
Software Engineering for Smart Cyber-Physical Systems –
Towards a Research Agenda

Report on the First International Workshop on Software Engineering for Smart CPS
Tomas Bures1, Danny Weyns2 (contributing workshop chairs)

Christian Berger3, Stefan Biffl4, Marian Daun5, Thomas Gabor6, David Garlan7, Ilias Gerostathopoulos1,
Christine Julien8, Filip Krikava9, Richard Mordinyi4, Nikos Pronios10 (contributing participants)

1Charles University Prague, 2Katholieke Universiteit Leuven & Linnaeus University,
3Gothenburg University, 4Technical University Vienna, 5Universität Duisburg-Essen, 6LMU München,

7Carnegie Mellon University, 8University of Texas, Austin, 8Czech Technical University, 10Innovate UK
<bures@d3s.mff.cuni.cz>, <danny.weyns@kuleuven.be>,

<christian.berger@gu.se>, <stefan.biffl@tuwien.ac.at>, <marian.daun@paluno.uni-due.de>,
<thomas@denkfrei.de>, <garlan@cs.cmu.edu>, <iliasg@d3s.mff.cuni.cz>, <c.julien@mail.utexas.edu>,

<filip.krikava@fit.cvut.cz>, <richard.mordinyi@tuwien.ac.at>, <nikos.pronios@innovateuk.gov.uk>

Abstract
Cyber-Physical Systems (CPS) are large interconnected software-
intensive systems that influence, by sensing and actuating, the
physical world. Examples are traffic management and power grids.
One of the trends we observe is the need to endow such systems
with the “smart” capabilities, typically in the form of self-
awareness and self-adaptation, along with the traditional qualities
of safety and dependability. These requirements combined with
specifics of the domain of smart CPS – such as large scale, the role
of end-users, uncertainty, and open-endedness – render traditional
software engineering (SE) techniques not directly applicable; mak-
ing systematic SE of smart CPS a challenging task. This paper
reports on the results of the First International Workshop on Soft-
ware Engineering of Smart Cyber-Physical Systems (SEsCPS
2015), where participants discussed characteristics, challenges and
opportunities of SE for smart CPS, with the aim to outline an
agenda for future research in this important area.

Keywords: software-engineering, cyber-physical systems

Introduction
Cyber-physical systems have been in focus of the academic com-
munity and industry for almost a decade. They are recognized as a
high priority for research and innovation by funding bodies all
over the world. NSF describes Cyber-Physical Systems (CPS) as
“engineered systems that are built from, and depend upon, the
seamless integration of computational and physical components”
[1]. EU refers to CPS as “the next generation embedded ICT sys-
tems that are interconnected and collaborating, providing citizens
and businesses with a wide range of innovative applications and
services” [2]. In the funding programs, CPS are seen as an over-
arching solution to bringing the vision of “smart everything” (i.e.
smart society, smart energy, smart mobility, etc.).

While CPS have traditionally belonged to the domain of embedded
systems and hardware, the recent heavy proliferation of smart
embedded and mobile devices moved CPS towards large-scale
networked distributed systems, which combine various data
sources to control real-world ecosystems (e.g. intelligent traffic
control and smart grids) [8][10][11]. As a result, CPS have to deal
with environment dynamicity, control their emergent behavior,
and be scalable and tolerant to threats. This creates the discernible

trend of towards endowing CPS with a good portion of intelligence
that allows them to effectively cope with all these issues and de-
liver the “best possible” service in a given situation. Following the
terminology of EU’s research agenda (e.g. H2020 ICT 2014 call
[2], ECSEL JU [3][4]), we call these systems smart CPS (sCPS).

To achieve the necessary level of intelligence, sCPS rely heavily
on software – up to the level where software becomes the most
complex and critical part of the systems. Software not only con-
trols the operation of sCPS, but also manages the self-awareness of
sCPS, the awareness of the environment in which they operate and
their goals, and provides the ability to cope with uncertain and
emerging situations. The complexity of such software is further
increased by the fact that sCPS are heavily distributed and decen-
tralized, yet they need to operate cooperatively. The software also
takes an active role in the safety and dependability of sCPS.

This poses significant challenges in software development for
sCPS and calls for systematic software engineering (SE) ap-
proaches to build sCPS. The problem in particular stems from the
fact that sCPS are subject to a number of specifics that render
traditional SE methods not directly applicable [10]. These specif-
ics include the blurring boundaries between the system and its
environment, large scale and inherent complexity, the role of end-
users, multi-level uncertainty, open-endedness, to name a few.
What is needed are innovative approaches that jointly reflect and
address the specifics of such systems. Although such innovative
approaches exist in isolation, their synergy to address the specifics
of sCPS in a holistic manner remains an open challenge [9].

SEsCPS Workshop
The SEsCPS workshop1 aims at bringing the required synergy of
domains and SE methods in the specific settings of sCPS. It brings
together academics and practitioners with as primary objectives:
(i) to increase the understanding of problems of SE for sCPS, (ii)
to study the underlying foundational principles for engineering
sCPS (e.g. reasoning about uncertainty, dealing with emergent
behavior, distributed control), and (iii) to identify promising SE

1 http://d3s.mff.cuni.cz/conferences/sescps/

DOI: 10.1145/2830719.2830736
http://doi.acm.org/10.1145/2830719.2830736

ACM SIGSOFT Software Engineering Notes Page 28 November 2015 Volume 40 Number 6ACM SIGSOFT Software Engineering Notes Page 28 November 2015 Volume 40 Number 6

solutions for sCPS (e.g. architectural principles, innovative lan-
guages and models, engineering processes, integrated V&V).

The first edition of the workshop was collocated with the Interna-
tional Conference on Software Engineering, ICSE 2015 in Firenze,
Italy. The workshop attracted 17 submissions, out of which 5 were
accepted as full papers and 5 as position and future-trends papers.
In total, 25 participants attended the workshop. The workshop
started with a keynote by David Garlan, CMU, USA on modeling
challenges for CPS. The rest of the morning was devoted to
presentations of accepted papers, grouped in themes. The whole
afternoon of the workshop was devoted to discussion in breakout
groups, where participants discussed focused topics of SE for
smart CPS. A plenary report session concluded the workshop.

Workshop Themes
The workshop presentations focused on timely and important
aspects of SE for sCPS. They were organized in four themes:
modeling dimension, faults and conflicts, testing and verification
and multi-dimensional collaboration, overviewed below.

Modeling Dimension
The first theme concerned the modeling dimension of sCPS. Since
sCPS are inherently multi-disciplinary, multiple views of the same
system are produced within each discipline (control engineering,
electrical engineering, software engineering, mechanical engineer-
ing, etc.). This raises the fundamental question how to obtain a
“ground truth” for the system in place, that is, a consistent repre-
sentation that will unify the different views and will support sys-
tem-level tradeoff analysis? David Garlan [13] in his keynote talk
pointed out that today’s model-based CPS approaches have vari-
ous difficulties, including the integration of different modeling
approaches, handling analysis of trade-offs, ensuring consistency
and completeness, and integrating humans in the loop. To tackle
these difficulties, he proposed to extend traditional software archi-
tecture with architectural views to support both cyber and physical
elements through a CPS architectural style. Such representation
should go hand in hand with tools for dependency analysis and
coordination. Finally, the keynote speaker explained how his team
employs stochastic multi-player games to handle the difficulty of
integration of humans in the loop. The modeling challenges
emerged as a recurring theme in several of the following paper
presentations. Vasileios Koutsoumpas [17] explained how uncer-
tainty in CPS is multi-faceted and to handle that presented a mod-
el-based approach for the specification of a virtual power plant
operating in open context, based on focus theory [5]. Franco Rai-
mondi [18] pointed out the discrepancy between high-level appli-
cation requirements and resource-limited microcontrollers and
proposed an approach that exposes “components” as services in
resource-limited microcontrollers, enabling the faster development
of sCPS.

Faults and Conflicts
The second theme discussed at the workshop was faults and con-
flicts. Given the variety of complexities of sCPS on the one hand,
and the level of criticality of many of these systems, faults and
conflicts are a core theme of these systems. Andy Podgurski [14]
elaborated on the problem of localization of faults in models. He
proposed to use statistical models to model normal behavior and
identify and trace variables that cause adverse and anomalous
events. Miki Yagita [15] zoomed in on conflicts in cooperation of

CPS. He proposed to employ and check metadata to handle con-
flicts of actuating the same physical entity in different ways. Final-
ly, Richard Mordinyi [16] presented challenges in collaborations
across engineering disciplines for the parallel engineering of
cyber-physical production systems. He highlighted the conflicts in
specifications when CPS evolve and the need for traceable ver-
sioning of engineering artifacts at modeling level rather than at file
level.

Testing and Verification
An important challenge for smart cyber-physical systems is the
systematic evaluation of the entire software system. In contrast to,
for instance, Web-based systems, a sCPS interacts with its physi-
cal surrounding by perceiving data thereof and derive decisions for
actions therein – like driving trajectories for self-driving vehicles.
The interaction with the physical world (which is of continuous
nature and inherently uncertain) and the dynamicity and open-
endedness of sCPS makes their testing and verification a difficult
challenge. Approaching this challenge Christian Berger [19] pre-
sented an approach for regression testing of software modules that
based on resource-isolation; thus, individual test cases are wrapped
into isolated process contexts allowing their parallel execution
without mutual interference. Christine Julien [20] presented inter-
esting results of an empirical study on the demands on tools and
techniques for verification and validation of CPS. The initial con-
clusions are: (i) trial-and-error testing (state of the practice) does
not provide sufficient rigor in error detection, (ii) formal methods
provide a desired level of expressiveness but are neither intuitive
nor efficient, and (iii) existing simulation tools are limited in their
capabilities to jointly model physical and cyber components.

Collaboration
The challenges arising from the collaboration of smart cyber-
physical systems is multi-dimensional, as different types of col-
laboration can be distinguished. First, sCPS are commonly devel-
oped by collaboration of different developers, units, and
companies. Furthermore, there is a need to develop sCPS in col-
laboration with existing system releases. For example, the use of a
sCPS in an unintended context results in new requirements to be
elicited and addressed during development. Third, sCPS are com-
monly designed to be collaborative in nature. This means, several
sCPS collaborate at runtime to create a system network, which
comprises not only the single systems but generates additional
benefits from the collaboration of the single systems. Thomas
Gabor [21] addressed the first challenge within his presentation
and proposed an approach for continuous collaboration between
human programmers in the development phase and automated
adaptation agents during runtime, thus blending classical phases of
a sCPS life-cycle. Regarding the second problem, Marian Daun
[22] discussed in his talk the problem of collaborating multiple
system instances of sCPS. While embedded systems are typically
designed on a type level, specifications lack the definition of col-
laboration between multiple instances of the same sCPS. Franck
Fleurey proposed an approach to foster heterogeneity and distribu-
tion of collaborating sCPS, which allows to combine multiple
existing engineering approaches into a common framework.

Open Research Topics
The whole afternoon of the workshop was allocated to breakout
groups, which focused on selected topics from the morning presen-
tations. In total there were 4 groups, each focusing on one of the

ACM SIGSOFT Software Engineering Notes Page 29 November 2015 Volume 40 Number 6ACM SIGSOFT Software Engineering Notes Page 29 November 2015 Volume 40 Number 6

topics selected for discussion: Aligning different disciplines; Hu-
man in the Loop; Pragmatic and Systematic Engineering; Uncer-
tainty. In the rest of the section, we report on the findings of each
breakout group in turn.

Aligning different disciplines
One of the grand challenges in SE for sCPS is to devise ways to
integrate software engineering principles and practices with disci-
plines such as mechanical and electrical engineering, control engi-
neering, and physics [6][8]. This alignment is challenging, as
different disciplines adopt different views over the sCPS world,
and base their models and analysis and design methods in different
sets of assumptions. It is also essential, as sCPS is by its own na-
ture a complex multi-disciplinary domain.

One of the questions discussed in the breakout group is on which
basis to attempt such an alignment. The conclusion was that a
promising direction, advocated also by David Garlan in the key-
note talk, is to use software architecture models as the common
vocabulary across disciplines and as the vehicle to map different
views into a representation that is commonly understood and used
by software engineers. In this respect, software architectures be-
come “richer”, as they integrate information not only about the
software elements of a sCPS, but also about other aspects such as
electro-mechanical elements, physical constraints and laws.

Regarding the development of sCPS with self-adaptive capabili-
ties, there was a consensus that there is large potential in integrat-
ing well-studied and formally proven techniques from control
engineering [7]. Control engineering will also benefit from a new,
exciting, and highly challenging field of application.

The software engineering community is only beginning to investi-
gate the alignment (or, rather, the lack thereof) between software
engineering and other disciplines in the sCPS domain and beyond.
In this respect, we identified the need for more empirical research
in understanding, quantifying, and bridging this gap.

Human in the Loop
A distinct element of sCPS is the prominent role of humans in the
creation and operation of these systems, as also outlined by David
Garlan in his keynote. Different “types of humans” can be in-
volved in cyber physical systems, ranging from developers and
engineers from different disciplines (including software, mechani-
cal, electrical) who create; operate, and evolve the system up to
end users who define (and change) key requirements and interact
and use the system. A specific type is “system-external humans”
that are influenced by the CPS and may be affected by it (e.g.
pedestrians in context of autonomous driving).

“Being in the loop” for sCPS implies being involved in a lifetime
loop that spans all phases of the lifecycle of sCPS, from inception
to operation and termination. Engineers create the runtime loop
and improve the system throughout its lifetime (iterative develop-
ment). End users interact with the system during the runtime-loop
either based on explicit communication between CPS and the
human, e.g., humans need to resolve conflicting requirements; or
based implicit communication, e.g., assumptions made by the CPS
based on the analysis of historical data.

Based on the analysis, we identified three important research ques-
tions: (1) Who should a sCPS interact with and how to make hu-
mans aware of changes? When to interact with engineers; when
with end users? How should a notification model look like so that

the human is efficiently supported in decision making (e.g., resolv-
ing conflicts regarding requirements) and can provide high-quality
feedback to CPS. (2) What type of changes may end-users intro-
duce to CPS? Can the CPS „calculate“ the costs of adaptation to
new requirements? In what way does the need for human input
limit the capabilities of CPS? How are CPS capable of refin-
ing/optimizing „bad“ user input to obtain the most effec-
tive/efficient outcome? Finally: (3) Which responsibilities/actions
do humans (always) need to have/execute? What are the depend-
encies of the capabilities of CPS on human input? When does the
CPS have to involve the human? How does the system make the
user aware of the impacts of the user’s decision? Clearly, the
prominent role of humans in the creation and operation of sCPS
poses severe questions and challenges to software engineers.

Pragmatic and Systematic Engineering
From a “purist” software engineering perspective, developing a
software system requires a clear and complete high-level descrip-
tion of the system and a “compiler” that can generate correct code.
Domain specific languages and models offer a first step towards
bringing this idealistic perspective closer to reality. However,
engineering CPS is not a “purist” software engineering problem, it
is an inherently interdisciplinary problem. This leads to a funda-
mental problem that needs to be solved, i.e., the “mismatch” in the
languages spoken by software engineers and other domain experts.
In the current practice the domain experts typically build a system.
When they face (inherent software engineering) problems and
become desperate, they call in a software engineer to try to find a
solution to the problem. The software engineer has then to become
immersed in the domain. Some recent anecdotal efforts hint at
interdisciplinary teams that engineer CPS with domain experts and
software engineers from the start.

Another orthogonal engineering aspect related to the degree of
engineering rigor is that there is a continuum of sCPS, ranging
from mission critical systems that require a rigorous engineering
approach from the outset, to more “user” level systems (e.g., in the
IoT, consumer electronics, “maker” systems, etc.) that may allow
more engineering pragmatics because of less demanding require-
ments or the pressure of the market.

Based on the analysis, we identified several interesting directions
to move engineering practice of sCPS forward. We formulate them
here as questions for further study. Can engineers leverage on
system’s “smartness” to aid in high quality systems? Maybe it’s
acceptable for the system to have flaws, as long as it is equipped
with the necessary intelligence to recover or repair itself when
needed. Can we derive models that are inherently composable?
This would enable transferring quality properties of model ele-
ments based on design time checking. Furthermore, the analysis of
individual models may be more tractable. In this vision, model
“connectors” could account for consistency, timing, security, etc.
In addition, there will be a need to add runtime checking to resolve
context issues and uncertainties.

In any case, software engineers should not try to replace the do-
main experts. The domain expert needs to be able to rely on tools
to introspect correctness (even at the component level), test in the
deployment environment (relationship to test suites and “certifia-
ble” components), and introspect the level of smartness and self-
adaptation. This raises important questions such as: How do we
make tools accessible and trustworthy to the domain experts? Do

ACM SIGSOFT Software Engineering Notes Page 30 November 2015 Volume 40 Number 6ACM SIGSOFT Software Engineering Notes Page 30 November 2015 Volume 40 Number 6

we need mixed teams? Key will be to provide evidence for the
effectiveness and efficiency of tools.

Uncertainty
Another fundamental challenge in SE for sCPS is how to cope
with uncertainty. While uncertainty has garnered much attention in
SE research for the last years, a concrete definition of uncertainty
in the context of sCPS is difficult to give. Hence, an important
question is to identify what uncertainty for sCPS contains. The
term of uncertainty is elusive as it subsumes uncertainty regarding
the requirements, the environment and context, behavior, and
infrastructure. Furthermore, regarding the behavior it is important
to distinguish between the uncertainty in the (expected) behavior
of human users, uncertainty in the participation of human users,
uncertainty in the emergent behavior of systems of systems, and
uncertainty in the adaptation of the system. Furthermore, current
approaches differ w.r.t. uncertainty that is known (i.e. the develop-
ers know at design time that they are uncertain regarding specific
aspects of system development) and unknown uncertainty (i.e.
situations in which developers lack the knowledge about certain
aspects either aware or unaware; in the latter case they may as-
sume to have complete knowledge of a development aspect but it
reveals later on that they were wrong). In addition, particularly in
model-based engineering, proper documentation of uncertainty is a
current research topic.

Handling uncertainty usually requires monitoring, as well-known
from self-adaptive systems. Monitoring can be used to collect data
from the context as well as the system itself. In doing so, the col-
lected data is commonly used to validate the assumptions made
during engineering but can, furthermore, be used to help revealing
unknown uncertainty. Therefore, it is necessary to collect a suffi-
cient amount of data, even if some of the data turns out to be irrel-
evant. Given the multifaceted nature, monitoring to handle
uncertainty in sCPS needs to go beyond monitoring well known
variables, but about collecting data of multiple variables and ana-
lyzing combinations of the values.

Another important element to mitigating uncertainty is involving
humans in the operation of sCPS in situations that have been un-
foreseeable. Hence, human in the loop engineering can significant-
ly aid in coping with unknown uncertainty to modify the system’s
behavior at runtime with binding decisions of either the user in the
loop, the developer in the loop, or an operator in the loop.

Looking at existing solution approaches, the question arose wheth-
er uncertainty in sCPS poses some really new challenges, and
whether this requires changes the way software for sCPS is devel-
oped. From the analysis, we concluded that, first of all, there is a
lack of methods to systematically analyze the collected data, which
must be addressed in the future. Second, as sCPS are inherently
evolutionary, this may deeply affect the way these systems are
built. System design must already allow for flexibility to cope with
arising uncertainty later on, but at the same time, system design
should not strive to cope with every possible change at runtime, as
this imposes unmanageable development processes.

Conclusions
The demanding requirements of cyber physical systems combined
with their specifics require that we equip them with “smart” capa-
bilities. Such smartness crosscuts the whole system stack, but
heavily relies on software. We have argued from different angles –

the modeling dimension, faults and conflicts, testing and verifica-
tion, and multi-dimensional collaboration – that traditional soft-
ware engineering techniques no not render to be directly
applicable to deal with such smart cyber physical systems. This
raises fundamental challenges to software engineers. In this paper,
we have elaborated on four of them.

Engineering sCPS requires the alignment of software engineering
principles and practices with other disciplines such as mechanical
and electrical engineering, control engineering, and physics. This
alignment needs to be grounded in open-mindness and respect for
disciplines and a shared vocabulary for communication. An inter-
esting approach for further study is to extend software architecture
to incorporate cyber and physical elements through a CPS archi-
tectural style.

Humans are involved in all phases of the lifecycle of sCPS. As
such, engineers need to treat humans as first-class citizens in the
design, operation, and usage of sCPS. This raises fundamental
challenges about with whom, when, and how the system should
interact with humans. Underneath, this requires engineers to iden-
tify and distribute responsibilities across machines and humans.
Evidently, this raises ethical issues for critical domains such as
autonomous driving cars and smart e-health systems.

Engineers of sCPS need to find the right balance between rigor
with pragmatism. Engineering sCPS is inherently an interdiscipli-
nary effort that spans a continuum of types of systems, from mis-
sion critical ones to user level systems as in the IoT. Opportunities
to provide the necessary assurances for the domain at hand lay in
exploiting the smartness of the sCPS and the potential of compos-
able models to make analysis tractable and consolidate qualities.

Last but not least, a fundamental challenge to engineers of sCPS is
handling uncertainty, resulting from aspects such as inherent de-
centralization, the role of end-users, and open-endedness. One
promising idea is continuous verification, where evidence is pro-
vided at design time under uncertainty, and the machine adds
complementary evidence at runtime to handle uncertainty, when
the necessary information becomes available. In [12] the authors
go a step further and coin the term “perpetual assurances,” refer-
ring to the enduring process that continuously provides new evi-
dence by combining system-driven and human-driven activities.

Acknowledgements
The SEsCPS workshop is a collective endeavor, as such, the au-
thors would like to express their appreciation to all the participants
of the workshop. We also thank all who have participated in the
organization of this workshop. In particular, we thank Mark Klein
and Rodolfo E. Haber for their support in preparing the workshop
proposal and planning the event. Furthermore, we are grateful to
the ICSE 2015 organizing team that provided excellent support ot
host the workshop, the ICSE 2015 Workshops Co-Chairs, in par-
ticular Raffaela Mirandola and Zhendong Su, and the SEsCPS
Program Committee comprised of Paris Avgeriou, Steffen Becker,
Johann Bourcier, Herman Bruyninckx, Radu Calinescu, Sagar
Chaki, Ivica Crnkovic, Rogerio De Lemos, Dionisio de Niz, Anto-
nio Filieri, Carlo Ghezzi, Holger Giese, Matthias Hölzl, Gabor
Karsai, Steffen Zschaler, Filip Krikava, Martina Maggio, Henry
Muccini, Maurizio Murroni, Bernhard Schätz, Ina Schieferdecker,
Lionel Seinturier, Vitor E. Silva Souza, and Petr Tuma.

ACM SIGSOFT Software Engineering Notes Page 31 November 2015 Volume 40 Number 6ACM SIGSOFT Software Engineering Notes Page 31 November 2015 Volume 40 Number 6

References
[1] National Science Foundation, Cyber Physical Systems, NSF 14-542. Online:

http://www.nsf.gov/pubs/2014/nsf14542/nsf14542.htm
[2] EU Horizon 2020, Smart Cyber-Physical Systems ICT-01-2014. Online:

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h202
0/topics/78-ict-01-2014.html

[3] ECSEL Joint Undertaking 2014 call. Online: http://www.ecsel-
ju.eu/Call2014.html

[4] 2014 ECSEL MultiAnnual Strategic Research and Innovation Agenda.
Online: http://www.artemis-ia.eu/sra

[5] M. Broy and K. Stølen. Specification and Development of Interactive
Systems – Focus on Streams, Interfaces, and Refinement. Monographs in
Computer Science, Springer, 2001.

[6] P. Derler, E. a. Lee, and a. S. Vincentelli. Modeling Cyber-Physical Systems.
Proceedings of the IEEE, 100(1):13–28, January 2012.

[7] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos,
A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein,
F. Krikava, S. Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo,
S. Shevtsov, M. Ujma, and T. Vogel. Software Engineering Meets Control
Theory, 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. IEEE, 2015.

[8] B. K. Kim and P. R. Kumar, “Cyber–Physical Systems: A Perspective at the
Centennial,” Proceedings of the IEEE, vol. 100, no. Special Centennial, pp.
1287–1308, 2012.

[9] K. H. (Kane) Kim, “Desirable Advances in Cyber-Physical System Software
Engineering,” in 2010 IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, 2010, no. 978, pp. 2–4.

[10] E. A. Lee, “Cyber Physical Systems: Design Challenges,” 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing, 2008, pp. 363–369.

[11] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-Physical Systems: A
New Frontier,” in Proceedings of the 2008 IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, 2008, pp. 1–9

[12] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi, L.
Grunske, P. Inverardi, J.M. Jezequel, S. Malek, R. Mirandola, M. Mori, and
G. Tamburrelli, Perpetual assurances in self-adaptive systems, Assurances for
Self-Adaptive Systems, Dagstuhl Seminar 13511, 2014

[13] D. Garlan, Modeling Challenges for CPS Systems, Software Engineering of
smart Cyber Physical Systems, SEsCPS 2015 (keynote)

[14] K. Liang, Z. Bai, M. C. Cavosoglu, A. Podgurski, S. Ray, Fault Localization
in Embedded Control System Software, Software Engineering of smart Cyber
Physical Systems, SEsCPS 2015

[15] M. Yagita, F. Ishikawa, S. Honiden, An Application Conflict Detection and
Resolution System for Smart Homes, Software Engineering of smart Cyber
Physical Systems, SEsCPS 2015

[16] R. Mordinyi, S. Biffl, Versioning in Cyber-Physical Production System
Engineering? Best-Practice and Research Agenda, Software Engineering of
smart Cyber Physical Systems, SEsCPS 2015

[17] V. Koutsoumpas, A Model-based Approach for the Specification of a Virtual
Power Plant Operating in Open Context, Software Engineering of smart
Cyber Physical Systems, SEsCPS 2015

[18] M. Bordoni, M. Bottone, B. Fields, N. Gorogiannis, M. Margolis, G.
Primiero, F. Raimondi, Towards Cyber-Physical Systems as Services: the
ASIP Protocol, Software Engineering of smart Cyber Physical Systems,
SEsCPS 2015

[19] C. Berger, Accelerating Regression Testing for Scaled Self-Driving Cars with
Lightweight Virtualization – A Case Study, Software Engineering of smart
Cyber Physical Systems, SEsCPS 2015

[20] X. Zheng, C. Julien, Verification and Validation in Cyber Physical Systems:
Research Challenges and a Way Forward, Software Engineering of smart
Cyber Physical Systems, SEsCPS 2015

[21] M. Hölzl, T. Gabor, Continuous Collaboration: A Case Study on the
Development of an Adaptive Cyber-Physical System, Software Engineering
of smart Cyber Physical Systems, SEsCPS 2015

[22] M. Daun, J. Brings, T. Bandyszak, P. Bohn, T. Weyer, Collaborating Multiple
System Instances of Smart Cyber-Physical Systems: A Problem Situation,
Solution Idea, and Remaining Research Challenges, Software Engineering of
smart Cyber Physical Systems, SEsCPS 2015

[23] B. Morin, F. Fleurey, O. Barais, Taming Heterogeneity and Distribution in
sCPS, Software Engineering of smart Cyber Physical Systems, SEsCPS 2015

ACM SIGSOFT Software Engineering Notes Page 32 November 2015 Volume 40 Number 6ACM SIGSOFT Software Engineering Notes Page 32 November 2015 Volume 40 Number 6

