
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

Architectural Homeostasis in Self-Adaptive 

 Software-Intensive Cyber-Physical Systems 

Ilias Gerostathopoulos1,2, Dominik Skoda2, Frantisek Plasil2, Tomas Bures2, Alessia 

Knauss3 

1Fakultät fur Informatik, Technische Universität München. 

Munich, Germany 
2Charles University in Prague, Faculty of Mathematics and Physics. 

 Prague, Czech Republic 
3Department of Computer Science and Engineering, Chalmers University of Technology. 

Gothenburg, Sweden 

gerostat@in.tum.de 

{skoda,plasil,bures}@d3s.mff.cuni.cz 

alessia.knauss@chalmers.se 

Abstract. Self-adaptive software-intensive cyber-physical systems (sasiCPS) en-

counter a high level of run-time uncertainty. State-of-the-art architecture-based 

self-adaptation approaches assume designing against a fixed set of situations that 

warrant self-adaptation; as a result, failures may appear when sasiCPS operate in 

environment conditions they are not specifically designed for. In response, we 

propose to increase the homeostasis of sasiCPS, i.e., the capacity to maintain an 

operational state despite run-time uncertainty, by introducing run-time changes 

to the architecture-based self-adaptation strategies according to environment 

stimuli. In addition to articulating the main idea of architectural homeostasis, we 

describe three mechanisms that reify the idea: (i) collaborative sensing, (ii) faulty 

component isolation from adaptation, and (iii) enhancing mode switching. More-

over, our experimental evaluation of the three mechanisms confirms that allowing 

a complex system to change its self-adaptation strategies helps the system recover 

from runtime errors and abnormalities and keep it in an operational state.  

Keywords: cyber-physical systems; software architecture; run-time uncertainty; 

self-adaptation strategies 

1 Introduction 

Cyber-Physical Systems (CPS)  [1] are large complex systems that rely more and more 

on software for their operation—they are becoming software-intensive CPS  [2, 3]. 

Such systems, e.g., intelligent transportation systems, smart grids, are typically com-

prised of several million lines of code. A high level view achieved via focusing on 

software architecture abstractions is thus becoming increasingly important for dealing 

with such scale and complexity during development, deployment, and maintenance.  

These systems continuously sense physical properties in order to actuate physical 

processes. Due to the close connection to the physical world that is hard to predict at 
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design time and control at run-time, they encounter a high level of uncertainty in their 

operating conditions—run-time uncertainty [4]. Such kind of uncertainty is typically 

rooted in (i) unexpected changes in the run-time infrastructure (e.g., communication 

latencies, disconnections, sensor malfunctioning); (ii) unexpected changes in the envi-

ronment (e.g., harsh weather conditions); (iii) the evolution of other cyber or physical 

systems that interface with the CPS in question; and (iv) the randomness introduced by 

human interaction. Run-time uncertainty can cause numerous failures ranging from 

temporary service unavailability to complete system crash [4].   

A promising way to tackle run-time uncertainty is to endow software-intensive CPS 

with self-adaptive capabilities, i.e., with capabilities of adjusting their own structure 

and behavior at run-time based on their internal state and the perceived environment, 

while considering their run-time goals and requirements [5]. In our work, we focus on 

self-adaptation approaches implemented at the architectural level (e.g. Stitch [6], [7–

10]). One of the limitations in the state-of-the-art architecture-based self-adaptation ap-

proaches is that they assume designing against a fixed set of situations that warrant self-

adaptation [11]. However, when run-time uncertainty is high, anticipating all potential 

situations upfront (i.e. at design time) and designing corresponding actions is a costly, 

lengthy, and sometimes not even a viable option [4, 12]. 

In our work, instead of trying to identify all potential situations and corresponding 

actions (strategies in architecture-based self-adaptation), we propose to engineer flexi-

bility in the strategies of a self-adaptive software-intensive CPS (sasiCPS further on) 

in the form of run-time changes to these strategies. This way we try to increase the 

software homeostasis of sasiCPS, i.e. the capacity for the system to maintain its normal 

operating state and implicitly repair abnormalities or deviations from expected behavior 

[13], by specifically focusing at the architectural level—architectural homeostasis.   

We claim that supporting architectural homeostasis at run-time helps tackle the run-

time uncertainty in sasiCPS. The underlying assumptions of our approach are that (i) 

fixed architecture-based self-adaptation strategies result in brittle systems in domains 

with high run-time uncertainty; (ii) allowing the components of a complex system to 

change their self-adaptation strategies in a slightly different way while still aiming at a 

common goal can have positive results in the overall utility of a self-adaptive system. 

The last point is common in other domains (e.g., communication protocols that try to 

reestablish a connection in some random manner in order to avoid a flood of reconnec-

tions).  

The main contribution of this paper lies in presenting three concrete homeostatic 

mechanisms that operate at the architectural level and effectively increase the capacity 

of a sasiCPS to maintain an operational state despite run-time uncertainty. The second-

ary contribution lies in implementing the proposed mechanisms in a development and 

run-time framework for sasiCPS—DEECo component framework [14]—and in evalu-

ating their feasibility and effectiveness in a controlled experiment. In the experimental 

setup, the mechanisms worked both independently and in combination with each other. 

The results show that using the proposed mechanisms increase in the overall utility of 

the system in face of runtime errors and abnormalities (high-level exceptions).   



The rest of the paper is structured as follows. Section 2 presents our running example 

and the background of our work. Section 3 presents the main idea of architectural ho-

meostasis, together with its reification into three concrete homeostatic mechanisms. 

Section 4 details our evaluation based on implementing the mechanisms and quantify-

ing their effects in the running example, together with discussing the interesting points, 

extensions, and limitation of our approach. Finally, Section 5 compares our work to 

existing ones in the literature and Section 6 concludes. 

2 Running Example and Background 

2.1 Cleaning Robots Example 

In the scenario used throughout the paper, four Turtlebots (http://www.turtlebot.com/) 

are deployed in a large 2D space with the task to keep it as clean as possible. The space 

is covered by tiles that can get dirty at some arbitrary points in time. Each robot is able 

to move around, identify dirty tiles via its downwards-looking camera and humidity 

sensor, and clean them. Each robot also works on a specific energy budget; before it 

expires, the robot needs to reach a docking station and recharge. Several docking sta-

tions exist in the space. Fig. 1 depicts a scenario with three robots and two docking 

stations.   

The robots communicate with each other to exchange information about the lastly 

cleaned tiles to avoid unnecessary trips. They also communicate with the docking sta-

tions to determine the most convenient station for recharging.   

This example, although a toy one, comprises a number of situations where run-time 

uncertainty creeps in. These include situations where a robot loses the ability of reliably 

detecting dirty tiles (e.g. due to a failure in its humidity sensor) or loses the ability of 

communicating with the docking stations. Docking stations may also stop working. 

Fig. 1. Cleaning robots example (screenshot from the tool). 



Run-time uncertainty is also manifested in the unpredictable pace and position where 

dirt appears in the space. 

2.2 DEECo Model of Cleaning Robots – Running Example 

DEECo is a development and run-time framework for sasiCPS [14]. In DEECo, a com-

ponent is an independent entity of development and deployment. Two component types 

were identified in our running example: Robot and DockingStation. Every DEECo com-

ponent contains data (knowledge) and functionality in the form of periodically invoked 

processes which map input knowledge to output knowledge; each process is associated 

with one or more component mode(s). In the running example, each Robot comprises 

knowledge about its position, dirtinessMap, etc. (Fig. 2, lines 9-14), and several pro-

cesses, e.g. clean (lines 25-31), move, and charge. A process belongs to one or more 

modes – e.g., the Robot’s clean process belongs to cleaning mode (line 25). The modes 

of each component are switched at run-time according to the component’s mode-state 

1. role Dockable: 
2.   id, assignedDockingStationPosition 
3. role Cleaner: 
4.   id, position, targetPosition, dirtinessMap 
5. role Dock: 
6.   position, dockedRobots 
7.  
8. component Robot1 features Dockable, Cleaner 
9. knowledge: 
10. id = 2 
11.      position = { 16, 02} 
12. dirtinessMap = {} 
13. targetPosition = null 
14. assignedDockingStationsPosition = null 
15.  
16. process move in mode Cleaning, Searching 
17.       in targetPosition 
18.       inout position 
19. inout dirtinessMap 
20. function: 
21.     position ← move (targetPosition) 
22. dirtinessMap ← update(position, dirtinessMap) 
23. scheduling: periodic( 100ms ) 
24.   
25. process clean in mode Cleaning 
26.     in position 
27.     inout dirtinessMap 
28.   function: 
29.     if dirty(position) 
30.         dirtinessMap ← clean(position, dirtinessMap) 
31.   scheduling: periodic( 1000ms ) 
32.  
33.  /* similar spec for other processes of Robot1 */ 
34. /* similar spec for Robot2 and Robot3, DockingStation1, and DockingStation2 */ 

Fig. 2. Excerpt from DSL of DEECo components of the cleaning robots example. 



machine (Fig. 7). A component in DEECo has a number of roles, each allowing a subset 

of knowledge fields to become subject to component interaction. In the running exam-

ple, each Robot features the Dockable and Cleaner roles (lines 1-4, 8). 

Components do not interact with each other directly. Their interaction is dependent 

on their membership in dynamic groups called ensembles. An ensemble is dynamically 

created/disbanded depending on which components satisfy its membership condition. 

The key task of an ensemble is to periodically exchange knowledge parts between its 

coordinator and member components (determined by their roles). At design-time, an 

ensemble specification consists of  (i) ensemble roles that the member and coordinator 

components should feature, and (ii) a membership condition prescribing the condition 

under which components should interact (Fig. 3, lines 45-51), and (iii) a knowledge 

exchange function, which specifies the knowledge exchange that takes place between 

the components in the ensemble (lines 52-53). For instance, the components featuring 

the Dockable role (e.g. Robot) can form an ensemble with components featuring the Dock 

role (i.e. with a DockingStation) to coordinate on the docking activity (lines 36-37).  

Matching of a component role and an ensemble role can be interpreted as establish-

ing a connector in a classical component model; such a connector lasts only until the 

next evaluation of the membership condition. This semantics provides for software ar-

chitecture that is dynamically adapted to the current components’ knowledge values.  

Self-Adaptation in DEECo. The semantics of switching modes within a component 

reflects the idea of the MAPE-K self-adaptation loop (Monitor-Analyze-Plan-Execute 

over Knowledge) [15]: Consider a component C and its associated mode-state machine 

MC. In MC, the transition guards from the current state are periodically evaluated based 

on monitoring the variables (knowledge parts featured in the guards) of C; then it is 

35. ensemble DockingInformationExchange: 
36. coordinator: Dock 
37. member: Dockable 
38. membership: 
39.   coordinator.dockedRobots.size() <= 3 
40. knowledge exchange: 
41.   coordinator.dockedRobots ← member.id 
42.   member.assignedDockingStationPosition   ← coordinator.position 
43. scheduling: periodic( 1000ms )  
44.   
45. ensemble CleaningPlanExclusion: 
46.     coordinator: Cleaner  
47.     member: Cleaner  
48.   membership: 
49.     coordinator.targetPosition == member.targetPosition 
50.         and distance(coordinator.position, coordinator.targetPosition) 
51.                 < distance(member.position, member.targetPosition) 
52.   knowledge exchange: 
53.     member.targetPosition ← null 
54. scheduling: periodic( 1000ms ) 
 

Fig. 3. Excerpt from DSL of DEECo ensembles of the cleaning robots example. 

 



analyzed which of the eligible transition should be selected by so that the next mode is 

planned. Finally, the next mode is brought to action (executed). 

The semantics of ensembles also reflects the idea of MAPE-K: Consider an ensem-

ble E. The membership condition MC of E is evaluated (analyzed) periodically, requir-

ing systematic monitoring of the variables (knowledge parts) in all components featur-

ing E’s roles. From all of these components considered in a particular MC evaluation, 

only those satisfying MC are planned to be the members/coordinator of E. This plan is 

then executed and communication of the members/coordinator via knowledge ex-

change is then realized.  

Overall, in DEECo, self-adaptation is performed by two mechanisms applied in par-

allel: (i) mode-switching at the level of individual components, (ii) dynamic participa-

tion of components in ensembles. In principle, each instance of a self-adaptation mech-

anism defines a particular self-adaptation strategy (in the sense of [6]), being charac-

terized in each component by a specific mode-state machine, and in each ensemble 

instance by a specific membership condition and knowledge exchange function. Tech-

nically, this is realized by an Adaptation manager (part of the runtime framework of 

DEECo [14]), which takes the specification of mode-state machines and ensembles as 

definition of self-adaptation strategies and invokes them accordingly.  

3 Homeostasis at the Architectural Level  

Our approach modifies/adds/removes self-adaptation strategies at run-time when the 

system requirements and/or environment assumptions which the strategies have been 

designed for are not met anymore. Our approach realizes this in an additional adaptation 

layer (homeostasis layer). Conceptually, the three layers presented in Fig. 4 follow the 

three-layered architecture for evolution of dynamically adaptive systems proposed by 

Perrouin et al. [16]. Contrary to their work, however, we do not use an evolution layer 

to switch between self-adaptation strategies. Instead, we propose the top layer to change 

the employed self-adaptation strategies by homeostatic mechanisms (H-mechanisms) 

based on a MAPE-K loop governed by an H-Adaptation Manager (Fig. 4).   
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Fig. 4. Three-layered architecture with homeostasis layer



To illustrate the concepts of the Homeostasis Layer, we present three H-mechanisms. 

H-Adaptation manager coordinates monitoring of exceptional/unanticipated situations 

at the Adaptation Layer and reacts by activation of a selected H-mechanism, which, in 

turn, modifies a self-adaptation strategy at the Adaptation Layer. Technically, the Ad-

aptation Manager coordinates the application of self-adaptation mechanisms (to avoid 

conflicts in adaptation); a similar coordination role has the H-Adaptation Manager with 

respect to application of H-mechanisms. Moreover, the H-Adaptation manager can 

force the Adaptation Manager to postpone any adaptation based on the self-adaptation 

strategy being modified.  

In principle the Homeostasis Layer could be avoided by enhancing the Adaptation 

Layer to handle all the exceptional situations; however, this would make their specifi-

cation clumsy and error prone. Therefore we hoist the handling of these exceptional 

situations to the architectural level and modify the Adaptation Layer by the Homeosta-

sis Layer at run time. Moreover, the adoption of such an architecture style provides 

more design flexibility by the allowing incremental tuning up of the Adaptation Layer.   

As a reference implementation, the Adaptation Layer in our running example is built 

upon the self-adaptation mechanisms in DEECo (mode-state machines, ensembles), by 

modifying/adding/removing the self-adaptation strategies defined by their instances at 

run-time.  

3.1 H-Mechanism #1: Collaborative Sensing 

sasiCPS are often large data-intensive systems with components that perform sensing 

of physical properties via hardware sensors (e.g. GPS, accelerometer, thermometer) 

with various reliability margins. When components rely on sensor readings for satisfy-

ing important functional requirements (e.g. a robot needs to know its position in order 

to plan its path to a destination), it becomes extremely important to deal with sensor 

malfunctioning to still enable environment sensing at run-time.  

A way to overcome the problem of sensor malfunctioning is to take advantage of the 

data dependencies and redundancies that may exist in sasiCPS due to components sens-

ing the same or similar property 𝑃. Collaborative sensing (CS) H-mechanism provides 

an adequate approximation of property 𝑃 for a faulty component. CS is based on defin-

ing a new self-adaptation strategy on the fly – technically, in DEECo, by creating an 

additional ensemble specification with knowledge exchange function providing the de-

sired approximation. 

CS involves two computational steps: (i) CS Analysis—identification of data de-

pendencies and (ii) CS Plan—approximation of 𝑃. While CS Plan is relatively easy to 

realize once a dependency relation is identified, for the two main tasks of CS Analysis 

(Fig. 5), there are multiple alternatives involving different trade-offs: A major issue is 

the computational overhead of data collection vs. the readiness of dependency relation 

when the need for applying CS is acute. 

For illustration of CS Analysis, in the following we consider the subtasks (a)-(i)-(I) 

and (b)-(i).  Let us assume that the H-Adaptation Manager collects the values of prese-

lected knowledge fields of the set of components of the same type in the latest time 

instances 𝑡 = 1. . 𝑛. Furthermore, for acquiring the dependency relation, CS Analysis 

checks all the aggregated knowledge to find out which knowledge fields are dependent 



on others. Let 𝐶𝑖 . 𝑘𝑙
𝑡 be the value of knowledge field 𝑘𝑙 of component 𝐶𝑖 at a time in-

stance 𝑡, and  {𝐶𝑖 . 𝑘𝑙}1
𝑛 denote the time series of the knowledge field 𝑘𝑙  of component 

𝐶𝑖 at time instances 1 to 𝑛. Further let 𝜇𝑘𝑙
(𝐶𝑖 . 𝑘𝑙

𝑡 , 𝐶𝑗. 𝑘𝑙
𝑡) be the distance between two 

knowledge values of 𝑘𝑙
𝑡 in components 𝐶𝑖 and 𝐶𝑗 measured by metric 𝜇 specific to 𝑘𝑙. 

Then, for all component pairs 𝐶𝑖 , 𝐶𝑗;  𝑖 ≠ 𝑗, having the fields 𝑘𝑙  and 𝑘𝑚, CS Analyze 

computes the boundary Δ𝑘 𝑙
 such that the implication 𝜇𝑘𝑙

(𝐶𝑖 . 𝑘𝑙
𝑡 , 𝐶𝑗. 𝑘𝑙

𝑡) < Δ𝑘𝑙
⇒

𝜇𝑘𝑚
(𝐶𝑖. 𝑘𝑚

𝑡 , 𝐶𝑗 . 𝑘𝑚
𝑡 ) < 𝑇𝑘𝑚

 for the time instances 𝑡 = 1. . 𝑛 is satisfied in (at least) the 

specified percentage of all the cases (confidence level 𝑎𝑘𝑚
, e.g. 90%). Here T𝑘𝑚

 repre-

sents the tolerable distance threshold and is provided for each 𝑘𝑚. The CS Analysis 

concludes that the value of 𝐶𝑖 . 𝑘𝑚
𝑡  is close to the value of 𝐶𝑗. 𝑘𝑚

𝑡  (and vice versa) for t 

such that the values of 𝐶𝑖 . 𝑘𝑙
𝑡 and 𝐶𝑗 . 𝑘𝑙

𝑡 are close as well.  

Thus, when a component 𝐶𝑓 fails to sense the values of 𝑘𝑚, an approximation of this 

property has to take place. This is done by CS Plan by creating an ensemble with the 

exchange function 𝐶𝑓 . 𝑘𝑚 ∶=  𝐶𝑗 . 𝑘𝑚  and membership condition 𝜇𝑘𝑙
(𝐶𝑓 . 𝑘𝑙 , 𝐶𝑗. 𝑘𝑙) <

Δ𝑘𝑙
. If more than one 𝐶𝑗 satisfies the membership condition, an arbitrary one is selected. 

The ensemble is deployed and started by CS Execute. 

The task to compute the boundary Δ𝑘𝑙
 is resource and time demanding but there are 

techniques that can lower the time needed to finish, such as sorting the data according 

to 𝜇𝑘𝑚
(𝐶𝑖 . 𝑘𝑚

𝑡 , 𝐶𝑗 . 𝑘𝑚
𝑡 ) or using sampling of the gathered data to obtain a statistically 

significant answer. There are of course a number of other methods to detect dependen-

cies between data such as linear regression, k-nearest neighbors, neural networks, etc. 

For illustration, consider the situation where the downwards-looking camera of a 

robot R starts failing and consequently R loses the ability to detect dirtiness on the floor 

(and, to update its dirtinessMap). This situation will trigger the CS H-mechanism which 

will create a DirtinessMapExchange ensemble, the membership condition of which 

states that R becomes the coordinator and the other robots that are closer to R than the 

given threshold (obviously, when their positions are close, their maps are  “close”) be-

come its members. By knowledge exchange, R adopts the dirtinessMap of the closest 

member (Fig. 6) and can resume its cleaning operation. 

Fig. 5. Alternative Subtasks of CS Analysis (identification of data dependencies). 

a. Data collection 
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3.2 H-Mechanism #2: Faulty Component Isolation from Adaptation 

The idea of the faulty component isolation from adaptation (FCIA) H-mechanism is 

rooted in the well-known fault-tolerance mechanism: When a component starts mal-

functioning it has to be isolated from the rest of the system and its activity taken over 

by another non-faulty component providing the same functionality. In essence, FCIA 

addresses the situation where a component A starts emitting faulty values of its property 

P. In such a case, FCIA modifies the adaptation strategies that count on P in order to 

prevent the “contamination” of other components with faulty values of P.   

For illustration, consider a situation where a docking station DS due to some error 

or malfunction is not able of having docked robots charge anymore, while still being 

advertised as operational to robots, which are technically members of the DockingIn-
formationExchange ensemble associated with DS (Fig. 3). As a result, a Robot may still 

queue at the faulty DS. This is a trigger for applying the FCIA H-mechanism by the H-

Adaptation Manager. In essence, FCIA modifies the DockingInformationExchange 

specification in such a way that DS is excluded from being the coordinator of one of its 

instances. Technically, this can be done by modifying the membership condition to 

make it not satisfiable for DS.  

3.3 H-Mechanism #3: Enhancing Mode Switching  

The motivation behind the enhancing mode switching (EMS) H-mechanism is that 

there are cases where the behavior of a component specified by its mode-state machine 

is over-constrained. Thus, instead of being stuck in situations that have not been antic-

ipated at design time, it can be beneficial to relax the constraints and enlarge the space 

of actions that can be tried out to handle such situations. Building on this idea, the EMS 

H-mechanism adjusts the self-adaptation strategy implemented as a mode-state ma-

chine associated with a particular component. Specifically, EMS (i) creates new prob-

abilistic transitions from every mode to every other one, and (ii) introduces probabilities 

to the existing mode transitions (in Fig. 7 the introduced probabilities have a value of 

0.01; however, the actual probability learned in our experiments is much smaller). The 

55. role DirtinessMapRole: 
56.     position, dirtinessMap 
57.  
58. ensemble DirtinessMapExchange: 
59. coordinator: DirtinessMapRole 
60. member: DirtinessMapRole 
61. membership: 
62.   // Member and coordinator must be “close” to form the ensemble 
63.   // The robot with broken sensor becames the coordinator 
64.   close(coordinator.position, member.position) 
65.     and obsolete(coordinator.dirtinessMap) 
66. knowledge exchange: 
67. coordinator.dirtinessMap ← member.dirtinessMap 
68. scheduling: periodic( 1000ms )   

Fig. 6. DSL excerpt from specification of collaborative sensing ensemble of the cleaning robots. 



resulting mode-state machine is represented by a fully connected probabilistic graph. 

An important part of EMS is a fitness function assessing the impact of a specific mod-

ification to the mode-state machine (e.g. by evaluation of system performance). EMS 

monitors the value of the fitness function and triggers the change of probabilities when 

the value is low. This change is subject to iterations to tune the fitness value to the 

desired threshold (e.g. by simulated annealing).  

For illustration, consider the unanticipated situation that there are far more Robots 

than DockingStations. Assuming similar energy depletion and similar initial energy 

budgets, if all Robots follow the mode-state machine depicted in Fig. 7, they might all 

switch to Charging mode at similar points in time (when their energy falls below 20%). 

This would result in an increase in the average charging time, since robots will need to 

queue up at the docking stations. The situation when the queuing and consequently 

charging time of robots takes longer than usual will act as a trigger for EMS. It will 

change the mode-state machine of affected robots by adding new transitions and guards 

(depicted in green in Fig. 7). The new transitions have a probability of 0.01. This is just 

for illustration; the actual probabilities learned in our experiments are much smaller 

(see Section 4.2). It is important to realize that each component may find itself in the 

triggering situation of EMS at a different time and that the mode-state machine evolu-

tion is also specific to an individual component. 

The EMS H-mechanism effectively allows the transition from every mode to every 

other mode with a given probability. This, however, can be dangerous when there exist 

modes that should be entered only under certain circumstances (e.g., because they in-

volve operations with non-revertible effects). To address this issue, we assume that 

there is a way to specify such forbidden transitions in the mode-state machine. 
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Fig. 7. Mode-state machine capturing the mode switching logic of the Robot component. Each state 
(mode) is associated with several processes. Transitions are guarded by conditions upon the Robot’s 

knowledge. Changes introduced by the EMS H-mechanism are marked in (bold) green – transitions are 

now guarded by a condition/probability pair. States that are not allowed to have incoming transitions are 

marked in grey background. 



4 Evaluation and Discussion 

4.1 Experiment Design and Testbed  

In order to quantitatively assess the effects of the three H-mechanisms, we applied them 

to the running example (Section 2.1) in its JDEECo implementation (JDEECo is a Java 

implementation of the DEECo component model [14]). We implemented them as 

plugins to the JDEECo framework, taking advantage of its modeling and simulation 

capabilities. All these realizations of H-mechanisms1 are governed by the H-Adaptation 

Manager implemented as an isolated DEECo component. 

To show that the application of the H-mechanisms increases the overall utility of the 

system in case of faults, a controlled experiment was designed and conducted. This was 

based on a number of simulation runs of predefined scenarios, each being a combination 

of deliberatively introduced faults to be addressed by a particular H-mechanism (or 

their combination). In total, we considered the 8 different scenarios, each of them con-

taining four robots, depicted in Fig. 8. To measure the overall utility of a system run, 

we used an application-specific metric returning the 90th percentile of the time required 

for a tile that got dirty until it is cleaned.   

4.2 Results and Discussion 

Results. Each scenario was run in 100 iterations. Fig. 9 shows the values of the overall 

system utility in the form of boxplot diagrams where the number associated with the 

red line denotes the median of the sample. System utility is expressed by the time 

needed to clean a tile after it gets dirty, the smaller the time the better. 

 Scenario 1 represents the vanilla case (no faults – no H-mechanism active), acting 

as the baseline. Not surprisingly, in other scenarios the 90th percentile of the time to 

clean a tile increases when a fault occurs and is not counteracted by an H-mechanism 

(scenarios 2,4,6,8). When an H-mechanism counteracts the fault (scenarios 3,5,7,9), the 

                                                           
1  Available at: https://github.com/d3scomp/uncertain-architectures 

Sce-

nario  
Fault Mechanism 

Number of docking 

stations 

1 - - 3 

2 A robot’s dirtiness sensor malfunctions - 3 

3 A robot’s dirtiness sensor malfunctions CS 3 

4 A docking station emits wrong availability data - 3 

5 A docking station emits wrong availability data FCIA 3 

6 Too many robots w.r.t. docking stations - 1 

7 Too many robots w.r.t. docking stations EMS 1 

8 All above - 2 

9 All above CS+FCIA+EMS 2 

 

Fig. 8.  Scenarios considered in the controlled experiment. Simulation duration is 600 s (with extra 300 

secs “learning phase” in scenarios 7 & 9), environment size is 20 x 20, number of robots is 4.



overall utility improves, but does not reach the baseline scenario. Below we comment 

more on CS and EMS, since the application of FCIA was straightforward.  

As to the application of CS (scenario 2), a dependency relation (Section 3.1) was 

identified such that the closeness of the positions of Robot components implied similar 

values in their dirtinessMaps. This resulted in the creation and deployment of the 

DirtinessMapExchange of Fig. 6. The used metrics, tolerable distances, and confidence 

levels are depicted in Fig. 10. 

The effect of EMS is illustrated in scenarios 6 and 7. In both scenarios, only a single 

docking station is active, corresponding to the situation that one of the two docking 

stations gets unavailable at run-time. When EMS is applied (scenario 7), due to the 

introduced probabilistic mode switching, the robots started visiting the docking station 

at different times. Hence, the overall queueing time was reduced and the overall utility 

increased. EMS needs time to auto-calibrate (set to 300 sec) as it searches for the prob-

ability value for the added transitions that yields the highest fitness value following a 

simulated annealing algorithm. In Fig. 9, the results have been split into the learning 

phase (7a) and the execution run with learned values (7b). The solution naturally un-

derperforms in the learning phase compared to the case without EMS (6) because of the 

trial and error that the learning involves. However, once the learning period is over and 

EMS uses the learned values, it yields a significantly better behavior compared to (6). 

The fitness value was calculated as the inverse of the average time it takes the robot to 

clean a tile since it discovered the dirt. Since EMS was running independently for each 

robot, the local searches returned different optimal probabilities for each robot found 

by the search (with values close to 0.0001).  

 
Fig. 9.  Simulation results. Smaller values are better.



In scenario (8) all the faults are introduced and in (9) they are handled by all the 

three H-mechanisms; this illustrates that all of them can be active at the same time 

without worsening the overall utility of the system. Since the fitness function in EMS 

was selected in such a way that it does not depend on the faults triggering CS and FCIA, 

all the three H-mechanisms behaved as orthogonal. 

Discussion. We use two distinct architectural layers—“standard” self-adaptation and 

adaptation of self-adaptation strategies (the task of H-mechanisms). Hence, our solution 

basically follows the principle of architectural hoisting [17]—separating concerns by 

assigning the possibility for a global system property (here self-adaptation) to system 

architecture. Even though the H-mechanisms layer can be interpreted as (high-level) 

exception handling in self-adaptation settings and can be implemented at the same level 

of abstraction as the self-adaptation itself, achieving the same functionality without the 

H-mechanism layer would make the code of ensembles and components very clumsy. 

Architectural hoisting makes the separation of these concerns much easier and elegant.  

Depending on the particular fitness function applied, EMS may be triggered in a 

situation that is also covered by other H-mechanisms (e.g. by CS). In such a case it is 

important to address this interference and state which H-mechanism has precedence in 

order to avoid unnecessary side effects. This is the task of the H-Adaptation Manager. 

Limitations. In general, the extra layer demands additional computational load, since 

monitoring of the triggering events is inherent to all three H-mechanisms. Even though 

it is minor for CS and FCIA, in the case of EMS it depends on the complexity of the 

associated fitness function. Obviously, the most computationally demanding step is the 

Knowledge field Distance metric (μ) Tolerable distance (Τ) Confidence level (a) 

position Euclidean 3 0.9 

battery  difference 0.005 0.95 

dirtinessMap In Fig. 11 3 0.9 

 

Fig. 10.  Distance metrics, tolerable distances, and confidence levels in Robot knowledge fields.

1. def dirtinessMapDistance(map1, map2): 

2.   dist = 0 

3.   // for each node in the global map, if visited in  

4.   // same-ish time add penalty if needed 

5.   for n in DirtinessMap.getNodes(): 

6.     if(map1.getVisited().get(n) -  

7.         map2.getVisited().get(n) <= timeWindow): 

8.       dirt1 = map1.getDirtinessIn(n) 

9.       dirt2 = map2.getDirtinessIn(n) 

10.       if(dirt1 - dirt2 > dirtWindow): 

11.         dist = dist + differencePenalty 

12.   return dist 
  

Fig. 11.  Distance metric for dirtinessMap field of Robot component. 



data collection in CS if done preventively at runtime. This can be reduced by limiting 

the time window for collecting data, or by starting it ex-post, i.e. when a need be. 

Another limitation of the work presented in this paper is that the proposed H-mech-

anisms have been only evaluated so far with DEECo self-adaptation strategies. Inves-

tigating the generalizability of our homeostasis concept with other self-adaptation ap-

proaches (e.g. Stitch) is an interesting topic of our future work. 

5 Related Work  

In this paper we focus on handling run-time uncertainty in the context of sasiCPS en-

gineered as self-adaptive systems. We thus discuss related literature on the topics of 

handling uncertainty in cyber-physical as well as self-adaptive systems, in addition to 

works on solving run-time architecture problems.     

Managing uncertainty has been identified as one of the major challenges in engi-

neering software for self-adaptive systems [5]. Self-adaptive systems can be affected 

by different kinds of uncertainty: Requirements, design and run-time uncertainty [4]. 

We reflect on the major works in uncertainty affecting self-adaptive systems. On the 

requirements uncertainty level, Ramirez et al. have introduced the RELAX language 

which allows to make requirements more tolerant to environmental uncertainty [18]. 

Esfahani et al. propose POISED – an approach based on possibility theory for handling 

internal uncertainty that affects the system in making adaptation decisions [19]. Internal 

uncertainty is caused by the difficulty of determining the impact of adaptation on the 

system’s quality objectives. Knauss et al. contribute with ACON – a learning based 

approach to deal with unpredictable environment and sensor failure [20]. It uses ma-

chine learning to keep the context in which contextual requirements are valid up-to-

date. In contrast to the approaches discussed on handling uncertainty in self-adaptive 

systems, only ACON focuses on the same kind of uncertainty as we do in this paper – 

the run-time uncertainty. However, in this paper we take an architectural view and focus 

on ways to evolve self-adaptive logic at run-time to counteract run-time uncertainty, 

while ACON focuses on keeping requirements up to date.  

On architecture-based run-time adaptation, the works by Oreizy et al. [21] on the 

adaptation and evolution management and Garlan et al. on the Rainbow framework [22] 

are important. Rainbow supports the reuse of adaptation strategies and infrastructure to 

apply them. A running system is monitored for violations and appropriate adaptation 

strategies are employed to resolve them. However, only predesigned strategies are used, 

which also do not evolve at run-time.  

 Elkhodary et al. present FUSION that allows a self-adaptive system to self-tune its 

adaptation logic in case of unanticipated conditions [23]. It uses a feature-oriented sys-

tem model and learns the impact of feature selection and feature interaction. In contrast 

to this, we do not use a learning-based approach, but advocate introducing flexibility in 

self-adaptation strategies as a method to deal with run-time uncertainty. Villegas et al. 

focus on supporting context-awareness in self-adaptive systems [24]. Their 

DYNAMICO reference model supports dynamic monitoring and requirements varia-

bility to allow satisfying system goals under highly changing environments. 



DYNAMICO supports adaptation at the model level (i.e., control objectives, context, 

and context monitors). We focus on supporting self-adaptation at the architectural level.   

6 Conclusions 

This paper focused on tackling uncertainty in the operating conditions of self-adaptive 

software-intensive cyber-physical systems. The general idea is to equip such a system 

with architecture homeostasis – the ability to change its self-adaptation strategies at 

run-time according to environment stimuli. This idea was exemplified in three concrete 

homeostatic mechanisms, which, when triggered, adjust self-adaptation strategies that 

work at the software architecture level. The conducted experiments showed that hoist-

ing modification of self-adaptation strategies at the architectural level is a viable option. 

In our future work, we intend to conduct further research on the classification algo-

rithms to effectively determine situations that trigger homeostatic mechanisms, and in-

vestigate, concretize, and experiment with more homeostatic mechanisms. 
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