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Abstract—Recent advances in embedded devices capabilities 

and wireless networks paved the way for creating ubiquitous 
Cyber-Physical Systems (CPS) grafted with self-configuring and 
self-adaptive capabilities. As these systems need to strike a balance 
between dependability, open-endedness and adaptability, and 
operate in dynamic and opportunistic environments, their design 
and development is particularly challenging. We take an 
architecture-based approach to this problem and advocate the use 
of component-based abstractions and related machinery to 
engineer self-adaptive CPS. Our approach is structured around 
DEECo – a component framework that introduces the concept of 
component ensembles to deal with the dynamicity of CPS at the 
middleware level. DEECo provides the architecture abstractions 
of autonomous components and component ensembles on top of 
which different adaptation techniques can be deployed. This 
makes DEECo a vehicle for seamless experiments with self-
adaptive systems where the physical distribution and mobility of 
nodes, and the limited data availability play an important role. 

 
Index Terms—Component framework, self-adaptation, cyber-

physical systems 

I. INTRODUCTION 

Adaptation to different situations and environments has 
become a common necessity in smart Cyber-Physical Systems 
(CPS) [1] – i.e., systems closely interacting with physical world 
entities. Such systems are typically open-ended and have to be 
capable of supporting new requirements and needs. At the same 
time, these systems are deployed in heterogeneous and ever-
changing (sometimes even hostile) environments and thus have 
to promptly react to these changes. Due to limited connectivity, 
smart CPS typically have to perform adaptation in a 
decentralized manner, which adds to the overall complexity of 
designing the adaptation. Moreover, in complex enough systems 
such as modern smart CPS, the mutual dependencies of different 
local adaptation strategies may have an unexpected global 
impact – a behavior often referred to as emergent.  

To correctly design complex self-adaptive smart CPS is thus 
a challenging task, which is only partially addressed by existing 
software engineering models and approaches. This stems from 
the fact that a correct design of smart CPS has to apply a holistic 
view that takes into account the overall system goals, the 
operational models of the system and its environment (along 
with the uncertainty present in these models), and the employed 
communication models (along with issues related to latencies 
and communication unavailability). 

In this paper, we present DEECo (Dependable Emergent 
Ensembles of Components) [2] – a model and framework for 
developing complex smart CPS. In its model, DEECo provides 
the holistic view that combines the goals of a system, the 
system’s operational model (including real-time constraints), 
and realistic communication model (including limited 
communication and latencies). With its framework, DEECo 
allows large-scale simulations of complex CPS. Combined with 
the real-time perspective of DEECo and the network-accurate 
simulation of communication, DEECo offers accurate insight 
into the effects of adaptation strategies in complex smart CPS. 

The structure of the paper is as follows: Section II presents 
the running example of self-adaptive vehicles. Section III 
discusses the DEECo component model, while Section IV 
presents its reification delivered by the JDEECo simulation 
framework. Section V presents the IRM design method used in 
DEECo, while Section VI concludes the paper. 

II. RUNNING EXAMPLE 

To illustrate the DEECo models and significant features, we 
rely in this paper on a smart parking scenario. In the frame of 
this scenario, vehicles are equipped with vehicle-to-vehicle 
(V2V) communication and smart sensors to detect available 
parking spaces along the streets and exchange their knowledge 
about the available parking capacity (Figure 1). 

From the architectural perspective, vehicles are represented 
as autonomous components, each consisting of a belief and real-
time processes. While the belief (knowledge in DEECo) reflects 
the components’ perspective about the available parking spaces, 
the real-time processes take care of sensing the current position, 
free parking spaces in visible range, etc. In addition to direct 
sensing, component enrich their belief by exchanging the belief 
with other components – i.e., the information about the available 
parking capacity is exchanged between vehicles that are in 
proximity (typically via limited-range V2V communication). 

This information allows vehicles to adjust their route to 
effectively find a parking space. Also, the inter-component 
communication may be used to negotiate with other vehicles for 
selecting and reserving a parking space.  



III. DEECO COMPONENT MODEL 

DEECo offers straightforward support for development of 
self-adaptive CPS thanks to the following aspects (structured in 
sub-sections) that it offers to system architects and developers. 

A. Dynamic ensemble-based component model 

DEECo is built on the concepts of autonomous components 
and ensembles [3]. A component is an independent unit of 
computation and deployment, while an ensemble is a group of 
components cooperating to achieve a particular goal.  

Ensembles are established/disbanded dynamically at runtime 
depending on the state of the environment and the state of the 
components. They can overlap, reflecting the fact that a 
component may take on multiple roles and pursue multiple goals 
at the same time (e.g., the goal of having up-to-date information 
about parking spaces and the goal of making sure that selected 
parking space is reserved). 

The concept of ensembles thus allows forming dynamic 
component architectures and provides a straightforward 
reflection of operational goals in the application architecture. 
The concept of ensembles is further backed by theoretical 
research in coordination logics [4], which makes it possible to 
apply related results from statistical model-checking [5] (outside 
the scope of the artifact presented in this paper). 

Figure 2 illustrates the concepts of DEECo’s autonomous 
components and ensembles. It shows the specification (in 
DEECo DSL) of the smart parking scenario. A vehicle is 
captured as a Vehicle component – subject to multiple 
instantiations. It consists of its knowledge (i.e., the state of the 
component and its belief about other components – lines 5-11), 
and of real-time processes (lines 12-16). Processes in DEECo 
are periodic (time-triggered and event-triggered). This makes it 
easy to implement both real-time CPS control logic and 
adaptation logic as MAPE-K [6] loops.  

Communication between components is not direct but 
happens via knowledge exchange between components in an 
ensemble. Figure 2 shows the CapacityExchangeEnsemble, 
which reflects the goal of vehicles having up-to-date information 
about the available parking spaces. 

Technically, an ensemble is defined by its membership 
condition and its knowledge exchange. Membership determines 
which components to involve in an ensemble (e.g., all vehicles 
in proximity), whereas knowledge exchange specifies which 

knowledge should be exchanged among these components. An 
ensemble may be instantiated multiple times if the situation 
described by membership occurs at different places (potentially 
involving different components). 

To ease the structural specification of an ensemble, DEECo 
features two principal roles – ensemble coordinator and 
ensemble member. Membership is then expressed as a condition 
over the knowledge of the coordinator and the knowledge of the 
members (lines 22-23). Similarly, knowledge exchange is 
specified as assignment from the knowledge of members to the 
knowledge of the coordinator and vice-versa (lines 24-27). 

The contract between ensembles and components is carried 
by component roles (lines 1-2). The role specifies the knowledge 
of a component that an ensemble can assume. 

An ensemble periodically (in real-time manner – line 28) 
evaluates the membership condition and executes the knowledge 
exchange. In evaluating the ensembles, the model takes into 
account network latencies, which means that the knowledge of a 
component is available to other components only after certain 
random time, which is further correlated with the intensity of 
other network traffic and the geographical distance (in case of 
multi-hop communication in V2V networks). 

B. Openness and extensibility for adaptation strategies 

DEECo is open to deployment of different adaptation 
algorithms or strategies. They can be implemented as component 
processes and seamlessly integrated with a DEECo application. 
They can be also dynamically switched in response to: (i) values 
that are directly sensed by a component (e.g., free parking spaces 
around a vehicle), (ii) the state of a component (e.g., destination 
where a vehicle wants to park), and (iii) the belief about the 
knowledge of other components, including their perception of 
the environment (e.g., free parking spaces in another street).  

 

Figure 1: Vehicles sharing data about parking space capacity. 

1. role LinkCapacityAggregator: 
2. linkCapacities, position 
3.  
4. component Vehicle features LinkCapacityAggregator 
5. knowledge: 
6. ID = V1 
7. linkCapacities = [(Link_21, 1), (Link_21, 2), …] 
8. position = {50.075306, 14.426948} 
9. speed = 54.2 
10. destination = Link_126 
11. selectedParking = P23 
12. process measureSpeed 
13. out speed 
14. function: 
15. speed ← SpeedSensor.read() 
16. scheduling: periodic( 500ms ) 
17. … /* other process definitions */ 
18.  
19. ensemble CapacityExchangeEnsemble: 
20. coordinator: LinkCapacityAggregator 
21. member: LinkCapacityAggregator 
22. membership: 
23.   distance(member.position, coordinator.position) < ENSEMBLE_RADIUS 
24. knowledge exchange: 

25. coordinator.linkCapacities ← { m.linkCapacities | m ∈ members } 

26. for(m ∈ members)  
27.   m.linkCapacities ←{ coordinator.linkCapacities } 
28. scheduling: periodic( 1000ms )  

Figure 2: Examples of a DEECo component and an ensemble. 



While (i) and (ii) can be obtained by a component directly, 
the belief about the knowledge of other components (iii) comes 
as the result of ensemble evaluation and thus is subject to 
network latencies and limited network connectivity. This 
contributes to the realistic simulation of the adaptive behavior in 
decentralized smart CPS. 

The switching of the strategies is facilitated by DEECo’s 
“models@runtime” [7] approach, which makes it possible to 
inspect the architecture of an application at each time instant and 
modify the architecture as the result of an adaptation strategy.  

The runtime model further provides a global view on a 
DEECo application (including knowledge of components and 
grouping of components in ensembles). This makes it possible 
to easily evaluate adaptation strategies by comparing (i) the 
adaptation taken by a component based on its incomplete (and 
potentially outdated) belief of the system and (ii) the ideal 
adaptation that should have been taken if the complete 
knowledge of the complete up-to-date state of the system and its 
environment were available. 

C. Component and Ensemble Development 

DEECo provides a mapping of its concepts (as exemplified 
by the DSL in Figure 2) to the Java programming language. 
Figure 3 gives an example of implementing the smart parking 
scenario in Java. All metadata are captured by annotations, 
which removes the necessity of having any accompanying 
specification (in DSL or XML) additional to the Java 
implementation of components and ensembles.  

                                                           
1 JDEECo: http://github.com/d3scomp/JDEECo   
2 CDEECo: http://github.com/d3scomp/CDEECo 

In the mapping, each component becomes a single class. Its 
knowledge becomes the class fields and its processes become the 
static methods. The knowledge that is consumed and produced 
by a process is specified as process parameters. This processes-
knowledge separation allows DEECo runtime to manage 
snapshotting and atomic updating of knowledge. Similarly, each 
ensemble is represented as a Java class with a method for 
membership and a method for knowledge exchange. 

IV. JDEECO SIMULATION FRAMEWORK 

DEECo component model comes with two runtime 
frameworks – one in Java1, and one in C++2. While the C++ 
implementation targets actual deployment on embedded devices 
(e.g., STM32F4 MCU), the Java implementation (which 
constitutes the artifact presented in this paper) serves primarily 
for experimentations with autonomous components and self-
adaptation. The Java implementation (JDEECo) provides a 
simulation framework which allows experimentations with 
decentralized adaptive behavior of smart CPS. 

The simulation framework is integrated with OMNeT++3 
network simulator. All knowledge exchange passed between 
components is routed through OMNeT, which provides realistic 
estimates of network latency w.r.t. to network topology, 
geographical position of components, network collisions and 
packet drops, etc. By employing the INET and MIXIM 
extensions of OMNeT, JDEECo allows for simulating 
deployments in mixed network environment combining IP 
networks and mobile/vehicle ad-hoc networks (MANETS / 
VANETS), as found in modern smart-* systems. Figure 4 
illustrates the JDEECo runtime and OMNeT integration. 

A simulation of a DEECo application typically requires 
simulation of responses of the environment (e.g., simulation of 
car movement in a city). In rapid prototyping, this can be realized 
at the architectural level by including an “Environment” 
component, which, by means of models@runtime manipulation, 
gathers actuation from all components and feeds them with 
sensing. For more systematic simulations, JDEECo offers a 
generic sensor/actuator interface and access to the simulation 

3 OMNeT++ : http://www.omnetpp.org/ 

@Component 
public class VehicleComponent { 
   public String id; 
   public Map<…> linkCapacities; 
   public Coord position; 
   public Double speed; 
   public Link destination; 
   public Parking selectedParking;    

 
   @Process 
   @PeriodicScheduling(period=500) 
   public static void measureSpeed( 
      @Out("speed") Double speed)  
     {…} 
} 
 
@Ensemble 
@PeriodicScheduling(period=1000) 
public class CapacityExchangeEnsemble { 
 
   @Membership 
   public static boolean membership( 
      @In("coord.position") Coord cPos, 
      @In("member.position") Coord mPos)  

{…} 
 
   @KnowledgeExchange 
   public static void exchange( 
      @InOut("coord.linksCapacities") Map<…> cLinksCapacities, 
      @InOut("member.linksCapacities") Map<…> mLinksCapacities) 

{…} 
} 

Figure 3: Code snippets from DEECo component and ensemble 
specification in Java. 

 

Figure 4: JDEECo runtime. 



scheduler, which allows plugging-in existing simulators. To 
date, we have integrated MATSim traffic simulator this way. 

V. INVARIANT REFINEMENT METHOD 

In order to reason about self-adaptation during the design 
phase, DEECo framework provides the Invariant Refinement 
Method (IRM). IRM is based on goal-oriented requirements 
elaboration that stems from methodologies such as KAOS [8] 
and Tropos/i* [9]. IRM captures goals and requirements of the 
system as invariants that describe the desired state of the 
system-to-be at every time instant. This corresponds to the 
operational normalcy of the system-to-be and thus aligns well 
with the need of continuous operation of autonomic component 
ensembles. IRM is based on iterative decomposition of abstract 
goals. It is primarily a top-down method, where top-level 
invariants constitute high-level (general) goals of the 
application and are further decomposed into more specialized 
(fine-grained) invariants, which eventually map into concrete 
component processes (reflecting component responsibilities) 
and ensembles.  

To induce self-adaptivity in architecture design so that the 
system would react to changing situations in the environment at 
runtime, IRM captures and exploits architecture variability (in 
certain potentially overlapping situations) by OR-
decompositions. In particular, the designed architecture 
configurations corresponding to distinct situations that can be 
encountered at runtime are further elaborated to produce 
alternative realizations of system requirements.  

In Figure 5, the IRM decomposition tree for the example 
scenario is depicted. There, a simple example of self-adaptation 
in practice is given. To determine available parking space a 
Vehicle has two possibilities: (i) to use its own parking space 
sensor, which is however constrained and provides only 
readings in the immediate proximity to the vehicle (i.e., current 
road link), or (ii) to use the information exchanged with other 
vehicles. As shown in the figure, in order to take advantage of 

those methods certain assumptions need to hold at runtime – 
i.e., the reading sensor or the antenna need to remain operational 
and available for method (i) or (ii), respectively. In the best case, 
both assumptions hold and as such both methods are used at the 
same time. However, in cases where there is a problem with 
ensuring either of those assumptions, the component remains 
operational and exploits only one of the possible alternatives. 
By this, Vehicle adapts itself to the situation in the deployment 
environment and tries to achieve the best possible output, 
selecting among the available parking spaces near to its 
destination, always according to the available information. 

VI. SUMMARY 

To correctly design complex self-adaptive smart CPS is a 
hard task stemming from the fact that a correct design of such 
systems has to apply a holistic view that takes into account 
multiple aspects, many times even conflicting ones. 

In this paper, we have briefly introduced DEECo framework, 
which is intended for development and simulations of such 
complex self-adaptive smart CPS. In contrast to other 
frameworks, DEECo (i) is open and easily extensible, (ii) offers 
a dynamic component model based on ensembles, (iii) has two 
implementations for experimenting with smart CPS and self-
adaptivity, (iv)  provides a goal-based design method taking into 
account self-adaptation, and (v) allows for simulations of real-
life deployment by evaluating the system behavior under 
different network configurations and settings (taking into 
account also network latency and limited connectivity). 

The paper comes together with the artifact containing the 
JDEECo implementation of the example from Section II and 
integrated with the JDEECoSim tool. It can be accessed from 
http://self-adaptive.org/exemplars/v2v-DEECo.   
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Figure 5: IRM tree for the smart parking scenario. 


