
An Architecture Framework for Experimentations
with Self-Adaptive Cyber-Physical Systems

Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Frantisek Plasil
Charles University in Prague

Faculty of Mathematics and Physics
Department of Distributed and Dependable Systems

Prague, Czech Republic
{kit, iliasg, bures, hnetynka, plasil}@d3s.mff.cuni.cz

Abstract—Recent advances in embedded devices capabilities

and wireless networks paved the way for creating ubiquitous
Cyber-Physical Systems (CPS) grafted with self-configuring and
self-adaptive capabilities. As these systems need to strike a balance
between dependability, open-endedness and adaptability, and
operate in dynamic and opportunistic environments, their design
and development is particularly challenging. We take an
architecture-based approach to this problem and advocate the use
of component-based abstractions and related machinery to
engineer self-adaptive CPS. Our approach is structured around
DEECo – a component framework that introduces the concept of
component ensembles to deal with the dynamicity of CPS at the
middleware level. DEECo provides the architecture abstractions
of autonomous components and component ensembles on top of
which different adaptation techniques can be deployed. This
makes DEECo a vehicle for seamless experiments with self-
adaptive systems where the physical distribution and mobility of
nodes, and the limited data availability play an important role.

Index Terms—Component framework, self-adaptation, cyber-

physical systems

I. INTRODUCTION

Adaptation to different situations and environments has
become a common necessity in smart Cyber-Physical Systems
(CPS) [1] – i.e., systems closely interacting with physical world
entities. Such systems are typically open-ended and have to be
capable of supporting new requirements and needs. At the same
time, these systems are deployed in heterogeneous and ever-
changing (sometimes even hostile) environments and thus have
to promptly react to these changes. Due to limited connectivity,
smart CPS typically have to perform adaptation in a
decentralized manner, which adds to the overall complexity of
designing the adaptation. Moreover, in complex enough systems
such as modern smart CPS, the mutual dependencies of different
local adaptation strategies may have an unexpected global
impact – a behavior often referred to as emergent.

To correctly design complex self-adaptive smart CPS is thus
a challenging task, which is only partially addressed by existing
software engineering models and approaches. This stems from
the fact that a correct design of smart CPS has to apply a holistic
view that takes into account the overall system goals, the
operational models of the system and its environment (along
with the uncertainty present in these models), and the employed
communication models (along with issues related to latencies
and communication unavailability).

In this paper, we present DEECo (Dependable Emergent
Ensembles of Components) [2] – a model and framework for
developing complex smart CPS. In its model, DEECo provides
the holistic view that combines the goals of a system, the
system’s operational model (including real-time constraints),
and realistic communication model (including limited
communication and latencies). With its framework, DEECo
allows large-scale simulations of complex CPS. Combined with
the real-time perspective of DEECo and the network-accurate
simulation of communication, DEECo offers accurate insight
into the effects of adaptation strategies in complex smart CPS.

The structure of the paper is as follows: Section II presents
the running example of self-adaptive vehicles. Section III
discusses the DEECo component model, while Section IV
presents its reification delivered by the JDEECo simulation
framework. Section V presents the IRM design method used in
DEECo, while Section VI concludes the paper.

II. RUNNING EXAMPLE

To illustrate the DEECo models and significant features, we
rely in this paper on a smart parking scenario. In the frame of
this scenario, vehicles are equipped with vehicle-to-vehicle
(V2V) communication and smart sensors to detect available
parking spaces along the streets and exchange their knowledge
about the available parking capacity (Figure 1).

From the architectural perspective, vehicles are represented
as autonomous components, each consisting of a belief and real-
time processes. While the belief (knowledge in DEECo) reflects
the components’ perspective about the available parking spaces,
the real-time processes take care of sensing the current position,
free parking spaces in visible range, etc. In addition to direct
sensing, component enrich their belief by exchanging the belief
with other components – i.e., the information about the available
parking capacity is exchanged between vehicles that are in
proximity (typically via limited-range V2V communication).

This information allows vehicles to adjust their route to
effectively find a parking space. Also, the inter-component
communication may be used to negotiate with other vehicles for
selecting and reserving a parking space.

III. DEECO COMPONENT MODEL

DEECo offers straightforward support for development of
self-adaptive CPS thanks to the following aspects (structured in
sub-sections) that it offers to system architects and developers.

A. Dynamic ensemble-based component model

DEECo is built on the concepts of autonomous components
and ensembles [3]. A component is an independent unit of
computation and deployment, while an ensemble is a group of
components cooperating to achieve a particular goal.

Ensembles are established/disbanded dynamically at runtime
depending on the state of the environment and the state of the
components. They can overlap, reflecting the fact that a
component may take on multiple roles and pursue multiple goals
at the same time (e.g., the goal of having up-to-date information
about parking spaces and the goal of making sure that selected
parking space is reserved).

The concept of ensembles thus allows forming dynamic
component architectures and provides a straightforward
reflection of operational goals in the application architecture.
The concept of ensembles is further backed by theoretical
research in coordination logics [4], which makes it possible to
apply related results from statistical model-checking [5] (outside
the scope of the artifact presented in this paper).

Figure 2 illustrates the concepts of DEECo’s autonomous
components and ensembles. It shows the specification (in
DEECo DSL) of the smart parking scenario. A vehicle is
captured as a Vehicle component – subject to multiple
instantiations. It consists of its knowledge (i.e., the state of the
component and its belief about other components – lines 5-11),
and of real-time processes (lines 12-16). Processes in DEECo
are periodic (time-triggered and event-triggered). This makes it
easy to implement both real-time CPS control logic and
adaptation logic as MAPE-K [6] loops.

Communication between components is not direct but
happens via knowledge exchange between components in an
ensemble. Figure 2 shows the CapacityExchangeEnsemble,
which reflects the goal of vehicles having up-to-date information
about the available parking spaces.

Technically, an ensemble is defined by its membership
condition and its knowledge exchange. Membership determines
which components to involve in an ensemble (e.g., all vehicles
in proximity), whereas knowledge exchange specifies which

knowledge should be exchanged among these components. An
ensemble may be instantiated multiple times if the situation
described by membership occurs at different places (potentially
involving different components).

To ease the structural specification of an ensemble, DEECo
features two principal roles – ensemble coordinator and
ensemble member. Membership is then expressed as a condition
over the knowledge of the coordinator and the knowledge of the
members (lines 22-23). Similarly, knowledge exchange is
specified as assignment from the knowledge of members to the
knowledge of the coordinator and vice-versa (lines 24-27).

The contract between ensembles and components is carried
by component roles (lines 1-2). The role specifies the knowledge
of a component that an ensemble can assume.

An ensemble periodically (in real-time manner – line 28)
evaluates the membership condition and executes the knowledge
exchange. In evaluating the ensembles, the model takes into
account network latencies, which means that the knowledge of a
component is available to other components only after certain
random time, which is further correlated with the intensity of
other network traffic and the geographical distance (in case of
multi-hop communication in V2V networks).

B. Openness and extensibility for adaptation strategies

DEECo is open to deployment of different adaptation
algorithms or strategies. They can be implemented as component
processes and seamlessly integrated with a DEECo application.
They can be also dynamically switched in response to: (i) values
that are directly sensed by a component (e.g., free parking spaces
around a vehicle), (ii) the state of a component (e.g., destination
where a vehicle wants to park), and (iii) the belief about the
knowledge of other components, including their perception of
the environment (e.g., free parking spaces in another street).

Figure 1: Vehicles sharing data about parking space capacity.

1. role LinkCapacityAggregator:
2. linkCapacities, position
3.
4. component Vehicle features LinkCapacityAggregator
5. knowledge:
6. ID = V1
7. linkCapacities = [(Link_21, 1), (Link_21, 2), …]
8. position = {50.075306, 14.426948}
9. speed = 54.2
10. destination = Link_126
11. selectedParking = P23
12. process measureSpeed
13. out speed
14. function:
15. speed ← SpeedSensor.read()
16. scheduling: periodic(500ms)
17. … /* other process definitions */
18.
19. ensemble CapacityExchangeEnsemble:
20. coordinator: LinkCapacityAggregator
21. member: LinkCapacityAggregator
22. membership:
23. distance(member.position, coordinator.position) < ENSEMBLE_RADIUS
24. knowledge exchange:

25. coordinator.linkCapacities ← { m.linkCapacities | m ∈ members }

26. for(m ∈ members)
27. m.linkCapacities ←{ coordinator.linkCapacities }
28. scheduling: periodic(1000ms)

Figure 2: Examples of a DEECo component and an ensemble.

While (i) and (ii) can be obtained by a component directly,
the belief about the knowledge of other components (iii) comes
as the result of ensemble evaluation and thus is subject to
network latencies and limited network connectivity. This
contributes to the realistic simulation of the adaptive behavior in
decentralized smart CPS.

The switching of the strategies is facilitated by DEECo’s
“models@runtime” [7] approach, which makes it possible to
inspect the architecture of an application at each time instant and
modify the architecture as the result of an adaptation strategy.

The runtime model further provides a global view on a
DEECo application (including knowledge of components and
grouping of components in ensembles). This makes it possible
to easily evaluate adaptation strategies by comparing (i) the
adaptation taken by a component based on its incomplete (and
potentially outdated) belief of the system and (ii) the ideal
adaptation that should have been taken if the complete
knowledge of the complete up-to-date state of the system and its
environment were available.

C. Component and Ensemble Development

DEECo provides a mapping of its concepts (as exemplified
by the DSL in Figure 2) to the Java programming language.
Figure 3 gives an example of implementing the smart parking
scenario in Java. All metadata are captured by annotations,
which removes the necessity of having any accompanying
specification (in DSL or XML) additional to the Java
implementation of components and ensembles.

1 JDEECo: http://github.com/d3scomp/JDEECo
2 CDEECo: http://github.com/d3scomp/CDEECo

In the mapping, each component becomes a single class. Its
knowledge becomes the class fields and its processes become the
static methods. The knowledge that is consumed and produced
by a process is specified as process parameters. This processes-
knowledge separation allows DEECo runtime to manage
snapshotting and atomic updating of knowledge. Similarly, each
ensemble is represented as a Java class with a method for
membership and a method for knowledge exchange.

IV. JDEECO SIMULATION FRAMEWORK

DEECo component model comes with two runtime
frameworks – one in Java1, and one in C++2. While the C++
implementation targets actual deployment on embedded devices
(e.g., STM32F4 MCU), the Java implementation (which
constitutes the artifact presented in this paper) serves primarily
for experimentations with autonomous components and self-
adaptation. The Java implementation (JDEECo) provides a
simulation framework which allows experimentations with
decentralized adaptive behavior of smart CPS.

The simulation framework is integrated with OMNeT++3
network simulator. All knowledge exchange passed between
components is routed through OMNeT, which provides realistic
estimates of network latency w.r.t. to network topology,
geographical position of components, network collisions and
packet drops, etc. By employing the INET and MIXIM
extensions of OMNeT, JDEECo allows for simulating
deployments in mixed network environment combining IP
networks and mobile/vehicle ad-hoc networks (MANETS /
VANETS), as found in modern smart-* systems. Figure 4
illustrates the JDEECo runtime and OMNeT integration.

A simulation of a DEECo application typically requires
simulation of responses of the environment (e.g., simulation of
car movement in a city). In rapid prototyping, this can be realized
at the architectural level by including an “Environment”
component, which, by means of models@runtime manipulation,
gathers actuation from all components and feeds them with
sensing. For more systematic simulations, JDEECo offers a
generic sensor/actuator interface and access to the simulation

3 OMNeT++ : http://www.omnetpp.org/

@Component
public class VehicleComponent {
 public String id;
 public Map<…> linkCapacities;
 public Coord position;
 public Double speed;
 public Link destination;
 public Parking selectedParking;

 @Process
 @PeriodicScheduling(period=500)
 public static void measureSpeed(
 @Out("speed") Double speed)
 {…}
}

@Ensemble
@PeriodicScheduling(period=1000)
public class CapacityExchangeEnsemble {

 @Membership
 public static boolean membership(
 @In("coord.position") Coord cPos,
 @In("member.position") Coord mPos)

{…}

 @KnowledgeExchange
 public static void exchange(
 @InOut("coord.linksCapacities") Map<…> cLinksCapacities,
 @InOut("member.linksCapacities") Map<…> mLinksCapacities)

{…}
}

Figure 3: Code snippets from DEECo component and ensemble
specification in Java.

Figure 4: JDEECo runtime.

scheduler, which allows plugging-in existing simulators. To
date, we have integrated MATSim traffic simulator this way.

V. INVARIANT REFINEMENT METHOD

In order to reason about self-adaptation during the design
phase, DEECo framework provides the Invariant Refinement
Method (IRM). IRM is based on goal-oriented requirements
elaboration that stems from methodologies such as KAOS [8]
and Tropos/i* [9]. IRM captures goals and requirements of the
system as invariants that describe the desired state of the
system-to-be at every time instant. This corresponds to the
operational normalcy of the system-to-be and thus aligns well
with the need of continuous operation of autonomic component
ensembles. IRM is based on iterative decomposition of abstract
goals. It is primarily a top-down method, where top-level
invariants constitute high-level (general) goals of the
application and are further decomposed into more specialized
(fine-grained) invariants, which eventually map into concrete
component processes (reflecting component responsibilities)
and ensembles.

To induce self-adaptivity in architecture design so that the
system would react to changing situations in the environment at
runtime, IRM captures and exploits architecture variability (in
certain potentially overlapping situations) by OR-
decompositions. In particular, the designed architecture
configurations corresponding to distinct situations that can be
encountered at runtime are further elaborated to produce
alternative realizations of system requirements.

In Figure 5, the IRM decomposition tree for the example
scenario is depicted. There, a simple example of self-adaptation
in practice is given. To determine available parking space a
Vehicle has two possibilities: (i) to use its own parking space
sensor, which is however constrained and provides only
readings in the immediate proximity to the vehicle (i.e., current
road link), or (ii) to use the information exchanged with other
vehicles. As shown in the figure, in order to take advantage of

those methods certain assumptions need to hold at runtime –
i.e., the reading sensor or the antenna need to remain operational
and available for method (i) or (ii), respectively. In the best case,
both assumptions hold and as such both methods are used at the
same time. However, in cases where there is a problem with
ensuring either of those assumptions, the component remains
operational and exploits only one of the possible alternatives.
By this, Vehicle adapts itself to the situation in the deployment
environment and tries to achieve the best possible output,
selecting among the available parking spaces near to its
destination, always according to the available information.

VI. SUMMARY

To correctly design complex self-adaptive smart CPS is a
hard task stemming from the fact that a correct design of such
systems has to apply a holistic view that takes into account
multiple aspects, many times even conflicting ones.

In this paper, we have briefly introduced DEECo framework,
which is intended for development and simulations of such
complex self-adaptive smart CPS. In contrast to other
frameworks, DEECo (i) is open and easily extensible, (ii) offers
a dynamic component model based on ensembles, (iii) has two
implementations for experimenting with smart CPS and self-
adaptivity, (iv) provides a goal-based design method taking into
account self-adaptation, and (v) allows for simulations of real-
life deployment by evaluating the system behavior under
different network configurations and settings (taking into
account also network latency and limited connectivity).

The paper comes together with the artifact containing the
JDEECo implementation of the example from Section II and
integrated with the JDEECoSim tool. It can be accessed from
http://self-adaptive.org/exemplars/v2v-DEECo.

REFERENCES
[1] Cyber-Physical Systems: Driving Force for Innovation in Mobility,

Health, Energy and Production. Munich, Germany: National Academy
of Science and Engineering, 2011.

[2] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “DEECo: An ensemble-based component system,” in
Proceedings of CBSE '13, Vancouver, Canada, 2013, pp. 81–90.

[3] ASCENS, “Autonomic Service-Component Ensembles D4.2: Second
Report on WP4,” 2012.

[4] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A Language-
Based Approach to Autonomic Computing,” in Formal Methods for
Components and Objects, vol. 7542, B. Beckert, F. Damiani, F. de Boer,
and M. Bonsangue, Eds. Springer Berlin Heidelberg, 2013, pp. 25–48.

[5] R. De Nicola, A. Lluch Lafuente, M. Loreti, A. Morichetta, R. Pugliese,
V. Senni, and F. Tiezzi, “Programming and Verifying Component
Ensembles,” in From Programs to Systems. The Systems perspective in
Computing, vol. 8415, S. Bensalem, Y. Lakhneck, and A. Legay, Eds.
Springer Berlin Heidelberg, 2014, pp. 69–83.

[6] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[7] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,”
Computer, vol. 42, no. 10, pp. 22–27, Oct. 2009.

[8] A. van Lamsweerde, “Requirements Engineering: From Craft to
Discipline,” in Proceedings of FSE '08, Atlanta, Georgia, USA, 2008,
pp. 238–249.

[9] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An Agent-Oriented Software Development Methodology,”
Auton. Agents Multi-Agent Syst., vol. 8, no. 3, pp. 203–236, May 2004.

Figure 5: IRM tree for the smart parking scenario.

