbanded based on the state of components and 
external situation (e.g., when a group of firefighters are physically 
close together, they form an ensemble). At runtime, knowledge 
exchange is performed between the components within an 
ensemble (lines 32-33) – essentially updating their beliefs 
(Section 3).    

8.2 jDEECo Runtime  
Each node in a jDEECo application contains a jDEECo runtime, 
which in turn contains one or more local components – serving as 
a container (Figure 13). The runtime is responsible for periodical 
scheduling of component processes and knowledge exchange 
functions (lines 12, 23, 34). It also possesses reflective capabilities 
in the form of a DEECo runtime model that provides runtime 
support for dynamic reconfigurations (e.g., starting and stopping 
of process scheduling). Each runtime manages the knowledge of 
both local components, i.e., components deployed on the same 
node, and replicas, i.e., copies of knowledge of the components 
that are deployed on different nodes but interact with the local 
components via ensembles. 

8.3 Self-Adaptation in jDEECo  
For integration of the self-adaptation method of IRM-SA 
(jDEECo self-adaptation) with jDEECo, a models-at-runtime 
approach [57] is employed,  leveraging on EMF-based models 
(Figure 12). In particular, a Traceability model is created at 
deployment, providing the association of entities of the DEECo 
runtime model (i.e., components, component processes, and 
ensembles) with the corresponding constructs of the IRM-SA 
design model (i.e., components and invariants). This allows 
traceability between entities of requirements, design, and 
implementation – a feature essential for self-adaptation. For 
example, the process measurePositionGPS in Figure 11 is traced 
back to INV-27 (line 7), while the Firefighter component is traced 
back to its IRM-SA counterpart (line 2). Based on the Traceability 
model and the DEECo runtime model, an IRM-SA runtime model 
is generated by “instantiating” the IRM-SA design components 
with local components and replicas. Once the IRM-SA runtime 
model gets used for selecting an architecture configuration, the 
selected configuration is imposed to the DEECo runtime model as 
the current one. 

A central role in performing jDEECo self-adaptation is played by 
a specialized jDEECo component Adaptation Manager (AM). Its 
functionality comprises the following steps (Figure 13): (1) 
Aggregation of monitoring results from local components and 
replicas and creation of IRM-SA runtime model. (2) Invocation of 
the SAT solver (Sections 6.1-6.3). (3) Translation of the SAT 
solver output into an applicable configuration (including 
prioritization). (4) Triggering the actual architecture adaptation – 
applying the current configuration. As an aside, internally, AM 
employs the SAT4J solver [53], mainly due to its seamless 
integration with Java.   

The essence of step (4) lies in instrumenting the scheduler of the 
jDEECo runtime. Specifically, for every process, resp. exchange 
invariant in the current configuration, AM starts/resumes the 
scheduling of the associated component process, resp. knowledge 
exchange function. The other processes and knowledge exchange 
functions are not scheduled any more.   

8.4 Monitoring  
AM can handle both active and predictive monitoring techniques 
(Section 6.3). In the experiments described in Section 7.2, 
predictive monitoring was used for both component processes and 
knowledge exchange functions (based on observing the history of 

1. role PositionSensor: 
2.  missionID, position 
3.  
4. role PositionAggregator: 
5.  missionID, positions 
6.  
7. component Firefighter42 features PositionSensor, …: 
8. knowledge: 
9. ID = 42, missionID = 2, position = {51.083582, 17.481073}, … 
10. process measurePositionGPS (out position): 
11. position ← Sensor.read() 
12. scheduling: periodic( 500ms ) 
13. … /* other process definitions */ 
14.  
15. component Officer13 features PositionAggregator, …: 
16. knowledge: 
17. ID = 13, missionID = 2, position = {51.078122, 17.485260},  
18.     firefightersNearBy = {42, …},  positions = {{42, {51.083582, 
19.         17.481073}},…}  
20. process findFirefightersNearBy(in positions, in position, out 
21.     firefightersNearBy): 
22. firefightersNearBy← checkDistance(position, positions) 
23. scheduling: periodic( 1000ms ) 
24. … /* other process definitions */ 
25. … /* other component definitions */ 
26.  
27. ensemble PositionUpdate: 
28. coordinator: PositionAggregator 
29. member: PositionSensor 
30. membership: 
31. member.missionID == coordinator.missionID 
32. knowledge exchange: 
33. coordinator.positions ← {  (m.ID, m.position) | m ∈ members } 
34. scheduling: periodic( 1000ms )  
35. … /* other ensemble definitions */ 

 
Figure 11: Example of possible DEECo components and 

ensembles in the running example. 

Figure 12: Models and their meta-models employed for self-
adaptation in jDEECo. 
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invariants evaluation), while for assumptions, only active 
monitoring was employed.  

Technically, monitors are realized as Boolean methods associated 
with invariants in the Traceability model. For instance, a monitor 
for INV-27: “GM::position is determined from GPS” is illustrated 
in Figure 14, lines 16-22; it checks whether the corresponding 
process operates correctly by checking the health of the GPS 
device and the number of available satellites. The execution of 
monitors is driven directly by AM and is part of the first step of 
the jDEECo self-adaptation (Figure 13). 

9. IRM-SA MODELING: FEASIBILITY 
AND EFFECTIVENESS 
To evaluate the feasibility of the IRM-SA modeling process, 
described in Section 5.3, and the impact of using IRM-SA on the 
effectiveness of the architects, we carried out an empirical study 
in the form of a controlled experiment. 

9.1 Experiment Design 
The experiment involved 20 participants: 12 Master’s and 8 Ph.D. 
students of computer science. The participants were split into 
treatment (IRM-SA) and control groups. Each participant was 
assigned the same task, which involved coming up with a 
specification (on paper) of system architecture comprised of 
DEECo components and ensembles for a small system-to-be. The 
requirements of the system-to-be were provided in the form of 
user stories. The task’s effort was comparable in size of 
invariants, situations and decompositions to the running example 
in this paper. The suggested time to accomplish the task was 4 
hours, although no strict limit was imposed.   
The independent variable/main factor of the experiment was the 
design method used: Participants in the IRM-SA group followed 

the IRM-SA modeling process to come up with an IRM-SA 
model, and then manually translated it to the system architecture, 
whereas participants in the control group were not recommended 
to use any specific method for designing the system architecture.  
The dependent variables of the experiment are mapped to the 
hypotheses in Tables 1 and 2. We assessed (i) the correctness of 
system architecture [0-100] ratio scale, and (ii) several other 
variables capturing the  intuitiveness of IRM-SA,  perceived 
effort,  adequateness of the experiment settings, etc. in Likert 5-

 
Figure 13: Steps in jDEECo self-adaptation: (1) Aggregate monitoring results from local component and replicas and create 
IRM-SA runtime model; (2) Translate into SAT formula, bind monitoring variables; (3) Translate SAT solver output to 
current configuration; (4) Activate/ deactivate component processes and knowledge exchange processes according to current 
configuration. At each node, self-adaptation is a periodically-invoked process of the “Adaptation Manager” system component 
(which is deployed on each node along with the application components).  

1. @Component 
2. @IRMComponent(“Firefighter”) 
3. public class Firefighter { 
4.   public Position position; 
5.   ... 
6.  
7.   @Invariant(“27”) 
8.   @PeriodicScheduling(period=500) 
9.   public static void monitorPositionGPS( 
10.     @Out("position") Position position 
11.   ) { 
12.     // read current position from the GPS device 
13.   } 
14.   ... 
15.  
16.   @InvariantMonitor(“27”) 
17.   public static boolean monitorPositionGPSMonitor( 
18.     @In("position") Position position 
19.   ) { 
20.     // check health of GPS device 
21.     // check if at least 3 satellites are visible 
22.   } 
23.   ... 
24. } 
 

Figure 14: Firefighter component definition and process-
monitor definition in the internal Java DSL of jDEECo. 
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point ordinal scale (1: Strongly disagree, 2: Disagree, 3: Not 
certain, 4: Agree, 5: Strongly agree). While (i) was based on 
manual grading each architecture based on a strict grading 
protocol where each error (missing knowledge, missing role, 
wrong process condition, wrong process period, wrong ensemble 
membership condition, etc.) was penalized by reducing certain 
number of points, assessment of (ii) was provided by the 
participants in pre- and post-questionnaires. 

9.2 Results and Interpretation 
To analyze the results and draw conclusions, for each hypothesis, 
we formulated a null hypothesis and ran a one-sided statistical test 
to reject it. In the case of two-sample tests (Table 1), the null 
hypothesis stated that the medians of the two groups were 
significantly different, whereas in the case of one-sample tests 
(Table 2) it stated that the answer is not significantly more 
positive than “Not certain” (point 3 in Likert). We adopted a 5% 
significance level, accepting the null hypothesis if p-value<0.05. 
(The p-value denotes the lowest possible significance with which 
it is possible to reject the null hypothesis  [78]). 
The correctness of the system architectures showed a statistically 
significant difference (with p=0.0467) in favor of the IRM-SA 
group (Table 1, H1). Figure 15 depicts the dispersion of grades 

around the medians for the two groups, while Figure 16 depicts 
the frequencies of grades per group. From H9 (Table 2) we can 
also conclude that participants of the IRM-SA group perceived 
IRM-SA as an important factor of their confidence on the 
correctness of the system architecture they proposed. These two 
results allow us to conclude that IRM-SA increased both the 
actual and the perceived effectiveness of the modeling process to 
a statistically significant extent. 
Regarding the rest of the conclusive results, participants of the 
IRM-SA group found the IRM-SA modeling process intuitive 
(H4) and the IRM-SA concepts rich enough to capture design 
choices (H6).            

9.3 Threats to Validity 
Conclusion validity. To perform the parametric t-test for 
interval/ratio data for H1, we assumed normal distribution of 
samples [71]. Since Likert data were treated as ordinal, we used 
the non-parametric Mann-Whitney tests for H2-H3 and Wilcoxon 
tests for H4, H6 and H9 [71]. Grading was based on a strict pre-
defined protocol, which we made available together with the 
anonymized raw data and the replication packages in the 
experiment kit [42]. 
Internal validity. We adopted a simple “one factor with two 
treatments” design [78] to avoid learning effects. The number of 
participants (20) was high enough to reach a basic statistical 
validity. We used a semi-randomized assignment of participants 

 
Figure 15: Box-and-whisker diagrams of the two samples 
measuring correctness of system architectures.  

   
Figure 16: Histogram with distribution of grades per group.  

Table 1: Two-sample tests to compare the populations of IRM-SA and control groups. 

id  Alternative (Null) Hypothesis test median 
control 

median 
IRM-SA 

reject 
null-H? p-value 

1 The correctness of the final system architectures is lower (null: the same) 
in the control group than in the IRM-SA group t-test 81.30 86.09 Y 0.0467 

2 The IRM-SA group witnessed less (null: the same) difficulties in coming 
up with a DEECo architecture than the control group 

Mann-
Whitney 4 4 N 0.5164 

3 The IRM-SA group perceived the design effort as more (null: equally) 
likely to be too high for an efficient use of the methodology in practice 

Mann-
Whitney 2 2.5 N 0.4361 

 
Table 2: One-sample Wilcoxon Signed-Rank tests to assess a hypothesis specific to a group. Only conclusive results are shown; for 

the complete list of results we refer the interested reader to the experiment kit [42].  
id  Alternative Hypothesis median  p-value 
4 IRM-SA group will find it easy to think of a system in IRM-SA concepts (invariants, assumptions) 3.5 0.02386 
6 IRM-SA group will find IRM-SA concepts detailed enough to captured the design choices 4 0.00176 
9 IRM-SA group will have increased confidence over the correctness of the architecture via IRM-SA  4 0.00731 

 

0 

1 

2 

3 

4 

5 

<75 75-80 80-85 85-90 90-95 95-100 

Nu
mb

er
 of

 sy
ste

m 
ar

ch
ite

ctu
re

s 

Grades [0-100] 

control IRM-SA 



to groups so that each group is balanced both in terms of Master’s 
vs Ph.D. students and in terms of their experience with DEECo. 
Although the average time to completion of the assignment varied 
greatly, the mean (140 mins) and minimum (75 mins) values 
indicate that participants spent enough time to understand, think 
about and perform the task and fill in the questionnaires. The 
material and the experiment process was beta-tested with 4 
participants beforehand.    
Construct validity. We dealt with mono-method bias by using 
both subjective (questionnaires) and objective (grades) measures. 
We also measured more constructs than needed for H1 in order to 
obtain multiple sources of evidence. However, we introduced 
mono-operation bias by using only one treatment (IRM-SA) and 
one task. Mitigating this threat is subject of additional future 
studies.  
External validity. Our population can be categorized as  junior 
software engineers, since it was formed by graduate students in 
the last years of their studies [41]. Nevertheless, we used a rather 
simple example and no group assignments. Therefore, the results 
can be generalized mainly in academic settings.  

10. DISCUSSION 
In this section, we reflect on our experience with designing with 
IRM-SA and discuss the ways to cope with unanticipated 
situations in IRM-SA (Section 10.1). We also delineate the 
applicability of IRM-SA beyond DEECo (Section 10.2) and 
provide a critical review of the contributions of our work (Section 
10.3).   

10.1 Coping with Unanticipated Situations 
Although IRM-SA modeling and self-adaptation as described in 
the previous sections relies on anticipated situations, we are aware 
of the fact that siCPS often need to operate in situations that reside 
out of their “envelope of adaptability” [10]. In this section, we 
explain how IRM-SA tackles this problem both at runtime and 
design time. The driving idea is to control the decline of 
dependability in the system caused by unanticipated situations, so 
that the system’s operations degrade gradually in a controlled 
manner.   
To illustrate the problem using the running example, consider a 
scenario of a vegetation fire where firefighters, as a part of 
coordinating their actions, periodically update their group leader 
with information about their position as captured by personal GPS 
devices. A problem arises when GPS monitoring fails for 
whatever reasons (battery drainage, etc.) – the system would no 
longer be able to adapt, since this failure was not anticipated at the 
design time. Below, we explain several strategies we propose to 
cope with such unanticipated situations in IRM-SA.  

10.1.1 Runtime Strategy  
The principal strategy for coping with unanticipated situations is 
to specify alternatives of OR-decompositions in such a way that 
they cover situations in an overlapping manner. This increases 
overall system robustness and fault-tolerance by providing a 
number of alternatives to be selected in a particular situation.  
A special case is when an IRM-SA model contains one or more 
design alternatives that have very weak assumptions, i.e., 
assumptions that are very easily satisfied at runtime, and 
minimum preference in an OR-decomposition. Such a design 
alternative is chosen only as the last option as a fail-safe mode, 
typical for the design of safety-critical systems. Figure 17 (a) 
depicts such a case, where the situation 3, reflecting a fail-safe 
mode, overlaps with both the situation 1 and 2. 

In the running example, the runtime strategy is employed in two 
OR-decompositions (Figure 2). The left-most part of the 
decomposition of INV-9 “GM::sensorData is determined” has to 
be maintained differently when the associated group member is in 
danger (INV-13), when a nearby group member is in 
danger/critical state (INV-18), and when no life is in threat (INV-
16). The situation characterized by INV-16 stands as a counterpart 
of the other two, nevertheless they are not mutually exclusive. 
This case is depicted in Figure 17.b.  
Further, the INV-12: “GM::position is determined” has to be 
maintained in the two situations characterized by the INV-24: “GM 
indoors” and INV-26: “GM outdoors”. The last two also 
potentially overlap, corresponding to the real-life scenario where a 
firefighter repeatedly enters and exits a building. In this case, the 
firefighter can also use the indoors tracking system to track his 
position; this design alternative is automatically chosen when the 
GPS unexpectedly malfunctions. 

10.1.2 Re-design Strategy 
The re-design strategy is applied in the design evolution process – 
occurrences of the adaptation actions that led to a failure in the 
system are analyzed and the IRM-SA model is revised 
accordingly. Such a revision can range from inclusion of a single 
invariant to restructuring of the whole IRM-SA model.  
In such a revision, an important aid for the designer is the fact that 
each invariant refinement implies relationship between the sub-
invariants and the parent invariant (Section 5.1). By monitoring 
the satisfaction of the parent invariant ܫ and sub-
invariants ܫଵ, … ,  , it is possible to narrow down the adaptationܫ
failure and infer a suitable way of addressing it. In particular, an 
adaptation failure occurs when: 
(a)  ܫ is AND-decomposed, all non-process invariants among 
,ଵܫ … ,   does not hold. This points to a concealedܫ  hold  butܫ
assumption in the refinement of ܫ. 

(b)  ܫ is OR-decomposed, none of its alternatives holds, but ܫ 
holds. This points to the fact that the refinement of ܫ is likely to 
have more strict assumptions than necessary.  
(c)  ܫ is OR-decomposed, none of its alternatives holds, and  ܫ 
does not hold as well. This points to such an unanticipated 
situation, which requires either a new alternative to be introduced 
or an alternative that provides “close” results to be extended. 

 
Figure 17: Overlap of situations when (a) situation 3 is a “fail-
safe” mode, (b) situations overlap in the running example. 
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For illustration (of the case (c) in particular), consider the scenario 
of a non-responsive GPS. In this case, both “GM::position is 
determined from GPS every 1 sec” (INV-27 in Figure 2) and its 
parent “GM::position is determined” (INV-12) do not hold, which 
is a symptom for an unanticipated situation. Indeed, the root cause 
is that GPS signal was considered accurate. To mitigate this 
problem, we employ the evolution of the running example as 
presented in Figure 18. There, the unanticipated situation has 
become explicit and is used to drive the adaptation. Specifically, 
in this new situation, the system still satisfies INV-12 by switching 
to the right-most alternative. In such a case, the Firefighter’s 
position is determined by aggregating the positions of the nearby 
firefighters (INV-36) and estimating its own position based on 
these positions and the radius of search, through determining the 
maximum overlapping area (INV-37).  

10.2 Applicability of IRM-SA beyond DEECo 
The IRM-SA concepts of design components and invariants, and 
the process of elaborating invariants via AND- and OR- 
decomposition are implementation-agnostic. The outcome 
therefore of the design – the IRM-SA model – can be mapped to a 
general-purpose (e.g., OSGi [34], Fractal [13], SOFA 2 [16]) or 
real-time component model (e.g., RTT [75], ProCom [68]) that 
provides explicit support for modeling entities that encapsulate 
computation (components) and interaction (connectors). In a 
simple case, the mapping involves translating the process and 
exchange invariants to local component activities and to 
connectors, respectively.   
That said, the mapping of IRM-SA to DEECo is particularly 
smooth. This is because IRM-SA is tailored to the domain of 
dynamic self-adaptive siCPS, where the management of belief of 
individual components via soft-real-time operation and dynamic 
grouping has a central role. In this regard, component models 
tailored to self-adaptive siCPS (e.g., DEECo) and architectural 
styles for group-based coordination (e.g., A-3 [4]), are good 
candidates for a smooth mapping, since they provide direct 
implementation-level counterparts of the IRM-SA abstractions.    

10.3 Limits of Contributions 
We now critically review each of the four key contributions of 
this paper, as articulated in Section 1.1. 

With respect to (i), modeling with IRM-SA has been shown via a 
controlled experiment to be in principle feasible and effective for 
the design of software for siCPS. However, the running example, 
the system used in our experiments with jDEECo, and the system 
the participants modeled in the empirical study were all of 
considerably small size. A question remains as to how the 
modeling approach scales in terms of the requirements and 
situations that need to be elaborated and considered at design 
time. A key to this is to support the modeling task with 
appropriate tooling, such as graphical editors with advanced 
features (e.g., allowing for IRM-SA subtrees to be referenced at 
different nodes in the graph).         
With respect to (ii), the automated self-adaptation method relies 
on SAT solving to find an applicable configuration, and therefore 
potentially hindered by the computational limitations of SAT 
solvers. Nevertheless, contemporary solvers can easily scale to 
several thousands of variables and clauses [7]. (In our experiments 
(Section 7.2), the SAT instances handled were in the order of 
hundreds (approx. 100 variables and 200 clauses)). When using 
DANC, we assume that the IRM-SA reasoning will be localized 
to groups of connected nodes, so that the resulting SAT instances 
will be manageable.   
With respect to (iii), we provided a set of experiments showing 
how the DANC implementation of IRM-SA deals with network 
disconnections in specific, but non-trivial settings. The lesson is 
that DANC can be employed specifically in a class of “well-
behaved” systems, as detailed in Section 7.1. When the siCPS in 
question does not belong to this class, techniques from networked 
control systems [33] resp. their wireless variants [36], and multi-
agent coordination  [43, 62] have to be sought out. 
With respect to (iv), we provided two strategies to deal with 
unanticipated situations; the first one refers primarily to designing 
with fail-safe modes – a strategy widely used in CPS [70]; the 
second one refers to error detection and principled design 
evolution that take advantage of the position of assumptions in the 
IRM-SA graph. We acknowledge that these strategies do not cope 
with fully unanticipated situations and environmental uncertainty.  
In our current and future work, we are focusing on devising new 
architecture alternatives at runtime to cope with such cases [31]. 
Finally, there are several difficult research  topics related to 
control theory [37], such as timeliness of adaptation triggering, 
sequential decision-making issues, and timing issues related to 
observing the effects of adaptations on the monitored values in 
order to plan further adaptations. Nevertheless, these issues lie out 
of the scope of this paper. 

11. RELATED WORK 
Recently, there has been a growing interest in software 
engineering research for software-intensive systems with self-
adaptive and autonomic capabilities [65]. Since our approach is 
especially close to software product lines approaches and their 
dynamic counterparts, we first position IRM-SA against these 
approaches; we then split the comparison into three essential 
views of self-adaptation [18], namely requirements, assurances, 
and engineering.   

11.1 IRM-SA vs. Dynamic Software Product 
Lines 
Variability modeling at design time has been in the core of 
research in software product lines (SPLs) [21]. Recently, 
numerous approaches have proposed to apply the proven SPL 
techniques of managing variability in the area of runtime 

 
Figure 18: Design evolution scenario – the new 
“inaccuracy(GM::position) < 20m” situation is added to the 
model and drives the adaptation. 
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adaptation, leading to the concept of dynamic SPL (DSPL) [38]. 
The idea behind DSPL is to delay the binding of variants from 
design to runtime, to focus on a single product than a family of 
products, and to have configurations be driven by changes in the 
environment than by market needs and stakeholders. In this spirit, 
IRM-SA can be considered as a DSPL instance.   
Within DSPLs, feature models are an effective means to model 
the common features, the variants, and the variability points of a 
self-adapting system [45]. However, they fall short in identifying 
and modeling the situations that the system may encounter during 
operation [67]. This results in maintaining an additional artifact as 
a context model (e.g., an ontology [59]) in parallel with the 
feature model at runtime, in order to bind the monitoring and 
planning phases of the MAPE-K loop [46]. IRM-SA provides an 
explicit support for capturing situations, pertinent to system 
operation and self-adaptation, via the assumption concept.  At the 
same time, by building on the iterative refinement of invariants 
and the assignment of leaf invariants to design components, IRM-
SA integrates the problem space view (requirements models) with 
the solution space view (feature models) into a single manageable 
artifact (IRM-SA model). 
Finally, compared to existing approaches in DSPLs that use goal 
models to describe the configuration space [67], IRM-SA does not 
focus on the prioritization between applicable configurations, but 
on the gradual degradation of overall system performance when 
dealing with operational uncertainty in decentralized settings.  

11.2 Requirements and Assurances 
In an effort to study the requirements that lead to the feedback 
loop functionality of adaptive systems, Souza et al. defined a new 
class of requirements, termed “awareness requirements” [73], 
which refer to the runtime success/failure/quality-of-service of 
other requirements (or domain assumptions). Awareness 
requirements are expressed in an OCL-like language, based on the 
Tropos goal models [12] produced at design time, and monitored 
at runtime by the requirements monitoring framework ReqMon 
[64]. The idea is to have a highly sophisticated logging 
framework, on top of which a full MAPE-K feedback loop [46] 
can be instantiated. Our approach, on the other hand, features a 
tighter coupling between monitoring and actuating, since both 
aspects are captured in the IRM-SA model.  
Extending goal-based requirements models with alternative 
decompositions to achieve self-adaptivity has been carried out in 
the frame of Tropos4AS [55, 56]. System agents, together with 
their goals and their environment are first modeled and then 
mapped to agent-based implementation in Jadex platform. 
Although IRM-SA is technically similar to Tropos4AS, it does 
not capture the goals and intentions of individual actors, but the 
desired operation of the system as a whole, thus promoting 
dependable operation, key factor in siCPS.   
For dealing with uncertainty in the requirements of self-adaptive 
systems, the RELAX [77] and FLAGS [5] languages have been 
proposed. RELAX syntax is in the form of structured natural 
language with Boolean expressions; its semantics is defined in a 
fuzzy temporal logic. The RELAX approach distinguishes 
between invariant and non-invariant requirements, i.e., 
requirements that may not have to be satisfied at all times. In [19], 
RELAX specifications are integrated into KAOS goal models. 
Threat modeling à la KAOS [52] is employed to systematically 
explore (and subsequently mitigate) uncertainty factors that may 
impact the requirements of a DAS. FLAGS is an extension to the 
classical KAOS goal model that features both crisp goals (whose 
satisfaction is Boolean) and fuzzy goals (whose satisfaction is 

represented by fuzzy constrains) that correspond to invariant and 
non-invariant requirements of RELAX. The idea of using a 
FLAGS model at runtime to guide system adaptation has been 
briefly sketched in [5], but to the best of our knowledge not yet 
pursued. Compared to IRM-SA, both RELAX and FLAGS focus 
on the requirements domain and do not go beyond goals and 
requirements to design and implementation.  
One of the first attempts to bind requirements, captured in KAOS, 
with runtime monitoring and reconciliation tactics is found in the 
seminal work of Fickas and Feather [25, 26]. Their approach is 
based on capturing alternative designs and their underlying 
assumptions via goal decomposition, translating them into 
runtime monitors, and using them to enact runtime adaptation. 
Specifically, breakable KAOS assumptions (captured in LTL) are 
translated into the FLEA language, which provides constructs for 
expressing a temporal combination of events. When requirements 
violation events occur, corrective actions apply, taking the form of 
either parameter tuning or shifting to alternative designs. There 
are two main differences to our approach: (i) in KAOS-FLEA the 
designer has to manually write and tune the reconciliation tactics, 
whereas we rely on the structure of an IRM-SA model and the 
solver for a solution; (ii) contrary to KAOS-FLEA we do not treat 
alternative designs as correcting measures, but as different system 
modes, which is more suitable for siCPS environments. 

11.3 Design and Implementation 
At the system design and implementation phases, the component-
based architectural approach towards self-adaptivity is favored in 
several works [29, 63]. Here, mode switching stands as a widely 
accepted enabling mechanism, introduced by Kramer and Magee 
[39, 49]. The main shortcoming is that mode switching is 
triggered via a finite state machine with pre-defined triggering 
conditions, which is difficult to trace back to system requirements. 
Also, although partially addressed in [58], modes and the 
triggering conditions are usually designed via explicit 
enumeration, which may cause scalability problems given the 
number and complex mutual relations of the variation points 
involved. In IRM-SA, architecture configurations act as modes. 
However, IRM-SA complements mode switching by enabling for 
compositional definition of architecture configurations and 
providing the traceability links, which in turn allows for self-
explanation [66].   
Another large area of related work focusing specifically on 
decentralized operation to achieve a common joint goal is found 
in distributed and multi-agent planning. Here the main questions 
are centered around the issue of how to compute a close-to-
optimal plan for decentralized operation of agents with partially 
observable domains. The typical solution is to model the 
environment of an agent via a Decentralized Partially Observable 
Markov Decision Process (DEC-POMDP) [8]. This is further 
extended to include imperfect communication [74, 80] and taken 
even a step further, when decentralization is strengthened by not 
requiring prior coordination (and strict synchronization) – either 
by resigning on the inter-agent communication [6, 79] or by 
performing communication simultaneously to planning [76]. A 
disadvantage is that decentralized approaches to MDP do not 
scale beyond a few number of agents [6, 76] – standard 
benchmark problems in the DEC-POMDP community typically 
involve just two agents (e.g., [2, 9, 69]). The major difference to 
our work is that multi-agent planning requires a model of the 
environment in order to predict the effect of an action. A complete 
model of an environment becomes a rather infeasible requirement. 
IRM-SA does not require the complete model of an environment 



as the plan is not computed, but specified by a designer. By 
including high-level invariants, the IRM-SA however still able to 
reason about the efficiency of the configuration being currently 
executed and it also drives decentralized decisions on the 
configuration selection. 
Finally, architecture adaptation based on various constraint 
solving techniques is not a new idea. A common 
conceptualization, e.g., in [30, 35], is based on the formal 
definition of architecture constraints (e.g., architecture styles, 
extra-functional properties), individual architecture elements (e.g., 
components), and, most importantly, adaptation operations that 
are supported by an underlying mechanism (e.g., addition/removal 
of a component binding). Typically, the objective is to find an 
adaptation operation that would bring the architecture from an 
invalid state to a state that conforms to the architecture constraints 
(architecture planning). Although these methods support 
potentially unbounded architecture evolution (since they are based 
on the supported adaptation operations rather than predefined 
architecture configurations), they typically consider only 
structural and extra-functional properties rather than system goals. 
Consequently, they support neither smooth, gradual degradation 
in unanticipated situations, nor offline evolution of the design. 

12. CONCLUSION AND FUTURE WORK 
In this paper, we have presented the IRM-SA method – an 
extension to IRM that allows designing of self-adaptive software-
intensive Cyber-Physical Systems (siCPS) with a focus on 
dependability aspects. The core idea of the method is to describe 
variability of a system by alternative invariant decompositions and 
then to drive system adaptation by employing the knowledge of 
high-level system’s goals and their refinement to computational 
activities.  

A novel feature of IRM-SA is that it allows adaptation in presence 
of operational uncertainty caused by inaccuracies of sensed data 
and by unreliable communication. This is achieved by reasoning 
not only on the values of belief on component knowledge, but 
also on the degree of belief inaccuracy, which is based on the 
degree of belief outdatedness and the model that governs the 
evolution of belief. 

As a proof of concept, we have implemented IRM-SA within 
jDEECo (a Java realization of the DEECo component model) and 
showed its feasibility by modeling a real-life scenario from an 
emergency coordination case study. Moreover, we have provided 
a proof-of-concept demonstration of the benefits of IRM-SA by 
experiments carried out by simulation. We have also tested the 
feasibility and effectiveness of the IRM-SA modeling process via 
a controlled experiment.  

Future work. When the SAT solver fails to find an applicable 
configuration, self-adaptation based on IRM-SA reaches its limits. 
In our current work we aim at extending the envelope of 
adaptability of architecture-based self-adaptive systems. We do so 
by introducing new architecture alternatives (tactics) to the 
running system when no applicable IRM_SA configuration exists 
[31]. For example, one of the ways of introducing new 
alternatives exploits the fact that sensed data are often correlated 
(e.g. in siCPS, certain measurable attributes are typically location-
dependent), which creates the possibility of employing 
“collaborative sensing” when direct (local) sensing is not possible.     

Another promising idea is to build on the fact that, in siCPS 
physical laws govern the evolution of the values of specific 
physical-environment magnitudes (e.g. speed, position). Such 

laws can be employed in predicting such evolution. We have 
already introduced the inaccuracy construct (Section 5.2) to 
integrate the results of such predictions with IRM-SA. This idea 
aligns well with research in stochastic hybrid systems, and also 
complies with our vision to employ Multi-Paradigm Modeling 
(MPM) in siCPS [61]. MPM that will allow to work with different 
types of models (such as physical-world, communication, 
mechanical, and adaptability models) which would be integrated 
into a single rich software architecture model (similar to [11]). For 
instance, this would significantly help in cases when new 
alternatives in the adaptability model are to be introduced while 
being subject to safety constraints in the physical-world model.     

Finally, focusing on the important distributed control aspects of 
siCPS and modeling them in software-engineering models such as 
IRM-SA is another interesting topic for future work.  

13. ACKNOWLEDGEMENTS 
We would like to thank the anonymous reviewers for their 
constructive and detailed feedback on earlier versions of this 
manuscript. 
This work was partially supported by the EU project ASCENS 
257414 and by Charles University institutional funding SVV-
2015-260222. The research leading to these results has received 
funding from the European Union Seventh Framework 
Programme FP7-PEOPLE-2010-ITN under grant agreement 
n°264840. This work was partially supported by the project no. 
LD15051 from COST CZ (LD) programme by the Ministry of 
Education, Youth and Sports of the Czech Republic. 

14. REFERENCES 
[1] Ali, R. Al, Bures, T., Gerostathopoulos, I., Keznikl, J. and 

Plasil, F. 2014. Architecture Adaptation Based on Belief 
Inaccuracy Estimation. Proc. of WICSA’14 (Sydney, 
Australia, Apr. 2014), 1–4. 

[2] Amato, C. and Zilberstein, S. 2009. Achieving Goals in 
Decentralized POMDPs. Proceedings of The 8th 
International Conference on Autonomous Agents and 
Multiagent Systems (Richland, SC, 2009), 593–600. 

[3] Arcaini, P., Gargantini, A. and Vavassori, P. 2015. 
Generating Tests for Detecting Faults in Feature Models. 
Proc. of the 8th IEEE International Conference on 
Software Testing, Verification and Validation (ICST ’15), 
to appear. (Apr. 2015). 

[4] Baresi, L. and Guinea, S. 2011. A-3: An Architectural 
Style for Coordinating Distributed Components. 2011 9th 
Working IEEE/IFIP Conference on Software Architecture 
(WICSA) (Jun. 2011), 161–170. 

[5] Baresi, L., Pasquale, L. and Spoletini, P. 2010. Fuzzy 
Goals for Requirements-Driven Adaptation. 2010 18th 
IEEE International Requirements Engineering Conference. 
(Sep. 2010), 125–134. 

[6] Barrett, S., Stone, P., Kraus, S. and Rosenfeld, A. 2013. 
Teamwork with Limited Knowledge of Teammates. 
Proceedings of the 27th AAAI Conference on Artificial 
Intelligence (Jul. 2013). 

[7] Belov, A., Diepold, D., Heule, M.J.H. and Järvisalo, M. 
2014. Proceedings of SAT Competition 2014: Solver and 
Benchmark Descriptions. (2014). 

[8] Bernstein, D.S., Givan, R., Immerman, N. and Zilberstein, 
S. 2002. The Complexity of Decentralized Control of 
Markov Decision Processes. Math. Oper. Res. 27, 4 (Nov. 
2002), 819–840. 



[9] Bernstein, D.S., Hansen, E.A. and Zilberstein, S. 2005. 
Bounded Policy Iteration for Decentralized POMDPs. 
Proceedings of the 19th International Joint Conference on 
Artificial Intelligence (San Francisco, CA, USA, 2005), 
1287–1292. 

[10] Berry, D.M., Cheng, B.H.C. and Zhang, J. 2005. The Four 
Levels of Requirements Engineering for and in Dynamic 
Adaptive Systems. Proc. of the 11th International 
Workshop on Requirements Engineering Foundation for 
Software Quality, Porto, Portugal (2005), 95–100. 

[11] Bhave, A., Krogh, B.H., Garlan, D. and Schmerl, B. 2011. 
View Consistency in Architectures for Cyber-Physical 
Systems. 2011 IEEE/ACM International Conference on 
Cyber-Physical Systems (ICCPS) (Apr. 2011), 151–160. 

[12] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and 
Mylopoulos, J. 2004. Tropos: An Agent-Oriented Software 
Development Methodology. Autonomous Agents and 
Multi-Agent Systems. 8, 3 (May 2004), 203–236. 

[13] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V. and 
Stefani, J.-B. 2006. The Fractal component model and its 
support in Java. Software: Practice & Experience. 36, 11-
12 (2006), 1257–1284. 

[14] Bures, T., Gerostathopoulos, I., Hnetynka, P. and Keznikl, 
J. 2014. Gossiping Components for Cyber-Physical 
Systems. Proc. of 8th European Conference on Software 
Architecture (2014), 250–266. 

[15] Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., 
Kit, M. and Plasil, F. 2013. DEECo – an Ensemble-Based 
Component System. Proc. of CBSE’13 (Vancouver, 
Canada, Jun. 2013), 81–90. 

[16] Bures, T., Hnetynka, P. and Plasil, F. 2006. SOFA 2.0 : 
Balancing Advanced Features in a Hierarchical Component 
Model. SERA ’06 (2006), 40–48. 

[17] Chang, N., Rashidzadeh, R. and Ahmadi, M. 2010. Robust 
indoor positioning using differential wi-fi access points. 
IEEE Transactions on Consumer Electronics. 56, 3 (Aug. 
2010), 1860–1867. 

[18] Cheng, B. et al. 2009. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. Software 
Engineering for Self-Adaptive Systems. Springer Berlin 
Heidelberg. 1–26. 

[19] Cheng, B.H.C., Sawyer, P., Bencomo, N. and Whittle, J. 
2009. A Goal-Based Modeling Approach to Develop 
Requirements of an Adaptive System with Environmental 
Uncertainty. Proc. of the 12th International Conference on 
Model Driven Engineering Languages and Systems, 
MoDELS ’09 (2009), 1–15. 

[20] Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. 1999. 
Non-Functional Requirements in Software Engineering. 
Springer. 

[21] Clements, P. and Northrop, L. 2002. Software Product 
Lines: Practices and Patterns. Addison Wesley 
Professional. 

[22] Dalpiaz, F., Chopra, A.K., Giorgini, P. and Mylopoulos, J. 
2010. Adaptation in Open Systems: Giving Interaction its 
Rightful Place. Proceedings of the 29th International 
Conference on Conceptual Modeling (ER ’10) (Vancouver, 
Canada, Nov. 2010), 31–45. 

[23] DeNicola, R., Ferrari, G., Loreti, M. and Pugliese, R. 2013. 
A Language-based Approach to Autonomic Computing. 
Formal Methods for Components and Objects. 7542, 
(2013), 25–48. 

[24] Esfahani, N., Kouroshfar, E. and Malek, S. 2011. Taming 
Uncertainty in Self-Adaptive Software. SIGSOFT/FSE ’11: 

Proceedings of the 19th ACM SIGSOFT symposium and 
the 13th European conference on Foundations of software 
engineering (2011), 234–244. 

[25] Feather, M.S., Fickas, S., van Lamsweerde, A. and 
Ponsard, C. 1998. Reconciling System Requirements and 
Runtime Behavior. Proceedings of the 9th International 
Workshop on Software Specification and Design (1998), 
50–59. 

[26] Fickas, S. and Feather, M.S. 1995. Requirements 
monitoring in dynamic environments. Proceedings of 1995 
IEEE International Symposium on Requirements 
Engineering (RE’95). (1995), 140–147. 

[27] Fischer, M.J., Lynch, N.A. and Paterson, M.S. 1985. 
Impossibility of Distributed Consensus with One Faulty 
Process. J. ACM. 32, 2 (Apr. 1985), 374–382. 

[28] Fouquet, F., Daubert, E. and Plouzeau, N. 2012. 
Dissemination of reconfiguration policies on mesh 
networks. Distributed Applications and Interoperable 
Systems (2012), 16–30. 

[29] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. and 
Steenkiste, P. 2004. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. Computer. 37, 10 
(2004), 46–54. 

[30] Georgiadis, I., Magee, J. and Kramer, J. 2002. Self-
organising software architectures for distributed systems. 
Proceedings of the first workshop on Self-healing systems - 
WOSS ’02 (2002), 33–38. 

[31] Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., 
Plasil, F. and Skoda, D. 2015. Meta-Adaptation Strategies 
for Adaptation in Cyber-Physical Systems. Technical 
Report #D3S-TR-2015-01. Department of Distributed and 
Dependable Systems, D3S-TR-2015-01. 

[32] Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C. 
and Hughes, D. 2008. Goal-Based Modeling of 
Dynamically Adaptive System Requirements. Proc. of the 
15th Annual IEEE International Conference and Workshop 
on the Engineering of Computer Based Systems (ECBS 
2008) (Mar. 2008), 36–45. 

[33] Gupta, R.A. and Chow, M.-Y. 2010. Networked Control 
System: Overview and Research Trends. IEEE 
Transactions on Industrial Electronics. 57, 7 (Jul. 2010), 
2527–2535. 

[34] Hall, R., Pauls, K., McCulloch, S. and Savage, D. 2011. 
OSGi in Action: Creating Modular Applications in Java. 
Manning Publications, Stamford, CT. 

[35] Hansen, K.M. 2012. Modeling and Analyzing 
Architectural Change with Alloy. SAC ’10 (2012), 2257–
2264. 

[36] Hasan, M.S., Yu, H., Carrington, A. and Yang, T.C. 2009. 
Co-simulation of wireless networked control systems over 
mobile ad hoc network using SIMULINK and OPNET. 
IET Communications. 3, 8 (2009), 1297. 

[37] Hellerstein, J., Diao, Y., Parekh, S. and Tilbury, D. 2004. 
Feedback Control of Computing Systems. 

[38] Hinchey, M., Park, S. and Schmid, K. 2012. Building 
Dynamic Software Product Lines. Computer. 45, 10 (Oct. 
2012), 22–26. 

[39] Hirsch, D., Kramer, J., Magee, J. and Uchitel, S. 2006. 
Modes for software architectures. Proc. of the 3rd 
European conference on Software Architecture, EWSA ’06 
(2006), 113–126. 

[40] Hoelzl, M., Rauschmayer, A. and Wirsing, M. 2008. 
Engineering of Software-Intensive Systems: State of the 



Art and Research Challenges. Software-Intensive Systems 
and New Computing Paradigms. 1–44. 

[41] Höst, M., Regnell, B. and Wohlin, C. 2000. Using Students 
as Subjects—A Comparative Study of Students and 
Professionals in Lead-Time Impact Assessment. Empirical 
Software Engineering. 214, (2000), 201–214. 

[42] IRM-SA Website: 2015. 
http://d3s.mff.cuni.cz/projects/irm-sa. Accessed: 2015-04-
23. 

[43] Jadbabaie, A., Lin, J. and Morse, A.S. 2003. Coordination 
of groups of mobile autonomous agents using nearest 
neighbor rules. IEEE Transactions on Automatic Control. 
48, 6 (Jun. 2003), 988–1001. 

[44] jDEECo Website: 2015. 
https://github.com/d3scomp/JDEECo. Accessed: 2015-04-
23. 

[45] Kang, K.C., Jaejoon, L. and Donohoe, P. 2002. Feature-
oriented product line engineering. IEEE Software. 19, 4 
(2002), 58–65. 

[46] Kephart, J. and Chess, D. 2003. The Vision of Autonomic 
Computing. Computer. 36, 1 (2003), 41–50. 

[47] Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., 
Hnetynka, P. and Hoch, N. 2013. Design of Ensemble-
Based Component Systems by Invariant Refinement. Proc. 
of CBSE’13 (Vancouver, Canada, Jun. 2013), 91–100. 

[48] Keznikl, J., Bures, T., Plasil, F. and Kit, M. 2012. Towards 
Dependable Emergent Ensembles of Components: The 
DEECo Component Model. Proc. of WICSA/ECSA’12 
(Aug. 2012), 249–252. 

[49] Kramer, J. and Magee, J. 2007. Self-managed systems: an 
architectural challenge. Proc. of FOSE’07 (Minneapolis, 
USA, May 2007), 259–268. 

[50] Lamsweerde, A. Van 2008. Requirements engineering: 
from craft to discipline. 16th ACM Sigsoft Intl. Symposium 
on the Foundations of Software Engineering (Atlanta, 
USA, Nov. 2008), 238–249. 

[51] Lamsweerde, A. Van 2009. Requirements Engineering: 
From System Goals to UML Models to Software 
Specifications. John Wiley and Sons. 

[52] Lamsweerde, A. Van and Letier, E. 2000. Handling 
obstacles in goal-oriented requirements engineering. IEEE 
Transactions on Software Engineering. 26, 10 (2000), 
978–1005. 

[53] LeBerre, D. and Parrain, A. 2010. The Sat4j Library, 
release 2.2. Journal on Satisfiability, Boolean Modeling 
and Computation. 7, (2010), 59–64. 

[54] McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, 
B.H.C. 2004. Composing adaptive software. Computer. 37, 
7 (2004), 56–64. 

[55] Morandini, M., Penserini, L. and Perini, A. 2008. 
Automated Mapping from Goal Models to Self-Adaptive 
Systems. 2008 23rd IEEE/ACM International Conference 
on Automated Software Engineering (Sep. 2008), 485–486. 

[56] Morandini, M. and Perini, A. 2008. Towards Goal-
Oriented Development of Self-Adaptive Systems. 
Proceedings of the 2008 International Workshop on 
Software Engineering for Adaptive and Self-managing 
Systems - SEAMS ’08 (Leipzig, Germany, May 2008), 9–
16. 

[57] Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and 
Solberg, A. 2009. Models at Runtime to Support Dynamic 
Adaptation. Computer. 42, 10 (2009), 44–51. 

[58] Morin, B., Barais, O., Nain, G. and Jezequel, J. 2009. 
Taming Dynamically Adaptive Systems Using Models and 

Aspects. Proc. of the 31st International Conference in 
Software Engineering, ICSE ’09 (2009), 122–132. 

[59] Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó. and 
Lopez-Herrejon, R.E. 2014. Context Variability Modeling 
for Runtime Configuration of Service-based Dynamic 
Software Product Lines. Proceedings of the 18th 
International Software Product Line Conference: 
Companion Volume for Workshops, Demonstrations and 
Tools - Volume 2 (New York, NY, USA, 2014), 2–9. 

[60] Murray, R.M., Astrom, K.J., Boyd, S.P., Brockett, R.W. 
and Stein, G. 2003. Future Directions in Control in an 
Information-Rich World. Control Systems, IEEE. 23, 2 
(2003), 1–21. 

[61] Mustafiz, S., Denil, J., Lúcio, L. and Vangheluwe, H. 
2012. The FTG+ PM framework for multi-paradigm 
modelling: An automotive case study. Proceedings of the 
6th International Workshop on Multi-Paradigm Modeling 
(2012), 13–18. 

[62] Olfati-Saber, R., Fax, J.A. and Murray, R.M. 2007. 
Consensus and Cooperation in Networked Multi-Agent 
Systems. Proceedings of the IEEE. 95, 1 (Jan. 2007), 215–
233. 

[63] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., 
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S. 
and Wolf, A.L. 1999. An Architecture-Based Approach to 
Self-Adaptive Software. Intelligent Systems and their 
Applications, IEEE. 14, 3 (1999), 54 – 62. 

[64] Robinson, W.N. 2005. A requirements monitoring 
framework for enterprise systems. Requirements 
Engineering. 11, 1 (Nov. 2005), 17–41. 

[65] Salehie, M. and Tahvildari, L. 2009. Self-Adaptive 
Software: Landscape and Research Challenges. ACM 
Transactions on Autonomous and Adaptive Systems. 4, 2, 
May (2009), 1–40. 

[66] Sawyer, P., Bencomo, N., Whittle, J., Letier, E. and 
Finkelstein, A. 2010. Requirements-Aware Systems: A 
Research Agenda for RE for Self-adaptive Systems. Proc. 
of the 18th IEEE International Requirements Engineering 
Conference (Sep. 2010), 95–103. 

[67] Sawyer, P., Rocquencourt, I., Mazo, R., Diaz, D., Salinesi, 
C. and Paris, U. 2012. Using Constraint Programming to 
Manage Configurations in Self-Adaptive Systems. 
Computer. 45, 10 (2012), 56–63. 

[68] Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J. and 
Crnkovic, I. 2008. A component model for control-
intensive distributed embedded systems. Proc. of the 11th 
International Symposium on Component-Based Software 
Engineering (Oct. 2008), 310–317. 

[69] Seuken, S. and Zilberstein, S. 2012. Improved Memory-
Bounded Dynamic Programming for Decentralized 
POMDPs. Proc. of the Twenty-Third Conference on 
Uncertainty in Artificial Intelligence (2012). 

[70] Sha, L. and Meseguer, J. 2008. Design of Complex Cyber 
Physical Systems with Formalized Architectural Patterns. 
Software-Intensive Systems and New Computing 
Paradigms. M. Wirsing, J.-P. Banâtre, M. Hölzl, and A. 
Rauschmayer, eds. Springer. 92–100. 

[71] Sheskin, D.J. 2011. Handbook of Parametric and 
Nonparametric Statistical Procedures. Chapman and 
Hall/CRC. 

[72] Shoham, Y. and Leyton-Brown, K. 2008. Multiagent 
systems: Algorithmic, game-theoretic, and logical 
foundations. Cambridge University Press. 



[73] Souza, V.E.S., Lapouchnian, A., Robinson, W.N. and 
Mylopoulos, J. 2013. Awareness Requirements. Software 
Engineering for Self-Adaptive Systems II. Springer Berlin 
Heidelberg. 133–161. 

[74] Spaan, M.T.J., Oliehoek, F.A. and Vlassis, N. 2008. 
Multiagent Planning under Uncertainty with Stochastic 
Communication Delays. Proc. of Int. Conf. on Automated 
Planning and Scheduling (2008), 338–345. 

[75] The Orocos Real-Time Toolkit: 
http://www.orocos.org/wiki/orocos/rtt-wiki. 

[76] Valtazanos, A. and Steedman, M. 2014. Improving 
Uncoordinated Collaboration in Partially Observable 
Domains with Imperfect Simultaneous Action 
Communication. Proc. of the Workshop on Distributed and 
Multi-Agent Planning in ICAPS (2014), 45–54. 

[77] Whittle, J., Sawyer, P. and Bencomo, N. 2010. RELAX: A 
Language to Address Uncertainty in Self-Adaptive 
Systems Requirements. Requirements Engineering. 15, 2 
(2010), 177–196. 

[78] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., 
Regnell, B. and Wesslen, A. 2012. Experimentation in 
Software Engineering. Springer. 

[79] Wu, F., Zilberstein, S. and Chen, X. 2011. Online Planning 
for Ad Hoc Autonomous Agent Teams. Proc. of the 22nd 
International Joint Conference on Artificial Intelligence 
(2011), 439–445. 

[80] Wu, F., Zilberstein, S. and Chen, X. 2011. Online planning 
for multi-agent systems with bounded communication. 
Artificial Intelligence. 175, 2 (Feb. 2011), 487–511. 

 
 
 


