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Abstract. The ASCENS project works with systems of self-aware, self-
adaptive and self-expressive ensembles. Performance awareness repre-
sents a concern that cuts across multiple aspects of such systems, from
the techniques to acquire performance information by monitoring, to
the methods of incorporating such information into the design making
and decision making processes. This chapter provides an overview of five
project contributions — performance monitoring based on the DiSL instru-
mentation framework, measurement evaluation using the SPL formalism,
performance modeling with fluid semantics, adaptation with DEECo and
design with IRM-SA — all in the context of the cloud case study.
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1 Introduction

The ASCENS project deals with adaptive systems formed as ensembles of com-
ponents that both possess and exchange knowledge. In general, an ensemble
achieves awareness by observing the state of its components and the state of its
environment, deriving knowledge from thus collected information, and deciding
how to act on this knowledge through reasoning.

Each of the individual steps that combine to achieve awareness can be re-
lated to performance. Consider the example of an adaptive cloud application,
used throughout this chapter and outlined in more detail in Chapter IV.3 [3§].
Components of such an application may measure the request arrival rate or the
request processing time, aiming to adjust resource pool sizes — such as caches or
threads — to match the actual workload. Additionally, the components may also
monitor the utilization of the host platform and form ensembles with compo-
nents of other applications on the same host, reacting to possible overload with
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coordinated migration. Besides utilizing the measurements directly, the compo-
nents may also derive useful knowledge by analyzing long term trends or periodic
behavior observed in performance, or by comparing observed performance with
model based predictions, to support proactive rather than reactive adaptation.

Many research contributions of the ASCENS project deal with awareness in
general, rather than focusing on a particular aspect such as location awareness or
performance awareness. These include results described in other chapters of this
book — such as reasoning and learning in Chapter I1.4 [23], SOTA in Chapter I1.1
[4], SCEL in Chapter 1.1 [41], IRM-SA in Chapter III.4 [I2] — whose neutral char-
acter makes the project results more broadly applicable. Performance awareness
represents a concern that cuts across these results, we therefore focus on con-
tributions that facilitate integration of performance awareness in the broader
awareness context.

The integration starts with the need for observing performance — while many
tools for performance monitoring exist, the dynamic nature of ensembles requires
that we are able to start and stop monitoring performance of any component
on demand, with managed overhead. Towards this goal, we work on dynamic
instrumentation support in the context of DiSL [37], described in Section [2

The next requirement of integration concerns the output of monitoring —
typically, this output takes the form of a series of measurements listing function
durations or event times, complete with noise and outliers due to interfering
activities. Such output is difficult to use, we therefore work on a formalism
that allows reasoning about performance while abstracting away the technical
measurement details. The formalism, SPL [9], is presented in Section Bl

Besides integration in system behavior specification, the SPL formalism can
be embedded in system implementation, permitting smooth transition between
the specification and the implementation. The SPL formalism also does not re-
quire differentiating between measurements of a real system and predictions of
a high level model, which allows us to efficiently integrate performance model-
ing activities. The support for SPL at the implementation level is outlined in
Section M and available in the form of prototype tools with open source licens-
ing [25].

The performance modeling techniques for ensembles are introduced in Sec-
tion Bl Ensemble performance modeling is challenging due to a high number of
potentially interacting components. Models that track the state of individual
components encounter state explosion issues. The ASCENS project investigates
fluid modeling techniques that rely on symmetries in the behavior of individual
components to keep the model both accurate and tractable.

Finally, Section [6]l demonstrates the integration of performance awareness in
the DEECo component model, and Section [1] presents the process of designing
for performance adaptation with the IRM-SA method.

This is an overview text that connects multiple previously published research
results of the ASCENS project. We refer the reader to the original publications as
appropriate, especially where the detailed formal proofs and experimental evalu-
ation is concerned. In particular, a broader overview of the ASCENS project can
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be found in [57], more information about the DiSL instrumentation framework is
in [37I35], the SPL formalism description is cited and summarized from [9258],
the introduction on performance modeling with fluid semantics is condensed
from [54], and various elements of the case study with DEECo and IRM-SA have
been published in [7]. Where reasonably possible, we have also refrained from
printing code, and instead encourage the reader to access our evolving research
prototypes directly on the ASCENS project website.

2 Instrumentation for Performance Monitoring

The ability of ensembles to reason about the performance of the constituent
components or the surrounding environment requires support for performance
monitoring with particular dynamic properties. To avoid limiting the reasoning
process, the ensemble must be able to monitor performance at any location that
the reasoning process can consider. At the same time, the ensemble must avoid
continuous monitoring of many locations, which would induce high overhead and
therefore unduly influence the ensemble behavior.

The combination of the two requirements necessitates performance monitor-
ing with dynamic instrumentation that can be inserted and removed on demand.
To execute on a specific platform, such an instrumentation has to solve various
issues of highly technical nature. The focus of the ASCENS project with dy-
namic instrumentation is on Java, a platform used in the autonomic cloud case
study and the jRESP and jDEECo frameworks.

At a glance, Java provides several technologies with potential use for perfor-
mance monitoring, each with a particular set of advantages and limitations. The
JVM Tool Interface (JVMTI) [43] is a powerful native interface used for monitor-
ing, debugging, profiling and similar application analyses. The java.lang.instru-
ment API provides class-loading hooks that allow instrumenting an application
using a custom Java agent. In addition, Java also provides a standard interface
for delivering performance data to applications, based on Java Management Ezx-
tensions (JMX).

To combine the available Java technologies in a robust instrumentation solu-
tion, we participate in the development of DiSL [37], a domain specific language
and framework that allows to conveniently monitor an application using instru-
mentation. Using the aspect oriented programming model, DiSL can insert code
fragments into Java applications. We use DiSL to specify and execute the perfor-
mance monitoring code, whose output events are processed by the custom SPL
framework, described in Sections [Bl and Bl

Listing [ illustrates a simple method invocation profiling code written in
DiSL. The responsibility of the profiling code is to sample the time before and
after a method invocation and print the method duration after the invocation.
In real monitoring code, the duration is recorded rather than printed.

The method entry time is sampled in the onMethodEntry method. DiSL is
guided by the @Before annotation to insert the entire body of onMethodEntry at
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Listing 1. Simple method invocation profiling in DiSL

public class SimpleProfiler {

@SyntheticLocal
static long entryTime;

©Before(marker=BodyMarker.class)
static void onMethodEntry() {
entryTime = System.nanoTime();

}

QAfter(marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc) {
long exitTime = System.nanoTime();
System.out.printIn(msc.thisMethodFullName()
+ " duration is "
+ (exitTime — entryTime));

the beginning of each monitored method. Similarly, the method exit time is sam-
pled and the method duration calculated in onMethodExit, which is inserted at
the end of each monitored method. The use of DiSL removes the need for manual
instrumentation, as well as complex handling of situations such as exceptional
method exits.

DiSL provides other features useful for dynamic instrumentation, including
the ability to insert monitoring routines at arbitrary code locations. DiSL con-
tains specialized SyntheticLocal and ThreadLocal variables that allow efficient
communication between the monitoring code that handles related events. To
access additional event context information, DiSL introduces constructs called
StaticContext and DynamicContext. StaticContext exposes information about
location like method or class name. DynamicContezt allows to access dynamic
information like field or variable values. In the listed example, MethodStaticCon-
text is used to retrieve a name of the profiled method.

Insertion of monitoring code can be restricted using two mechanisms, Scopes
and Guards. Scope is a language construct for defining patterns restricting class
and method instrumentation. Guard is a standard Java class that allows to eval-
uate complex instrumentation conditions during weaving. As a vital property
from the performance monitoring perspective, DiSL does not insert any instru-
mentation besides snippets, and therefore does not incur any hidden overhead.
The monitoring code is prevented from modifying the control flow of the applica-
tion and the instrumentation does not violate the virtual machine hotswapping
rules. As a result, the monitoring code can be dynamically inserted and removed
during application execution. Finally, DiSL has very few limitations on which
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code can be instrumented, making it possible to monitor any arbitrary location
in both the application components and the Java class library.

Related to DiSL are instrumentation frameworks such as AspectJ [33], which
offers similar features but less control over the instrumentation process and lim-
ited dynamic instrumentation support. Better control over the glue code is of-
fered by Javassisst [I5] or ASM [2], however, this requires working at the byte-
code level. Higher level tools, such as Perf4J [44], rely on these instrumentation
frameworks for inserting probes into code. On the whole system level, generic
monitoring tools such as DTrace [I3] or SystemTap [49] are also available. For
more thorough comparison and information about DiSL, we refer the reader

o [37]. The DiSL framework is available for download at [36], the monitoring
prototype is available at [4§].

3 Expressing Performance Properties

In its raw form, the monitoring output contains records of performance relevant
events, such as times when particular requests or responses were observed, or
execution durations of particular methods. Further processing of the monitoring
output depends on the context. For example, an application that needs to be
aware of Service Level Agreement (SLA) violations would count those request
processing times that exceed a given threshold, including potential outliers. In
contrast, an application that needs to adapt an algorithm for the processor cache
layout would look for minimum or median algorithm execution times, removing
outliers.

To provide a suitable level of abstraction for processing the monitoring out-
put, we introduce a formalism where the performance measurements are rep-
resented as observations of random variables and operators allow comparing
measurements in a statistically rigorous manner, depending on the adopted in-
terpretation. The formalism is called Stochastic Performance Logic (SPL) and
was originally introduced in [9] in the context of software performance evalua-
tion, with broader applications discussed in [7] and practical experience reported
in [25]. See [§] for formal proofs of the SPL properties presented here.

SPL is related to previous research on languages for expressing performance
properties. An early example of such a language is PSpec [45], a language for
expressing performance assertions in performance tests. Unlike SPL, it requires
that the performance expectations are specified against absolute bounds. Per-
formance expectations are associated with behavior specification in PIP [46].
Assertion checking and runtime adaptation are also possible with the PA lan-
guage [55]. The SPL framework implementation offers features similar to JUnit-
Perf [I7], an extension of JUnit [50] is for unit testing of performance.

3.1 Stochastic Performance Logic

We illustrate the SPL concepts on an example of two methods whose perfor-
mance needs to be related to each other — this example finds an application in
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systems that adapt by choosing the faster of two method implementations or
the faster of two execution platforms. We formally define the performance of
a method as a random variable representing the time it takes to execute the
method with random input parameters drawn from a particular distribution.
The nature of the random input is formally represented by workload class and
method workload. The workload is parametrized by workload parameters, which
capture the dimensions along which the workload can be varied, e.g. array size,
matrix sparsity, graph density, etc.

Definition 1. Workload class is a function £ : P* — (2 — I), where for a
given £, P is a set of workload parameter values, n is the number of parameters,
2 is a sample space, and I is a set of objects (method input arguments) in a
chosen programming language.

Definition 2. Method workload is a random variable LPt>-Pr such that

[PLPr — i:‘/(pl7 . 7pn)
for a given workload class £ and parameters p1,...,pn-

Unlike conventional random variables that map observations to a real num-
ber, method workload is a random variable that maps observations to object
instances, which serve as random input parameters for the measured method.
Note that without loss of generality, we assume in the formalization that there
is exactly one £,; for a particular method M and that M has just one input
argument.

Definition 3. Let M(in) be a method in a chosen programming language and
in € I its input argument. Then method performance Py : P — (2 = R) is a
function that for given workload parameters p1,. .., py returns a random variable,
whose observations correspond to execution duration of method M with input
parameters obtained from observations of LYy """ = £p(p1, ..., pn), where £p1
1s the workload class for method M .

To facilitate comparison of method performance, SPL is based on regular arith-
metics, in particular on axioms of equality and inequality adapted for the method
performance domain.

Definition 4. SPL is a many-sorted first-order logic defined as follows:

— There is a set FunPe of function symbols for method performances with
arities P* — (2 — R) for n € N*T.

— There is a set FunT of function symbols for performance observation trans-
formation functions with arity R — R.

— The logic has equality and inequality relations =, < for arity P x P.

— The logic has equality and inequality relations <, iry, =p(u,er) With arity
(2 = R) x (2 = R), where tl,tr € FunT.

— Quantifiers (both universal and existential) are allowed only over finite sub-
sets of P.
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— For z,y,z € P and Py, Py € FunPe, the logic has the following azioms:

z<z (1)
(r<yAny<a)eozxz=y (2)
(x<yAy<z)—az<z 3)

For each pairtl,tr € FunT such that
Yo € R : tl(o) < tr(o), there is an axiom (4)

PM(.’L‘l, ce ,xm) Sp(tl,t'r‘) PM(.’L‘l, ce ,xm)

(PM(xla RS LL‘m) Sp(tm,tn) PN(y17 SR yn)/\
PN(ylv"'7yn) Sp(tn,tm) PM(xla"'axWL)) = (5)
PM(xla v amm) =p(tm,tn) PN(yla vey yn)

Using SPL, we can express assumptions about method performance. The lambda
notation [3] with id = A\x.z is introduced for brevity:

Ezxample 1. “On arrays of 100, 500, 1000, 5000, and 10000 elements, the sort-
ing algorithm A is at most 5% faster and at most 5% slower than sorting algo-
rithm B.”

Vn € {100, 500, 1000, 5000, 10000} :
Pa(n) <pidae.1.050) PB(n) A P(n) <pidae.0.952) Pa(n)

3.2 Logic Interpretations

To ensure correspondence between the SPL formula in Example[ and its textual
description, we need to introduce the appropriate semantic that provides the
intended SPL interpretation. In [9], we first introduce an expected-value-based
interpretation, where the SPL relations are defined over expected values of the
random variables that represent execution duration. This interpretation is useful
when the expected values are known, such as when performance is computed
using analytical models. When performance is observed through monitoring, an
interpretation based on the observed samples is needed.

Simple Sample-Based Interpretation. To formulate the sample-based inter-
pretation from [9], we first fix the set of observations for which the relations will
be interpreted. We define an experiment, denoted £, as a finite set of observations
of method performances under a particular method workload.

Definition 5. Experiment & is a collection of Op,,(p,,....p,.), Where

OPI\/I(p17«««7pm,) = {P]h(pla cee apm)’ .. "P]\‘g(pla cee apm)}

is a set of V observations of method performance Pp; subjected to workload
LYy P™ and where Py, (p1,...,pm) denotes i-th observation of performance of
method M .



298 L. Bulej et al.

For a particular experiment, we define the sample-based interpretation of
SPL.

Definition 6. Let tm,tn : R — R be performance observation transformation
functions, Py and Py be method performances, x1,...,Zm,Y1,--.,Yn be work-
load parameters, and « € (0,0.5) be a fized significance level.

For a given experiment £, the relations <, (im in) and =p(tm,in) are interpreted
as follows:

- PM(xla ce xm) Sp(tm,tn) PN(yl, LR yn) Zﬁ the null hypOtheSiS

Ho : E(tm(Pif(x1, ..., 2m))) < EAn(PL(y1, ..., yn)))

cannot be rejected by one-sided Welch’s t-test [50] at significance level o
based on the observations gathered in the erperiment E;

— Puy(1, .o %) =ptmon) PN (W1, yn) iff the null hypothesis

Ho : E(tm(Pi; (1, ..., 2m))) = E@n(PL(y1, ..., yn)))

cannot be rejected by two-sided Welch’s t-test at significance level 2« based
on the observations gathered in the experiment &;

where E(tm(Pi(...))) and E(tn(P]]V( ..))) denote the mean value of perfor-
mance observations transformed by function tm or tn, respectively.

The sample-based interpretation is reasonable for situations where it is pos-
sible to collect a relatively large number of samples to be used for the statistical
testing. Experience suggests tens of thousands of samples suffice [25]. When SPL
is used to make adaptation decisions at runtime, the number of collected sam-
ples might be smaller by several orders of magnitude, and the individual samples
might suffer from many kinds of disruptive artefacts.

We discuss two kinds of disruptive artefacts — initial transient conditions and
run-to-run fluctuations. We assume that system execution consists of stationary
episodes termed runsf Within a run, system performance would be considered
stable, except for initial transient conditions disrupting the run. From run to
run, system performance can exhibit fluctuations that are measurable and sta-
tistically significant, but not controllable and not significant from the adaptation
perspective [30]. The interpretations in the following sections explicitly handle
runs.

3.3 Handling Initial Transient Conditions

On many computing platforms, runs are exposed to mechanisms that may in-
troduce transient execution time changes. Measurements performed under these

3 Practical reasons for the existence of runs are for example rejuvenation episodes with
virtual machine restarts.
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conditions are typically denoted as warmup measurements, in contrast to steady
state measurements

One well known mechanism that introduces warmup is just-in-time compila-
tion. With just-in-time compilation, the method whose execution time is mea-
sured is initially executed by an interpreter or compiled into machine code with
selected optimizations based on static information. During execution, the same
method may be compiled with different optimizations based on dynamic infor-
mation and therefore exhibit different execution times. This effect is illustrated
on Figure

T R
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Time since measurement start [s]

Fig. 1. Example of how just-in-time compilation influences method execution time

The warmup measurements are not necessarily representative of steady state
performance and are therefore typically avoided. Sometimes, such measurements
can be identified by analyzing the collected observations. Intuitively, long se-
quences of observations with zero slope (such as those on the right side of Fig-
ure [I)) likely originate from steady state measurements, in contrast to initial
sequences of observations with downward slope (such as those on the left side of
Figure[Il), which likely come from warmup. This intuition is not always reliable,
because the warmup measurements may exhibit very long periods of apparent
stability between changes. These would look like steady state measurements
when analyzing the collected observations. Furthermore, the mechanisms that
introduce warmup may not have reasonable bounds on warmup duration. As one
example, just-in-time compilation can be associated with events such as change
in branch behavior or change in polymorphic type use, which may occur at any
time during measurement.

4 The illustrative measurements in this section were collected on an Intel Xeon E5-
2660 machine with 2 sockets, 8 cores per socket, 2 threads per core, running at
2.2 GHz, 32 kB L1, 256 kB L2 and 20 MB L3 caches, 48 GB RAM, running 64 bit
Fedora 20 with OpenJDK 1.7.

5 The method is SAXBuilder::build, used to build a DOM tree from a byte array stream,
from the JDOM library [29]. The selection is ad hoc, made to illustrate practical
behavior.



300 L. Bulej et al.

Given these obstacles, we believe that warmup should not be handled at
the level of logic interpretation. Instead, knowledge of the relevant mechanisms
should be used to identify and discard observations collected during warmup.

In addition to the transient initial conditions, the logic interpretation has
to cope with run-to-run fluctuations. In contemporary computer systems, the
execution conditions include factors that stay relatively stable within each run
but differ between runs — for example, a large part of the process memory layout
on both virtual and physical address level is determined at the beginning of each
run. When these factors cannot be reasonably controlled, as is the case with the
memory layout example, each run will execute with possibly different conditions,
which can affect the measurements. The memory layout example is one where
a significant impact was observed in multiple experiments [30/40]. Therefore, no
single run is entirely representative of the observable performance.

A common solution to the problem of changing conditions between runs is
collecting observations from multiple runs. In practice, each run takes some time
before performing steady state measurements, the number of observations per
run will therefore be high but the number of runs will be low. In this situation,
the sample variance S? (when computed from all the observations together)
is not a reliable estimate of the population variance o2 and the sample-based
logic interpretation becomes more prone to false positives, rejecting performance
equality even between measurements that differ only due to changing conditions
between runs. The problem can be avoided by introducing a sensitivity limit [25],
or by explicitly considering runs in the logic interpretations, done next.

3.4 Parametric Mean Value Interpretation

From the statistical perspective, measurements taken within a run have a condi-
tional distribution depending on a particular run. This is typically exhibited as
a common bias shared by all measurements within the particular run [31]. As-
suming that each run has the same number of observations, the result statistics
collected by a benchmark can be modeled as the sample mean of sample means
of observations per run (transformed by tm as necessary):

1 T o i
M = TOZZtm(PN’[J(xl,...,xm))

i=1 j=1

where P]ij (x1,...,2m) denotes the j-th observation in the i-th run, r denotes
the number of runs and o denotes the number of observations in a run.

From the Central Limit Theorem, M and the sample means of individual runs
M; = (1) Z;Zl tm(Py} (x1,...,2y)) are asymptotically normal. In particular, a
run mean converges to the distribution N (p;, 02 /n). Due to the properties of the
normal distribution, the overall sample mean then converges to the distribution

2 2
M~N<u,p +‘7>
T TO
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where 02 denotes the average of run variances and p? denotes the variance of
run means [31].

This can be easily turned into a statistical test of equality of two means,
used by the interpretation defined below. Note that since the variances are not
known, they have to be approximated by sample variances. That makes the test
formula only approximate, though sufficiently precise for large r and o [31].

Definition 7. Let tm,tn : R — R be performance observation transformation
functions, Py; and Py be method performances collected over rys, N runs, each
run having opr,on observations respectively, x1,...,Tm,Y1,...,Yn be the work-
load parameters, and « € (0,0.5) be a fized significance level.

For a given experiment £, the relations <, (im tn) and =p(m n) are interpreted
as follows:

- PM(.’L‘l,...,LL‘m) Sp(tm,tn) PN(ylv"'ayn) Z.[f

OMR?V[ + S%/I ONRJQV + SJQV
M=N< Z(l_a)\/ TMOM M TNON

where z(1_q) 18 the 1 — a quantile of the normal distribution,

T o 1,7 o i,k 2
St = ’f‘jw(Ojjlwfl) Diet Zj:l (tm(PJ\ff](xlv @) — ,1) Dkt tm(PMk(xl, = .,xm)))

2

1 - 1< »

R?WZT 712 nZtm(PJZ\}[](xl,...,xm) -M
M i=1 j=1

and similarly for S%, and R%.

- PM(.’L‘l,...,LL‘m) =p(tm,tn) PN(ylv"'ayn) Z.[f

OMR?V[ + S%/I ONRJQV + SJZV
!M—N!SZOM\/ . +
MOM TNON

3.5 Non-parametric Mean Value Interpretation

The interpretation given by Definition [ requires a certain minimal number
of runs to work reliably. This is because the distribution of run means M; =
o~ ! 25:1 tm(Py} (x1,...,2m)) is not normal even for relatively large values of
o — illustrated on Figure g Again, for a small number of runs this typically
results in a high number of false positives, we therefore provide an alternative

5 Each run collects o = 20000 observations after a warmup of 40000 observations. The
method is SAXBuilder::build, used to build a DOM tree from a byte array stream,
from the JDOM library [29]. The selection is ad hoc, made to illustrate practical
behavior.
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interpretation that uses the distribution of M, directly. It works reliably with
any number of runs (including only one run), however, the price for this im-
provement is that the test statistics has to be learned first (e.g. by observing
performance across multiple runs of similarly behaving methods).

0
- v
%)
c o
[ -~
=]
o
o Yol
[T
o — —
[ T T T T T 1
8.6 8.8 9.0 9.2 9.4 9.6 9.8

Method execution time [ms]

Fig. 2. Example histogram of run means from multiple measurement runs of the same
method and workload

We assume that all observations waj (z1,...,2Zm) in a run 7 are identically
and independently distributed with a conditional distribution depending on a
hidden random variable C. We denote this distribution as B{;~¢, meaning the
distribution of observations in a run conditioned by drawing some particular ¢
from the hidden random variable C'.

We further define the distributions of the test statistics as follows:

= By 1s.0n, 18 the distribution function of
T™M OM L
(raronr) ™t Z Ztm(P]’\’/ (@1, ey Tm))
i=1 j=1
where P]Z;/’Ij(xl, ..., Zm) denotes a random variable with distribution B{/¢

for ¢ drawn randomly once for each i. In other words, B,, . = denotes a
distribution of a mean computed from r,; runs of o, observations each.
- B is the distribution function of the difference M — N,

M,ryv,0m—Nyravom ”
where M is a random variable with distribution B, ar ot and N is a random
JTM s

variable with distribution B, O

After adjusting the distributions By, . and By . by shifting to have an
equal mean, the performance comparison can be defined as:

- PM(.’L‘l,...,LL‘m) Sp(tm,tn) PN(ylv""yn) iff

M- N<B! (1-a)

M,ryp,0mm—N, 7N, 0N
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where M denotes the sample mean of tm(Pys (21, ..., Zm)), N is defined sim-
ilarly, and B! denotes the inverse of the distribution function
M,rv,0m—N,TN 0N

Morar.onr—N.rn.on (i.e. for a given quantile, it returns a value).

- PM(xla"'axm) =p(tm,tn) PN(yl,ayn) iff

B! (o) <M —-N<B! (1—a)

M,ryn,m—N,rN,ON M,ryv,0om,—N,TN 0N

An important problem is that the distribution functions Borrssions BN ry.on
and consequently By, .~ o are unknown. To get over this problem,
we approximate the B-distributions in a non-parametric way by bootstrap and
Monte-Carlo simulations [47]. This can be done either by using observations
Py (z1,...,xy) directly, or by approximating from observations of other meth-
ods whose performance behaves similarly between runs.

Finally, we define a non-parametric interpretation of the logic as follows:

Definition 8. Let tm,tn : R — R be performance observation transformation
functions, Py and Py be method performances, x1,...,Zm,Y1,--.,Yn be work-
load parameters, a € (0,0.5) be a fized significance level, and let X, Y be methods
(including M and N ) whose performance observations are used to approximate
the distributions of Py and Py, respectively.

For a given experiment £, the relations <, (im in) and =p(tm,in) are interpreted
as follows:

- PM(xla“'axm) Sp(tm,tn) PN(yl,--'ayn) Zﬁ

M—N< B! (1—a)

X,rx,0x =Y ,ry,oy

- PM(.’L‘l,...,LL‘m) =p(tm,tn) PN(ylv"'ayn) Z.[f

B! () <M —-N< B! (1-a)

X,rx,0ox =Y ,ry,oy X,rx,0ox =Y ,ry,0y

4 Coding for Performance Awareness

The basic role of SPL is to provide a versatile mechanism to express perfor-
mance properties at various stages of the software development process — the
design requirements, the developer assumptions, the test conditions, the health
indicators, the adaptation triggers, and so on. Every specialized use of the formal-
ism brings additional considerations, which must be addressed to achieve fitness
for purpose. Here, we outline how the formalism is connected to data and code
in the implementation environment, additional considerations in the context of
adaptive systems are discussed in [10], the context of software documentation is
examined in [26], software testing in [25].
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4.1 Performance Data Sources

The introduction of SPL in Section Bl formalized performance as the execution
time of a particular method under a particular workload, as collected by perfor-
mance monitoring from Section 2l However, SPL provides considerable freedom
as far as the input data is concerned. For example, in the autonomic cloud case
study from Chapter IV.3 [38], applications migrate from busy to idle nodes and
it is therefore useful to compare the system load metric to identify the busy and
idle nodes.

The system load is typically represented as the number of ready threads on
the node. If this number is normalized to the number of processors, it can be
used as a criterion in a distributed environment for finding the least loaded ma-
chine. The formula for deciding whether machine A is less loaded than machine
B then remains rather simple, L4 < Lp. When comparing the load, we can
rely on a trivial SPL interpretation — both L4 and Lp are scalars and plain
comparison can therefore be used. If multiple observations of load are available,
the comparison can rely on any of the sample-based interpretations. We note
that the two cases differ — one is concerned with the current system load, one
evaluates the mean system load over a longer time period. There are other prac-
tical differences — for example, when a new observation arrives, evaluating the
formula with sample-based interpretation is more resource intensive than eval-
uating with plain comparison. For environments with restricted resources, this
can be important.

More systematically, applying SPL to data other than method execution
times gives rise to the concept of data sources. The performance data is ab-
stracted as a random variable and the data source is responsible for providing
information on the random variable that the particular interpretation requires —
for example, the expected value for the expected-value-based interpretation, the
sample mean X, sample size Vx and sample variance S% for the simple sample-
based interpretation, and so on. Introducing data sources provides an important
level of abstraction in the software development process. In particular, the same
SPL formulas can be used in multiple software development phases from model-
ing to execution — the only difference is what data source is bound to the actual
random variables in the SPL formula.

We illustrate the concept on an example of an adaptive application. Consider
a problem that can be solved using two different algorithms, A and B, with A
performing better on larger and B on smaller inputs. The adaptation consists
of choosing the better performing algorithm depending on the actual input size.
The adaptation is simple when the limit size — size Sj;mq¢ such that A performs
better for inputs larger than sjj,;: and B for inputs smaller than sy, — is
known, however, s depends on the execution platform and therefore cannot be
included in the application design. Instead, an equally simple SPL formula can
be used to describe the condition for selecting particular algorithm for given
input size s — we use A if A(s) < B(s) and B otherwise.

In the early application design phase, modeling might be used to assess the
application behavior — and because data on the actual performance would not yet
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be available, the model would bind A(s) and B(s) to data sources that roughly
estimate performance from the algorithm complexity. In the testing phases of
the application development process, the same formula would be bound to data
sources that measure the performance of the (already implemented) algorithms
in a potentially restricted testing environment. The formula would be used as
a base indicator that the implementation works as expected. Where needed,
artificial data injection (similar to fault injection) through the same data sources
could be used to test corner cases. Finally, at runtime, the same formula would be
bound to data sources collecting runtime measurements, allowing the application
to adapt itself to the actual timing of the particular execution platform.

4.2 Language Integration Support

The outlined uses of SPL require integrating the support for performance mon-
itoring and formula evaluation with data source binding in a particular imple-
mentation environment. In the ASCENS project, the choice for the prototype
integration environment is Java— it is a well-known multi-platform language that
is used in the case studies and in the jJRESP and jDEECo frameworks. We note,
however, that the choice of Java is without loss of generality — in principle,
most methods developed in the ASCENS project are implementation-language-
agnostic.

To indicate performance properties (requirements, expectations, conditions)
at code level, SPL formulas are attached in the form of annotations to the
relevant method, as outlined in the example in Listing 2

Listing 2. Java annotation expressing performance requirements

@SPL(

methods = "javaSort=java.util. Arrays#sort(long[])",

generators = "data=SPL:LongUniform(’0;1000")",

formula = "for (i {100, 1000, 10000} ) SELF[data](i) <=(2, 1) javaSort[data](i)"
)

public void fasterSort(long][] data) {
// Measured method ...

}

The annotation states that fasterSort should be at least two times faster than javaSort,
a library implementation. The generator provides the workload that is being measured,
that is, the objects used as arguments when calling the measured methods.

The annotations are suitable for use by external tools that evaluate the per-
formance properties at development time or deployment time — such as with
testing, outlined in [25]. It is also possible to include the formula evaluation
in the component system runtime, where it can direct mechanisms related to
component lifecycle or connector binding, as outlined in [6].
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Besides the static language integration based on annotations, we have also
designed an API for evaluating SPL formulas directly from application code at
runtime. Listing [l depicts a code fragment that uses the API to check whether a
method execution time does not exceed the given threshold — where the example
simply prints a warning, an adaptive application would take an action to remedy
the problem.

Listing 3. Checking method execution time

/*

* Preparation.

* The SPL.instrument() creates the data source and also

* adds the measuring code automatically to the measured

* method.

*/

SourceData data = SPL.instrument(”pkg. MyClass#myMethod");
Formula formula = SPL.createFormula(”A < 100”);
formula.bind(”A”, data);

/%
* Check the formula (once enough samples were collected).
*/
if (formula.evaluate() == Result.FALSE) {
logger.warn(”myMethod is too slow!”);
}

The SPL.instrument() method uses DiSL, outlined in Section[2] to instrument
the running Java application with code that measures the method execution
time. The instrumentation is also performed on demand, whenever the need to
measure a particular method arises — this happens when an annotation uses
a formula to refer to the method performance. In addition to plain Java, the
prototype implementation includes support for OSGi, where the use of class
loaders for component isolation poses additional technical challenges.

4.3 Integrating Predictive Models

A degree of performance awareness can be achieved entirely based on the knowl-
edge of current and past performance. A simple example of this is a server that
increases the number of threads in reaction to the observed response time using
a simple rule — when the response time grows, more threads are added. The
SPL formulas used to express this rule only need to rely on current and past
measurements, provided by the appropriate data sources.

In some situations, performance awareness can augment the information
about current and past events by using predictive models — following the ex-
ample, it may be possible to use trend estimation methods to predict a rise in
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request frequency and adjust the number of service threads accordingly [19].
This option is handled in the support for performance awareness by presenting
predictive models as data sources — that way, the same SPL formulas that were
used to react to current events can react to predicted behavior.

The integration of predictive models on an application migration example is
exemplified Section [f, where the Planner may rely on modeling to pick a suitable
deployment alternative. Relying on the modular solution with pluggable data
sources simplifies the technical integration of such models in the SPL framework.

5 Modeling Performance

Reasoning about the performance of ensembles introduces a level of difficulty
due fact to the system under study comprises of potentially many interacting
components. To cope with this inherent complexity, in the ASCENS project we
followed an established line of research on finding symmetries at the model level
which induce a suitable coarsening of the state space that retains some informa-
tion about the original one. In this respect, the classical results on bisimilarity
allow to relate processes of possibly different state space sizes which are however
equivalent with respect to an external observer [39]. Analogous notions have been
developed form Markovian process algebra with a discrete-state Markov chain
semantics. For instance, the notions of Markovian bisimulation for MTIPP [20]
and strong equivalence for PEPA [22] are equivalence relations that give an ex-
actly aggregated Markov chain in terms of the theory of CTMC lumpability [5].

A similar line of research in the ASCENS project leads to exact as well
as approximate notions of aggregation for Markovian process algebra. Different
from the listed literature, we targeted fluid semantics. This has recently emerged
as an alternative to the classical Markovian semantics, describing the model
dynamics in terms of a system of ordinary differential equations (ODEs) [2TI34].
These can be interpreted as a deterministic approximation to the expectation
of the Markov chain [T4JT6II8/51]. When the model under consideration consists
of many copies of processes in parallel, the ODE system size is independent of
the multiplicities of such copies. This is considerably more convenient than the
Markovian representation which suffers from the well-known problem of state
explosion, where the number of states grows exponentially (in the worst case)
with the number of concurrent processes in the model.

5.1 Fluid Process Algebra

The motivating observation here is that not all models of ensemble-based sys-
tems enjoy a compact ODE description [53]. Indeed, the problem of aggregating
large-scale models based on ODEs has attracted the attention of researchers in a
variety of other disciplines including control theory [1], theoretical ecology [28],
and chemical engineering [42]. Here we consider a Fluid Process Algebra, pre-
sented in [52] as a fragment of the Markovian process algebra PEPA [22].
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Exact Fluid Lumpability. In [52] we define the notion of exzact fluid lumpa-
bility (EFL). It establishes an equivalence relation between processes such that
their associated ODE solutions have equal trajectories whenever they are ini-
tialized with the same conditions. To be concrete yet informal for the purpose
of overviewing our results, let us consider the process

(PNl PolNa] lxc -+ e PoIND]) 2 Q[M] (6)

where, for all 1 < i < D, P; is some sequential component that is replicated
N; times, and ||x is the parallel operator, parameterised by an action set K,
in a CSP-like fashion. EFL may essentially reduce the analysis of such a model
by considering the fluid trajectory of a representative P;, which is shown to be
equal to that of any other P; if, for all 1 <14,5 < D, it holds that V; = N; and
P; and P; are isomorphic. Thus, denoting by Vs(t) the ODE solution related
to the sequential component S, EFL would yield Vp,(t) = Vp, (t) for all . EFL
has been exploited in [53] as a building block to automatically simplify models
that feature a pattern of replicated composites — large ensembles of composite
processes which themselves consist of replicated copies of other composites, with
an arbitrary level of nesting. However, in general symmetries are required both at
the level of the sequential component and at the compositional level, by ensuring
that all populations have the same size.

Taking EFL as the starting point of our investigation, it is possible to extend
it along two orthogonal directions [54]. In one direction, we define a new notion
of lumpability, called ordinary fluid lumpability (OFL), which relaxes assump-
tions on certain symmetries whilst still guaranteeing exactness of the aggregated
system. In the other direction, we consider approximate versions of both EFL
and OFL which can yield coarser aggregations, at the cost of losing exactness.

Ordinary Fluid Lumpability (OFL). Similarly to EFL, ordinary fluid
lumpability considers symmetry through isomorphism at the sequential level;
thus, it still requires that P; and P; be isomorphic for all ¢, j. However, it allows
heterogeneity at the compositional level: in the example above, it may yield an
exactly aggregated ODE system even if N; # N;. However, unlike EFL, where
all the trajectories of the original ODE system can be obtained from the solution
of the aggregate, in OFL the aggregate gives the exact sum of the solutions of its
parts, but their individual trajectories cannot be recovered. Thus, for instance,
OFL would define an aggregate ODE for some variable Wp(t) and show that
Wp(t) =Vp, (t)+Vp, () + ...+ Vp, (t). More precisely, OFL identifies an aggre-
gate ODE system where the solution to each ODE is the linear combination of
solutions of ODEs belonging to the original system.

Approximate Aggregations. To relax the requirement on the exactness of
the aggregation, we study e-variants of both EFL and OFL as a means of re-
laxing symmetries at the sequential level. These variants allow non-isomorphic
processes to be aggregated if there exists a perturbation in the rates that makes

them isomorphic. For instance, let us take P; M Py, and P; m by, for
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some Py, where the edges give the action/rate pair, specifying a label that iden-
tifies the activity and the rate of an exponential distribution determining its
duration, with » > 0 and € > 0. Then, these processes cannot be aggregated
with either EFL or OFL because € > 0 does not make them isomorphic. How-
ever, there exists a perturbation on the parameters of P; and P; that makes

them isomorphic. For instance, one can take P; Lor), Py, such that € represents

the degree of such perturbation. In fact, there exist infinitely many such per-
, 2
turbations. For instance, it would be possible to consider P; lorte/a), P, and

P; lorte/d), Py;. In all these cases, it would hold that the model is e-ordinarily
fluid lumpable for any IV; and N;. Clearly, the aggregated system will not be in
exact correspondence with the original one. However, a theoretical bound shows
that the aggregation error depends linearly in the intensity of the perturbation
e].

Exhibiting such near-symmetries may appear quite limiting for practical ap-
plications; however, there are models in the literature that do exhibit this char-
acteristic. This has been recently studied also in [27], where a similar notion of
approximate aggregation has been presented.

Characterisation of ODE Aggregations. When the aggregation is induced
by a process algebra, it is possible to study the nature of such aggregation in
two main ways.

1. The ODE aggregations can be induced by suitable notions of behavioural
equivalence, which turn out to be congruences with respect to the parallel
operator of Fluid Process Algebra.

2. We consider the nonrestrictive (syntactic) notion of model well-posedness
originally defined in [52]. Under this assumption, processes which can be ag-
gregated according to either EFL or OFL are related by semi-isomorphism.
This is an extension of graph isomorphism to labelled transition systems with
transition multi-sets, which does not distinguish between the multiplicity of
arcs connecting two nodes whenever the total rate is the same. Furthermore,
under well-posedness it holds that e-EFL and e-OFL imply the behavioural
notion of e-semi-isomorphism, the natural extension of semi-isomorphism
which relates graphs up to changes in the transition rates. At the same time,
however, processes that are semi-isomorphic cannot be aggregated according
to EFL or OFL in general, essentially because two semi-isomorphic processes
may be present in different contexts, which may impact their ODE expres-
sions due to possibly different synchronisations.

5.2 Aggregation Error

To provide some numerical evidence of the aggregation error introduced by e-
EFL and e-OFL, let us consider the model in (B) where the sequential compo-
nents are defined, for 1 < d < D, as

Pa¥(ara).Py Fi¥(5.9).Ps Q¥ (anQ  QEGwQ. (1)
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Fig. 3. Numerical evaluation of e-lumpability

These model two agents, P; and @, which cycle through states P, and @,
respectively. With this choice, the model can be interpreted as a high-level de-
scription of a multi-class service system where one resource, modelled by ), can
be accessed by different classes of clients, P;, each with its own service demand
characterized by r4. We arbitrarily chose the rates of the independent actions,
fixing s = 0.5 and w = 15.0, while we varied the values of r4.

Our intent is to approximate ODEs systems where P; and P; are aggregated
for some 1 < 4,5 < D. Thus, in order to obtain non-isomorphic sequential
components, we made 4 dependent on 1 < d < D, setting ry = 1.0 + (d — 1) A.
Here, A is a parameter that was varied between 0.0005 and 0.1000 at 0.005
steps in our tests. In this way, it is directly proportional to the intensity of the
perturbation. For instance, in a model with D = 12 and A = 0.1000, we have
ri0/rm1 = 2.1, showing a non-negligible difference between the rate parameters of
Py and those of Pjg. In order to enforce asymmetry also in the initial populations,
we made the initial populations of P; components dependent on d. Specifically,
we considered initial conditions defined as Vp,(0) = 200 + (d — 1), Vp,(0) = 0,
Vo(0) = 400, and V/(0) = 0; thus, the components have initial populations
separated by a few percent. For evaluating both e-EFL and e-OFL, we considered
a perturbed model where ry in (@) was made independent of d and set equal to
the average value in the original model, i.e.,

D
fa=10+(A/D)) (d—1).
d=1

In such a perturbed model, all P; sequential components are now isomorphic.

Assessment of e-EFL We considered different values of D to numerically evaluate
the impact of different initial conditions on the quality of the aggregation of
e-EFL. Specifically, we set D = 3,6,9,12. Let us recall that (@) has 2D + 2
ODEs. For each value of D and A, the model solution was compared against
that of the perturbed model with the initial conditions set as follows: V5 (0) =
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200 + (1/D) S5, (d — 1), % (0) = 0, V5(0) = 400, and V5,(0) = 0. In this
way, the initial population of P; sequential components is made independent
from d and is set equal to the average initial population across d, similarly to
what done for the perturbation on ry4. It follows that, in the perturbed model,
{{P1,...,Pp},{Q}} is an exactly fluid lumpable partition. Hence, the original
model and the perturbed one are related by e-EFL. Both models were solved
over the time interval [0; 100], so as to ensure convergence of the ODE solution
to equilibrium for all parameterisations considered. Solutions were registered at
0.2 time steps. The approximation relative error for e-EFL is as:

100 x max max Vs(t) = V3 (t)|,
t€{0,0.02,...,100} SE{Py,...,P4,Q} Vs(0)

where Vg (t) is the solution of the original model and V§(t) is the corresponding
solution in the perturbed one. The absolute difference is normalised with respect
to the total population of the component.

The results are presented in FiguresBaland[3H for two distinct interpretations
of the synchronisation operator. The first one defines synchronisation as the
minimum of the rates of the synchronising components (p = min) while the
second one takes the product of their rates (p = -). In both cases, it is possible
to observe a linear growth of the error as a function of the perturbation A.
For any fixed D, the case p = - yields more accurate aggregates than p = min,
with particularly small errors for D = 3,6,9. These tests show that even non-
negligible perturbations (i.e., up to A ca 0.04) can produce acceptable errors
(i.e., less than 10%) in practice.

Assessment of e-OFL Analogous tests were performed for the assessment of e-
OFL, since in the perturbed model {{ Py, ..., Pp},{Q@}} is also an ordinarily fluid
lumpable partition. We analysed only the case D = 12, which yielded the worst
accuracy in e-EFL; the other cases showed the same errors (up to numerical
precision of the ODE solver). A different error metric was used, to reflect the
fact that OFL involves sums of ODE solutions of the unaggregated model. The
approximation relative error is defined as:

D €
D a1 Ve () = WE(B)| |Vo(t) — W5 ()]
100 x max max D )
t€{0,0.02,...,100} > ey V. (0) Vo (0)
The numerical results are shown in Figure Bd Overall, both for p = min and

p = -, the e-OFL appears to be much more robust, with negligible errors across
all values of A.

6 Performance Aware Ensembles

We present performance aware ensembles in the context of the cloud case study
from Chapter IV.3 [38]. We assume a heterogeneous cloud where mobile devices,



312 L. Bulej et al.

such as smart phones, can offload computationally intensive applications to the
nearby available computational nodes to improve battery lifetime [7]. To elabo-
rate the example, we use the DEECo component model [I1], which realizes the
concepts of the SCEL formalism for developing adaptive ensembles. As a ma-
jor feature, the ensembles consist of components that communicate exclusively
through shared knowledge — we therefore include performance measurements
among the knowledge elements.

6.1 Scenario Description

The scenario elaborated in this section is that of a person travelling in a train
or a bus, who wants to do productive work using a tablet computer or review
travel plans and accommodation. The tablet notes the presence of a cloud server
machine located in the bus itself, and to save battery, it offloads the most com-
putationally intensive tasks to that machine. Later, when the bus approaches
its destination, the server notifies the tablet that its service will soon become
unavailable and tasks will start moving back to the tablet. When the bus enters
the terminal, the tablet will discover another server, provided by the termi-
nal authority, and move some of the tasks to the newly found machine. The
challenge is in predicting which deployment scenario will deliver the expected
performance — that is, when is it worth migrating parts of the application to a
different computer.

For our example, we assume that the application has a frontend component
that cannot be migrated (such as the user interface, which obviously has to
stay with the user, Af in our example) and a backend component that can be
offloaded (typically the computationally intensive tasks, Ab in our example).
Figure [ depicts the adaptation architecture (the used notation is that of com-
ponent systems, except for interfaces which are based on exchanging knowledge
rather than invoking methods, various types of arrows denote various instances
of interaction through knowledge described next).

6.2 Adaptation Architecture Components

The adaptation architecture on Figure dl forms an overlay that reflects the appli-
cation architecture. Central to the adaptation architecture is the Planner com-
ponent, responsible for computing the optimum application component deploy-
ment. The Planner relies on Monitor components to provide information about
application performance — each Monitor is a surrogate of one application compo-
nent on one machine. The machines are represented by Device components. In
more detail:

Planner. Each adaptive application is managed by a Planner component, whose
implementation includes the application adaptation preferences. Specifically,
given the alternatives for deploying each of the application components, the
Planner selects the application deployment that best satisfies the preferences.
We assume that the resulting deployment is described by a deployment plan,
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Fig. 4. Adaptation architecture. Numbers denote adaptation phases, 1 for Ab located
at M, 2 for S discovered, 3 for Ab migrated to S.

and an external mechanism is responsible for performing the adaptation (for
example by migrating components) as directed by the plan. To select among
the available alternatives, the Planner is provided with data on non-functional
properties (such as estimated frame rate or power consumption) that character-
ize the performance of the corresponding application component in a particular
deployment (NFPData). The Planner also advertises definitions of Monitors for
individual application components (MonitorDef).

Monitor. A single Monitor component exists for every application component
in every deployment alternative. The Monitor component is responsible for pro-
viding NFPData for that particular combination of component and alternative.
Depending on the actual deployment of the corresponding application compo-
nent, the Monitor operates in one of two modes:

— The Monitor is in the observation mode if it resides on the same machine
as the corresponding application component and therefore can observe the
actual component execution. In this mode, NFPData is obtained by perfor-
mance measurement of the running application component.

— The Monitor is in the predictive mode if it resides on a different machine than
the one where the application component currently executes, and therefore
represents a potential deployment alternative. NFPData is estimated from
machine parameters in NFPDeviceData (such as estimating frame rate from
the CPU and GPU parameters as a function CPU x GPU — FPS). In other
words, the Monitor roughly predicts the performance that the application
component would exhibit if it were deployed on a particular machine, relying
on machine-specific data passed in NFPDeviceData.

Device. Each machine is represented by the Device component, which is re-
sponsible for instantiating Monitors advertised by newly discovered Planners and
providing NFPDeviceData for Monitors operating in the predictive mode.
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6.3 Adaptation Architecture Ensembles

In the assumed scenario, the number of available computation nodes, as well
as the number of Monitors, changes dynamically. Therefore, the communication
among the components exploits the concept of emergent component ensembles.
The architecture involves the following ensembles (Figure H):

Planner and Device(s). Each Planner is a coordinator of an ensemble that dis-
tributes MonitorDefs (including the performance prediction model) of application
components to Devices representing currently available machines (including the
one the Planner is running on). The Planner is able to limit which MonitorDefs
should be distributed to which Devices (effectively constraining the potential
migration destinations for a particular application component).

Planner and Monitor(s). Each Planner is a coordinator of an ensemble that
aggregates NFPData from all Monitors corresponding to the components of the
application managed by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

Device and Monitor(s). Each Device component is a coordinator of an en-
semble that distributes NFPDeviceData to the Monitors in the predictive mode
residing on the corresponding machines.

6.4 Adaptation Interaction Example

Initially (phase 1, Figure M), the ensemble distributes the MonitorDefs of both
Af and Ab from Planner(A) to the Device(M) component of the mobile device,
which subsequently spawns Monitors for both components and sets them to the
observation mode. The Monitors start measuring NFPData of the locally execut-
ing components, which are eventually aggregated and delivered as knowledge to
the Planner. So far, no deployment alternatives are discovered.

After the stationary device is discovered (phase 2, Figure Hl), the ensemble
propagates MonitorDefs of the components that could be (potentially) migrated
(here only Ab) to the Device(S) component, which spawns a new Monitor. Be-
cause Ab is deployed on Device(M), this Monitor runs in the predictive mode. The
Device(S) component feeds the Monitor with NFPDeviceData and, based on this
NFPDeviceData and the performance prediction model of Ab, the Monitor pro-
duces NFPData describing the expected performance of Ab on S. Consequently,
another ensemble delivers all the currently produced NFPData for Af and Ab to
the Planner. The Planner thus eventually discovers that there are two deployment
alternatives for Ab (the one currently executing on M and the one modeled on
S) and, assuming the adaptation is perceived as beneficial, decides to deploy Ab
on the stationary device.

After Ab is migrated to the stationary device (phase 3, Figure[d), the Monitor
on S switches to the observation mode. In turn, the Monitor on M is set to the
predictive mode and the whole monitoring and planning process repeats.

When further stationary devices are discovered, new Monitors in the predic-
tive mode are spawned, eventually providing new deployment alternatives for
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consideration by the Planner. Disappearing devices are handled similarly (but
the overlay does not tackle state loss).

7 Designing Performance-Based Adaptation

The dynamic membership and communication features of ensembles, the formal
methods of expressing and evaluating performance properties, and the availabil-
ity of dynamic instrumentation at implementation level are all elements that
contribute to the support for building adaptive applications. Complementing
these elements is a method for designing adaptation strategies — the Invariant
Refinement Method for Self-Adaptation (IRM-SA), described in detail in Chap-
ter II1.4 [12]. IRM-SA is an extension to IRM [32] and guides the design of an
application from high-level strategic goals and (performance) requirements to
their realization in terms of system architecture with design choices that corre-
spond to different adaptation alternatives.

Design with IRM-SA captures the high-level system goals and requirements
in terms of interaction invariants. The invariants describe the desired state of
the system-to-be at every time instant, and, in general, are to be maintained
by the cooperation of the system elements (actors, components, ensembles). A
special type of invariant, called assumption, describes a condition that is ex-
pected to hold about the environment — an assumption is not intended to be
maintained explicitly by the system-to-be. In a sequence of design decisions, the
identified top-level invariants are decomposed into combinations of more specific
invariants forming a decomposition graph. By this decomposition, we strive to
get to the level of abstraction where the (leaf) invariants represent detailed de-
sign of the particular system constituents — components, component processes,
and ensembles. Two special types of invariants, the process and exchange invari-
ants, are used to model the component computation (processes) and interaction
(ensembles), respectively.

To facilitate design with alternatives, IRM-SA features two decomposition
types, AND-decomposition and OR-decomposition. The AND-decomposition is
essentially a refinement in the traditional interpretation, where the composition
of the children exhibits all the behavior expected from the parent and (poten-
tially) some more. Formally, the AND-decomposition of a parent invariant I,
into a conjunction of sub-invariants I, ... I, is a refinement if the conjunction
of the sub-invariants can guarantee the parent invariant:

1. Ig AN NI =1, (entailment)
2. Iss A ... NIy # false  (consistency)

For the OR-decomposition, in the context of adaptation alternatives, we intro-
duce the concept of situations. A situation is a state that the system and its
environment can reside in. Situations should not be confused with system (op-
erating) modes — whereas the former refer to the perceived environment, which
is inherently impossible to control, the later describe different system configura-
tions, whose choice is under the control of the running software.
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The OR-decomposition is used for invariants that can be decomposed into
two or more sub-invariants, with each sub-invariant corresponding to a different
situation. The OR-decomposition of a parent invariant I,, into two or more sub-
invariants Iy ... Is, is correct if in any situation (corresponding to some of the
invariants Is; ... Is,) there is at least one sub-invariant that refines the parent
invariant I,,. It is important to notice that the situations identified and elaborated
in an OR-decomposition can potentially overlap. Overlapping of situations can
add to the overall robustness of the system, as it essentially means that more
than one design solution is applicable to the same situation. Of course, situations
can also be nested, following the observation that certain situations arise only
in the context of other ones.

Technically, each situation in the IRM-SA graph is associated with one or
more assumptions (see Figure [)). These assumptions describe the conditions
that are expected to hold under a given situation in a declarative way, and can
in fact be understood as evaluation conditions or adaptation triggers for a given
situation. The formalism used for describing the assumptions depends on the
nature of the assumptions, especially on whether the assumption conditions can
be observed and quantified.

7.1 Scenario Description

To illustrate the IRM-SA method, we return to the cloud case study and the com-
putation offloading example. In the case study, multiple heterogeneous network
nodes form an open cloud platform that runs user applications, some possi-
bly computationally intensive. When such an application executes on a mobile
device, it can take advantage of the nearby cloud nodes by offloading the com-
putationally intensive processing to those nodes. These nodes can even be a part
of a traditional cloud infrastructure, leased on demand when there is a need for
computational resources. The general assumptions are that (i) the application
can be partitioned to run on multiple nodes, and (ii) a mechanism for effectively
migrating application components across cloud nodes exists. Given this scenario,
the goal of the system-to-be is two-fold: (1) to guarantee an upper limit in the
response time observed by the user; (2) to guarantee that the application com-
ponents are distributed in line with the maximum capacity constraints and load
of each node.

Figure Bl shows a possible IRM-SA graph for the above scenario. The design
starts with the identified top-level invariant stating that “Load is balanced while
expected QoS is kept”. The “expected QoS” has been quantified by the SPL
formula that specifies an upper bound on the application’s response time (500
ms). This invariant can be decomposed into two possible sub-invariants, based
on the situation the system resides in and specifically based on whether extra
computational power from a cloud data center is needed.

In the first case (left alternative from top) invariant (1) is decomposed into
one assumption (2) and two invariants, (3) and (4), following Figure Bl Assump-
tion (2) specifies that ”Mobile nodes have enough capacity to handle application
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(1) Load is balanced while
expected QoS is kept
(RespTime <, 500 ms)

(3) AzmigrationDecisions are w A::migrationDecisions are (9) VM execution is controlled by (10) A Cloud is available and the
available ollowed by nodes e VMM application can scale out infinitely

5) A nodesLoad, A nodesCapadity
—belief over N:load, N::capacity ~ is
up-to-date

0
({7 N;smigrationDegsions — s
clef over A TigrationDedisions
date

—is up-to-

oW D
(6) A::migrationDecisions are : {8) Migration routines are
*+ | computed w.r.t. Az:nodesLoad, : execut
AsnodesCapacity : N: mlgranonDec\slons

(11) AVG(RespTime) <, 200ms

(13) 200ms <,
WG(RespTime)s, 400ms

(14) AVG(RespTime) 2, 400ms

1IN]

(12) VWM instancesare being
stopped: Every 20 secs one
instance s stopped.

(15) VM instances are being
spawned: Every 20 secs one
instance is spawned.

Arbitrator Node

+nodesLoad +load
+nodesCapacity +capacity
+migrationDecisions

N S| N
? 1{vMm] VM Manager 1[vMM]

Eé@@@@”ﬁ A A -

Component Extends Invariant Exchange  Process Assumption Takes-role  AND Knowledge
invariant  invariant R decmposition aemmposmon dependency

Fig. 5. Cloud case study with situations — IRM-SA graph

load” — it is an example of an assumption specified in an informal way in natu-
ral language. Obviously, this kind of assumption cannot be formally specified or
checked at execution time, but has to be included for design completeness and
consistency. Invariants (3) and (4) are further refined into lower level semantics
which specify the architecture of the load balancing mechanism. Specifically, the
Arbitrator component (which is a specialization of the Node component, indicat-
ing that it contributes both to the invariants it takes a role in and to its parent’s
invariants, and inherits the knowledge of its parent) implements the load bal-
ancing logic by acquiring a view over every node’s capacity and load (5), and
devising a migration plan (6). In order for the migration plan to be followed, it
has to be distributed to all nodes (7) and executed in every node separately (8).

In the second case (right alternative from top) invariant (1) is now decom-
posed into one assumption (10), and three invariants, (3), (4), and (9). Whereas
invariants (3) and (4), which describe the load balancing mechanism, are shared
between the two situations, invariant (9) is local to the second situation. In par-
ticular, invariant (9) specifies that virtual machine execution is controlled by the
VM Manager component (VMM) in a manner described by the sub-invariants
(12) and (15).

Here, three situations are distinguished, depending on the response time of
the application: Low RespTime, Normal RespTime, and High RespTime, each as-
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sociated with a different assumption regarding the average response time over
some period in time (assumptions (11), (13) and (14) respectively). These as-
sumptions refer to a measurable system attribute and as such can be formally
verified and checked at execution time — indeed, all three assumptions are spec-
ified as SPL formulas, which can be evaluated at runtime using the SPL engine
in conjunction with DiSL, as exemplified in Listing[Il The idea here is to use the
concept of situations to specify a simple control logic: if the average response
time is less than 200 ms (11), the VMM needs to react by stopping virtual ma-
chines (12); if it is more than 400 ms (14), the VMM has to start new virtual
machines (15); otherwise (13), do nothing.

7.2 Transforming Design into Code

IRM-SA is tailored towards producing system designs for DEECo [I1]. The leaves
of the IRM-SA graph can be process invariants, exchange invariants or assump-
tions. The first two types are mapped to the DEECo concepts of processes and
ensembles, respectively. For assumptions, we distinguish between the ones that
can be formally specified, observed and verified, and the informal ones, typically
specified in natural language. Whereas informal assumptions cannot be checked
at runtime (thus we optimistically assume that they hold during system execu-
tion), formal assumptions are checked at runtime by mapping them to runtime
monitors.

When the formal assumptions concern performance, they can be specified
using SPL. This is especially useful when the assumptions concern alternative
decompositions that model different adaptation strategies — the performance
properties described in SPL can be used to identify what situation the system
is currently in, and to react accordingly (e.g. invariants (11), (13) and (14)
on Figure [l). SPL can also specify performance invariants that are checked to
validate the design (e.g. invariant (1) on Figure[]). Finally, the presence of SPL
formulas in the IRM-SA graph gives an early (design time) indication of the
need for monitoring, whose potential overhead needs to be balanced against the
adaptation capabilities.

8 Summary

Besides dealing with many individual challenges inherent to the construction
of collective autonomic systems, the ASCENS project also examines the overall
lifecycle of such systems, considering where and how the proposed individual
solutions interact and complement each other. Chapter III.1 [24] describes this
perspective in general terms, introducing the concept of continuous development
lifecycle, where repeated design and runtime activities interact with each other
through deployment and feedback to manage system evolution.

In this chapter, we present the support for performance awareness in the
same lifecycle context — starting with the runtime cycle, where instrumentation
is used to monitor performance relevant system properties (Section ), which are
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evaluated (Section [3)) by the system implementation (Section[]). Both the design
and the runtime cycles may reflect on system performance through modeling
(Section [H), the design cycle also provides the concept of dynamic ensembles to
structure the implementation (Section [G]), which can be architected by gradual
refinement from the initial system requirements (Section [7]).
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