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Abstract 
Cyber-Physical Systems (CPS) are large interconnected software-
intensive systems that influence, by sensing and actuating, the 
physical world. Examples are traffic management and power grids. 
One of the trends we observe is the need to endow such systems 
with the “smart” capabilities, typically in the form of self-
awareness and self-adaptation, along with the traditional qualities 
of safety and dependability. These requirements combined with 
specifics of the domain of smart CPS – such as large scale, the role 
of end-users, uncertainty, and open-endedness – render traditional 
software engineering (SE) techniques not directly applicable; mak-
ing systematic SE of smart CPS a challenging task. This paper 
reports on the results of the First International Workshop on Soft-
ware Engineering of Smart Cyber-Physical Systems (SEsCPS 
2015), where participants discussed characteristics, challenges and 
opportunities of SE for smart CPS, with the aim to outline an 
agenda for future research in this important area.  
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Introduction 
Cyber-physical systems have been in focus of the academic com-
munity and industry for almost a decade. They are recognized as a 
high priority for research and innovation by funding bodies all 
over the world. NSF describes Cyber-Physical Systems (CPS) as 
“engineered systems that are built from, and depend upon, the 
seamless integration of computational and physical components” 
[1]. EU refers to CPS as “the next generation embedded ICT sys-
tems that are interconnected and collaborating, providing citizens 
and businesses with a wide range of innovative applications and 
services” [2]. In the funding programs, CPS are seen as an over-
arching solution to bringing the vision of “smart everything” (i.e. 
smart society, smart energy, smart mobility, etc.). 

While CPS have traditionally belonged to the domain of embedded 
systems and hardware, the recent heavy proliferation of smart 
embedded and mobile devices moved CPS towards large-scale 
networked distributed systems, which combine various data 
sources to control real-world ecosystems (e.g. intelligent traffic 
control and smart grids) [8][10][11]. As a result, CPS have to deal 
with environment dynamicity, control their emergent behavior, 
and be scalable and tolerant to threats. This creates the discernible 

trend of towards endowing CPS with a good portion of intelligence 
that allows them to effectively cope with all these issues and de-
liver the “best possible” service in a given situation. Following the 
terminology of EU’s research agenda (e.g. H2020 ICT 2014 call 
[2], ECSEL JU [3][4]), we call these systems smart CPS (sCPS). 

To achieve the necessary level of intelligence, sCPS rely heavily 
on software – up to the level where software becomes the most 
complex and critical part of the systems. Software not only con-
trols the operation of sCPS, but also manages the self-awareness of 
sCPS, the awareness of the environment in which they operate and 
their goals, and provides the ability to cope with uncertain and 
emerging situations. The complexity of such software is further 
increased by the fact that sCPS are heavily distributed and decen-
tralized, yet they need to operate cooperatively. The software also 
takes an active role in the safety and dependability of sCPS. 

This poses significant challenges in software development for 
sCPS and calls for systematic software engineering (SE) ap-
proaches to build sCPS. The problem in particular stems from the 
fact that sCPS are subject to a number of specifics that render 
traditional SE methods not directly applicable [10]. These specif-
ics include the blurring boundaries between the system and its 
environment, large scale and inherent complexity, the role of end-
users, multi-level uncertainty, open-endedness, to name a few. 
What is needed are innovative approaches that jointly reflect and 
address the specifics of such systems. Although such innovative 
approaches exist in isolation, their synergy to address the specifics 
of sCPS in a holistic manner remains an open challenge [9]. 

SEsCPS Workshop 
The SEsCPS workshop1 aims at bringing the required synergy of 
domains and SE methods in the specific settings of sCPS. It brings 
together academics and practitioners with as primary objectives: 
(i) to increase the understanding of problems of SE for sCPS, (ii)
to study the underlying foundational principles for engineering
sCPS (e.g. reasoning about uncertainty, dealing with emergent
behavior, distributed control), and (iii) to identify promising SE

1 http://d3s.mff.cuni.cz/conferences/sescps/ 
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solutions for sCPS (e.g. architectural principles, innovative lan-
guages and models, engineering processes, integrated V&V).  

The first edition of the workshop was collocated with the Interna-
tional Conference on Software Engineering, ICSE 2015 in Firenze, 
Italy. The workshop attracted 17 submissions, out of which 5 were 
accepted as full papers and 5 as position and future-trends papers. 
In total, 25 participants attended the workshop. The workshop 
started with a keynote by David Garlan, CMU, USA on modeling 
challenges for CPS. The rest of the morning was devoted to 
presentations of accepted papers, grouped in themes. The whole 
afternoon of the workshop was devoted to discussion in breakout 
groups, where participants discussed focused topics of SE for 
smart CPS. A plenary report session concluded the workshop.  

Workshop Themes 
The workshop presentations focused on timely and important 
aspects of SE for sCPS. They were organized in four themes: 
modeling dimension, faults and conflicts, testing and verification 
and multi-dimensional collaboration, overviewed below.  

Modeling Dimension 
The first theme concerned the modeling dimension of sCPS. Since 
sCPS are inherently multi-disciplinary, multiple views of the same 
system are produced within each discipline (control engineering, 
electrical engineering, software engineering, mechanical engineer-
ing, etc.). This raises the fundamental question how to obtain a 
“ground truth” for the system in place, that is, a consistent repre-
sentation that will unify the different views and will support sys-
tem-level tradeoff analysis? David Garlan [13] in his keynote talk 
pointed out that today’s model-based CPS approaches have vari-
ous difficulties, including the integration of different modeling 
approaches, handling analysis of trade-offs, ensuring consistency 
and completeness, and integrating humans in the loop. To tackle 
these difficulties, he proposed to extend traditional software archi-
tecture with architectural views to support both cyber and physical 
elements through a CPS architectural style. Such representation 
should go hand in hand with tools for dependency analysis and 
coordination. Finally, the keynote speaker explained how his team 
employs stochastic multi-player games to handle the difficulty of 
integration of humans in the loop. The modeling challenges 
emerged as a recurring theme in several of the following paper 
presentations. Vasileios Koutsoumpas [17] explained how uncer-
tainty in CPS is multi-faceted and to handle that presented a mod-
el-based approach for the specification of a virtual power plant 
operating in open context, based on focus theory [5]. Franco Rai-
mondi [18] pointed out the discrepancy between high-level appli-
cation requirements and resource-limited microcontrollers and 
proposed an approach that exposes “components” as services in 
resource-limited microcontrollers, enabling the faster development 
of sCPS.  

Faults and Conflicts 
The second theme discussed at the workshop was faults and con-
flicts. Given the variety of complexities of sCPS on the one hand, 
and the level of criticality of many of these systems, faults and 
conflicts are a core theme of these systems. Andy Podgurski [14] 
elaborated on the problem of localization of faults in models. He 
proposed to use statistical models to model normal behavior and 
identify and trace variables that cause adverse and anomalous 
events. Miki Yagita [15] zoomed in on conflicts in cooperation of 

CPS. He proposed to employ and check metadata to handle con-
flicts of actuating the same physical entity in different ways. Final-
ly, Richard Mordinyi [16] presented challenges in collaborations 
across engineering disciplines for the parallel engineering of 
cyber-physical production systems. He highlighted the conflicts in 
specifications when CPS evolve and the need for traceable ver-
sioning of engineering artifacts at modeling level rather than at file 
level. 

Testing and Verification 
An important challenge for smart cyber-physical systems is the 
systematic evaluation of the entire software system. In contrast to, 
for instance, Web-based systems, a sCPS interacts with its physi-
cal surrounding by perceiving data thereof and derive decisions for 
actions therein – like driving trajectories for self-driving vehicles. 
The interaction with the physical world (which is of continuous 
nature and inherently uncertain) and the dynamicity and open-
endedness of sCPS makes their testing and verification a difficult 
challenge. Approaching this challenge Christian Berger [19] pre-
sented an approach for regression testing of software modules that 
based on resource-isolation; thus, individual test cases are wrapped 
into isolated process contexts allowing their parallel execution 
without mutual interference. Christine Julien [20] presented inter-
esting results of an empirical study on the demands on tools and 
techniques for verification and validation of CPS. The initial con-
clusions are: (i) trial-and-error testing (state of the practice) does 
not provide sufficient rigor in error detection, (ii) formal methods 
provide a desired level of expressiveness but are neither intuitive 
nor efficient, and (iii) existing simulation tools are limited in their 
capabilities to jointly model physical and cyber components.   

Collaboration 
The challenges arising from the collaboration of smart cyber-
physical systems is multi-dimensional, as different types of col-
laboration can be distinguished. First, sCPS are commonly devel-
oped by collaboration of different developers, units, and 
companies. Furthermore, there is a need to develop sCPS in col-
laboration with existing system releases. For example, the use of a 
sCPS in an unintended context results in new requirements to be 
elicited and addressed during development. Third, sCPS are com-
monly designed to be collaborative in nature. This means, several 
sCPS collaborate at runtime to create a system network, which 
comprises not only the single systems but generates additional 
benefits from the collaboration of the single systems. Thomas 
Gabor [21] addressed the first challenge within his presentation 
and proposed an approach for continuous collaboration between 
human programmers in the development phase and automated 
adaptation agents during runtime, thus blending classical phases of 
a sCPS life-cycle. Regarding the second problem, Marian Daun 
[22] discussed in his talk the problem of collaborating multiple
system instances of sCPS. While embedded systems are typically
designed on a type level, specifications lack the definition of col-
laboration between multiple instances of the same sCPS. Franck
Fleurey proposed an approach to foster heterogeneity and distribu-
tion of collaborating sCPS, which allows to combine multiple
existing engineering approaches into a common framework.

Open Research Topics 
The whole afternoon of the workshop was allocated to breakout 
groups, which focused on selected topics from the morning presen-
tations. In total there were 4 groups, each focusing on one of the 
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topics selected for discussion: Aligning different disciplines; Hu-
man in the Loop; Pragmatic and Systematic Engineering; Uncer-
tainty. In the rest of the section, we report on the findings of each 
breakout group in turn. 

Aligning different disciplines 
One of the grand challenges in SE for sCPS is to devise ways to 
integrate software engineering principles and practices with disci-
plines such as mechanical and electrical engineering, control engi-
neering, and physics [6][8]. This alignment is challenging, as 
different disciplines adopt different views over the sCPS world, 
and base their models and analysis and design methods in different 
sets of assumptions. It is also essential, as sCPS is by its own na-
ture a complex multi-disciplinary domain.   

One of the questions discussed in the breakout group is on which 
basis to attempt such an alignment. The conclusion was that a 
promising direction, advocated also by David Garlan in the key-
note talk, is to use software architecture models as the common 
vocabulary across disciplines and as the vehicle to map different 
views into a representation that is commonly understood and used 
by software engineers. In this respect, software architectures be-
come “richer”, as they integrate information not only about the 
software elements of a sCPS, but also about other aspects such as 
electro-mechanical elements, physical constraints and laws.   

Regarding the development of sCPS with self-adaptive capabili-
ties, there was a consensus that there is large potential in integrat-
ing well-studied and formally proven techniques from control 
engineering [7]. Control engineering will also benefit from a new, 
exciting, and highly challenging field of application.  

The software engineering community is only beginning to investi-
gate the alignment (or, rather, the lack thereof) between software 
engineering and other disciplines in the sCPS domain and beyond. 
In this respect, we identified the need for more empirical research 
in understanding, quantifying, and bridging this gap.  

Human in the Loop 
A distinct element of sCPS is the prominent role of humans in the 
creation and operation of these systems, as also outlined by David 
Garlan in his keynote. Different “types of humans” can be in-
volved in cyber physical systems, ranging from developers and 
engineers from different disciplines (including software, mechani-
cal, electrical) who create; operate, and evolve the system up to 
end users who define (and change) key requirements and interact 
and use the system. A specific type is “system-external humans” 
that are influenced by the CPS and may be affected by it (e.g. 
pedestrians in context of autonomous driving).  

“Being in the loop” for sCPS implies being involved in a lifetime 
loop that spans all phases of the lifecycle of sCPS, from inception 
to operation and termination. Engineers create the runtime loop 
and improve the system throughout its lifetime (iterative develop-
ment). End users interact with the system during the runtime-loop 
either based on explicit communication between CPS and the 
human, e.g., humans need to resolve conflicting requirements; or 
based implicit communication, e.g., assumptions made by the CPS 
based on the analysis of historical data.  

Based on the analysis, we identified three important research ques-
tions: (1) Who should a sCPS interact with and how to make hu-
mans aware of changes? When to interact with engineers; when 
with end users? How should a notification model look like so that 

the human is efficiently supported in decision making (e.g., resolv-
ing conflicts regarding requirements) and can provide high-quality 
feedback to CPS. (2) What type of changes may end-users intro-
duce to CPS? Can the CPS „calculate“ the costs of adaptation to 
new requirements? In what way does the need for human input 
limit the capabilities of CPS? How are CPS capable of refin-
ing/optimizing „bad“ user input to obtain the most effec-
tive/efficient outcome? Finally: (3) Which responsibilities/actions 
do humans (always) need to have/execute? What are the depend-
encies of the capabilities of CPS on human input? When does the 
CPS have to involve the human? How does the system make the 
user aware of the impacts of the user’s decision? Clearly, the 
prominent role of humans in the creation and operation of sCPS 
poses severe questions and challenges to software engineers.  

Pragmatic and Systematic Engineering 
From a “purist” software engineering perspective, developing a 
software system requires a clear and complete high-level descrip-
tion of the system and a “compiler” that can generate correct code.  
Domain specific languages and models offer a first step towards 
bringing this idealistic perspective closer to reality. However, 
engineering CPS is not a “purist” software engineering problem, it 
is an inherently interdisciplinary problem. This leads to a funda-
mental problem that needs to be solved, i.e., the “mismatch” in the 
languages spoken by software engineers and other domain experts.  
In the current practice the domain experts typically build a system. 
When they face (inherent software engineering) problems and 
become desperate, they call in a software engineer to try to find a 
solution to the problem. The software engineer has then to become 
immersed in the domain. Some recent anecdotal efforts hint at 
interdisciplinary teams that engineer CPS with domain experts and 
software engineers from the start.  

Another orthogonal engineering aspect related to the degree of 
engineering rigor is that there is a continuum of sCPS, ranging 
from mission critical systems that require a rigorous engineering 
approach from the outset, to more “user” level systems (e.g., in the 
IoT, consumer electronics, “maker” systems, etc.) that may allow 
more engineering pragmatics because of less demanding require-
ments or the pressure of the market.  

Based on the analysis, we identified several interesting directions 
to move engineering practice of sCPS forward. We formulate them 
here as questions for further study. Can engineers leverage on 
system’s “smartness” to aid in high quality systems? Maybe it’s 
acceptable for the system to have flaws, as long as it is equipped 
with the necessary intelligence to recover or repair itself when 
needed. Can we derive models that are inherently composable? 
This would enable transferring quality properties of model ele-
ments based on design time checking. Furthermore, the analysis of 
individual models may be more tractable. In this vision, model 
“connectors” could account for consistency, timing, security, etc. 
In addition, there will be a need to add runtime checking to resolve 
context issues and uncertainties.  

In any case, software engineers should not try to replace the do-
main experts. The domain expert needs to be able to rely on tools 
to introspect correctness (even at the component level), test in the 
deployment environment (relationship to test suites and “certifia-
ble” components), and introspect the level of smartness and self-
adaptation. This raises important questions such as: How do we 
make tools accessible and trustworthy to the domain experts? Do 
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we need mixed teams? Key will be to provide evidence for the 
effectiveness and efficiency of tools.  

Uncertainty 
Another fundamental challenge in SE for sCPS is how to cope 
with uncertainty. While uncertainty has garnered much attention in 
SE research for the last years, a concrete definition of uncertainty 
in the context of sCPS is difficult to give. Hence, an important 
question is to identify what uncertainty for sCPS contains. The 
term of uncertainty is elusive as it subsumes uncertainty regarding 
the requirements, the environment and context, behavior, and 
infrastructure. Furthermore, regarding the behavior it is important 
to distinguish between the uncertainty in the (expected) behavior 
of human users, uncertainty in the participation of human users, 
uncertainty in the emergent behavior of systems of systems, and 
uncertainty in the adaptation of the system. Furthermore, current 
approaches differ w.r.t. uncertainty that is known (i.e. the develop-
ers know at design time that they are uncertain regarding specific 
aspects of system development) and unknown uncertainty (i.e. 
situations in which developers lack the knowledge about certain 
aspects either aware or unaware; in the latter case they may as-
sume to have complete knowledge of a development aspect but it 
reveals later on that they were wrong). In addition, particularly in 
model-based engineering, proper documentation of uncertainty is a 
current research topic. 

Handling uncertainty usually requires monitoring, as well-known 
from self-adaptive systems. Monitoring can be used to collect data 
from the context  as well as the system itself. In doing so, the col-
lected data is commonly used to validate the assumptions made 
during engineering but can, furthermore, be used to help revealing 
unknown uncertainty. Therefore, it is necessary to collect a suffi-
cient amount of data, even if some of the data turns out to be irrel-
evant. Given the multifaceted nature, monitoring to handle 
uncertainty in sCPS needs to go beyond monitoring well known 
variables, but about collecting data of multiple variables and ana-
lyzing combinations of the values. 

Another important element to mitigating uncertainty is involving 
humans in the operation of sCPS in situations that have been un-
foreseeable. Hence, human in the loop engineering can significant-
ly aid in coping with unknown uncertainty to modify the system’s 
behavior at runtime with binding decisions of either the user in the 
loop, the developer in the loop, or an operator in the loop. 

Looking at existing solution approaches, the question arose wheth-
er uncertainty in sCPS poses some really new challenges, and 
whether this requires changes the way software for sCPS is devel-
oped. From the analysis, we concluded that, first of all, there is a 
lack of methods to systematically analyze the collected data, which 
must be addressed in the future. Second, as sCPS are inherently 
evolutionary, this may deeply affect the way these systems are 
built. System design must already allow for flexibility to cope with 
arising uncertainty later on, but at the same time, system design 
should not strive to cope with every possible change at runtime, as 
this imposes unmanageable development processes. 

Conclusions 
The demanding requirements of cyber physical systems combined 
with their specifics require that we equip them with “smart” capa-
bilities. Such smartness crosscuts the whole system stack, but 
heavily relies on software. We have argued from different angles –

the modeling dimension, faults and conflicts, testing and verifica-
tion, and multi-dimensional collaboration – that traditional soft-
ware engineering techniques no not render to be directly 
applicable to deal with such smart cyber physical systems. This 
raises fundamental challenges to software engineers. In this paper, 
we have elaborated on four of them.  

Engineering sCPS requires the alignment of software engineering 
principles and practices with other disciplines such as mechanical 
and electrical engineering, control engineering, and physics. This 
alignment needs to be grounded in open-mindness and respect for 
disciplines and a shared vocabulary for communication. An inter-
esting approach for further study is to extend software architecture 
to incorporate cyber and physical elements through a CPS archi-
tectural style. 

Humans are involved in all phases of the lifecycle of sCPS. As 
such, engineers need to treat humans as first-class citizens in the 
design, operation, and usage of sCPS. This raises fundamental 
challenges about with whom, when, and how the system should 
interact with humans. Underneath, this requires engineers to iden-
tify and distribute responsibilities across machines and humans. 
Evidently, this raises ethical issues for critical domains such as 
autonomous driving cars and smart e-health systems.   

Engineers of sCPS need to find the right balance between rigor 
with pragmatism. Engineering sCPS is inherently an interdiscipli-
nary effort that spans a continuum of types of systems, from mis-
sion critical ones to user level systems as in the IoT. Opportunities 
to provide the necessary assurances for the domain at hand lay in 
exploiting the smartness of the sCPS and the potential of compos-
able models to make analysis tractable and consolidate qualities. 

Last but not least, a fundamental challenge to engineers of sCPS is 
handling uncertainty, resulting from aspects such as inherent de-
centralization, the role of end-users, and open-endedness. One 
promising idea is continuous verification, where evidence is pro-
vided at design time under uncertainty, and the machine adds 
complementary evidence at runtime to handle uncertainty, when 
the necessary information becomes available.  In [12] the authors 
go a step further and coin the term “perpetual assurances,” refer-
ring to the enduring process that continuously provides new evi-
dence by combining system-driven and human-driven activities.  
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