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Abstract. The chapter describes IRM, a method that guides the de-
sign of smart-cyber physical systems that are built according to the au-
tonomic service-component paradigm. IRM is a requirements-oriented
design method that focuses on distributed collaboration. It relies on the
invariant concept to model both high-level system goals and low-level
software obligations. In IRM, high-level invariants are iteratively decom-
posed into more specific sub-invariants up to the level that they can be
operationalized by autonomous components and component collabora-
tions (ensembles). We present the main concepts behind the method, as
well the main decomposition patterns that back up the design process,
and illustrate them in the ASCENS e-mobility case study.
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1 Introduction

Business needs and technological breakthroughs have been recently pushing to-
wards the cost-effective and manageable development of increasingly complex,
software-intensive systems that feature close connection to the physical world
– so-called smart cyber-physical systems (CPS). Examples of such systems are
numerous: smart electric grids, emergency coordination systems, autonomous
robots, fleets of cooperating vehicles, smart spaces, to name just a few.

Within the ASCENS project, we have created a comprehensive software en-
gineering solution for the development of smart CPS. The solution takes the
form of a framework consisting of:

(i) a specialized software component model, based on the paradigm of auto-
nomic component ensembles (ACEs), with clear execution and interaction
semantics;

(ii) an execution environment that allows for distributed and decentralized
operation of systems composed of the specialized software components;

(iii) design-time and runtime analysis (e.g., timing analysis) based on a well-
defined computational model; and
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Fig. 1. E-mobility case study: electric cars need to proactively re-plan according to the
availability of parking stations.

(iv) a specialized requirements-oriented design method that focuses on dis-
tributed collaboration and complements (i).

In this chapter, we focus on the last element of our framework and present the
design method and associated model – the Invariant Refinement Method (IRM).
IRM features contractual design based on the iterative refinement of system-level
requirements, and provides both dependability in form of traceability of software
artifacts to system-level goals, and adaptability, as it captures the design alterna-
tives pertaining to different operational contexts/situations and translates them
into different system and component modes. From the overall perspective of the
Ensemble Development Life Cycle (see Chapter III.1 [13]), IRM thus serves as a
method to guide the transition from early high-level requirements (featured by
SOTA/GEM) to software architecture of autonomic components and ensembles.

The chapter is based on the authors’ papers [7,10,15] and technical reports
[6] and is structured as follows. Section 2 presents our running example and
illustrates the basic principles behind our ACEs-based component model. Sec-
tion 3 details on the limitations of traditional software engineering methods
when designing CPS via ACEs. Section 4 presents the basics of IRM, while Sec-
tions 5 details on the specific refinement patterns that can be employed in the
IRM-based design. Finally, Section 6 concludes the chapter and discusses the
yet-to-be-addressed challenges.

2 Running Example

To illustrate the IRM approach, we use a scenario taken from the ASCENS
e-mobility case study (Chapter IV.4 [12]). In this case study, a fleet of electric
vehicles (e-vehicles) is used to distribute people to their places of interest (POIs)
in a city. Due to their limited autonomy compared to conventional vehicles, e-
vehicles need to regularly stop at parking lots with energy charging capabilities
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located in designated parking stations in the city. After recharging, e-vehicles
become again fully operational and join the rest of the fleet.

Careful planning is needed in order to avoid traffic bottlenecks and high
recharging times. The problem in such planning is threefold:

(i) The whole system is very dynamic, as vehicles change their routes ac-
cording to the passengers calendars (which can also change at runtime),
streets/parking stations can be temporarily closed, and the load of parking
stations is typically hard to predict as it changes according to the incoming
parking requests from the vehicles (which change as vehicles re-plan).

(ii) No central communication and coordination point is assumed. This results
into having an inherently scalable system which is harder to control, as
each vehicle plans its own route according to its partial view of the rest of
the system and independently of the rest of the vehicles.

(iii) Each element of the system may be in different modes (e.g., “low battery”
vs. “fully operational” for the e-vehicles) which prescribes also different
local actions to be taken. In combination with the fully decentralized op-
eration, local decision making based on partial views of the whole system
can introduce inconsistencies and oscillations.

As a running example, we use a simplified scenario from the above mentioned
case study. It is based on the following assumptions:

(i) drivers are bound to their vehicles, i.e., there is no car sharing or car pooling
possibility;

(ii) vehicles do not send parking requests to parking stations, but just use the
parking stations’ availability information in order to plan their trip (and
re-plan if needed);

(iii) when planning, vehicles consider parking at parking stations that are within
a fixed distance to the POIs in the driver’s calendar.

The last point is illustrated in Fig. 1, where a vehicle follows a route that leads
to two available parking stations close to its POIs (left hand-side); when one of
them becomes unavailable, the vehicle has to head to the next available parking
station within the radius of its first POI (right hand-side).

2.1 DEECo Model of the Running Example

The above scenario has been implemented in the DEECo component model
[5]. DEECo is a component model developed within ASCENS, that targets the
development and deployment of CPS following the paradigm of ACEs.

In DEECo, each component is an independent unit of development and de-
ployment. Examples of two DEECo components in the DEECo domain specific
language (DSL) are depicted in Listing 1.1. It consists of knowledge, i.e., compo-
nent’s data (e.g., lines 9-10 and 19), and one or more processes (e.g., lines 11-14
and 20-23). Each process is essentially a thread that operates upon the knowl-
edge by reading the input knowledge, executing the process body and writing
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1 role AvailabilityConsumer:
2 calendar, availabilityList
3

4 role AvailabilityProvider:
5 position, availability
6

7 component Vehicle42 features AvailabilityConsumer:
8 knowledge:
9 calendar = {(WORK,09:00,(50.846232,49.469774)),...}, availabilityList = {(23,8),... },

10 plan = {(20m,LEFT),...}, planFeasibility = TRUE, ...
11 process computePlanWhenFarFromPOI(in calendar, in availabilityList, in planFeasibility, out plan):
12 plan ← JourneyPlanner .computePlan(calendar,availabilityList, planFeasibility)
13 scheduling: periodic( 6000ms ) and triggered(changed(planFeasibility) ∨ changed(availabilityList))
14 mode: farFromPOI
15 ...
16

17 component ParkingStation23 features AvailabilityProvider:
18 knowledge:
19 position = {50.846296, 49.461009}, availability = 8, ...
20 process monitorAvailability(out availability):
21 availability ← Sensors.getCurrentAvailability()
22 scheduling: periodic( 3000ms )
23 mode: closeToPOI, farFromPOI
24 ...
25 ...
26 // updates Vehicles’ belief over the availability of relevant Parking Stations
27 ensemble UpdateAvailabilityWhenFarFromPOI:
28 coordinator: AvailabilityConsumer
29 member: AvailabilityProvider
30 membership:
31 ∃ poi ∈ coordinator.calendar: distance(member.position, poi.position) ≤ THRESHOLD
32 knowledge exchange:
33 coordinator.availabilityList ← {m.availability | m ∈ members}
34 scheduling: periodic( 6000ms )
35 mode: farFromPOI
36 ...

Listing 1.1. Example of a DEECo component and ensemble definition in DSL.

the output knowledge. Process execution can be periodic (e.g., line 22), event-
based (where an event is a change in the knowledge of the component), or both
(e.g., line 13). Each process is bound to one (e.g., line 14) or more (e.g., line
23) modes and gets executed only if the containing component is in one of the
process’s modes. Finally, each component features one or more roles (e.g., line
7 and 17). A role is a collection of knowledge fields (e.g., lines 1-2 and 4-5).

In our running example, the two components depicted at the instance level
in Listing 1.1 are Vehicle and ParkingStation. The former features the role
of aggregating the parking availability information, which the later should pro-
vide. Among others, Vehicle comprises a process responsible for the computing
the Vehicle’s plan, while ParkingStation comprises a process responsible for
sensing the current availability (equivalently occupancy) of the station.

DEECo components do not have explicit bindings to each other and are not
allowed to communicate directly. Instead, communication in DEECo is implicit
and takes the form of knowledge exchange within emerging groups called ensem-
bles. Forming of ensembles is one of the tasks of the DEECo runtime framework.
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An ensemble in DEECo DSL is an interaction template (e.g., Listing 1.1,
lines 27-35) that consists of the specification of the roles of the interacting parts,
termed coordinator (line 28) and member (line 29), the specification of the con-
dition of interaction, termed membership (lines 30-31), and the specification of
the actual knowledge exchange function (lines 32-33). Similar to DEECo pro-
cesses, knowledge exchange within an ensemble is triggered in a periodic (e.g.,
line 34) or event-triggered fashion, and is bound to the mode of the evaluating
component (line 35).

In the running example, the UpdateAvailabilityWhenFarFromPOI ensemble
specifies that whenever two component that feature the roles of Availability-
Consumer and AvailabilityProvider and satisfy the condition of the latter
being close to one of the POI of the former (according to their knowledge valu-
ations), then the availability knowledge of the provider has to be copied to
the consumer side. This models the scenario of a car that communicates with a
parking station in order to obtain the station’s availability and plan accordingly.

In the rest of the chapter, we will focus on the problem of how to come up with
a specification of a DEECo-based system (such as the one depicted in Listing 1.1)
based on the initial requirements and domain assumptions. Throughout the rest
of the text, we illustrate the approach on the running example.

3 The Need for a Tailored Design Method for ACEs

Although DEECo provides a set of concepts (autonomous components, periodic
processes, ensembles) that effectively deal with the dynamicity and distribution
at a middleware level, the systematic design of CPS based on ACEs remains a sig-
nificant challenge. Contemporary design methods for complex systems typically
consist of the phases of (i) eliciting and analyzing the goals of the system-to-
be, i.e., what is to be achieved and why, (ii) translating them into requirements
specifications of the the system-to-be, and (iii) deriving the architecture of the
system-to-be by mapping each requirement to one or more runtime entities (usu-
ally referred to as components). KAOS [18,19] and Tropos [3,11] are two promi-
nent goal-oriented requirements engineering methodologies that are primarily
concerned with the first two design phases. SOTA [1] and ARE [21] are two re-
quirements modeling approaches developed within ASCENS and tailored to the
domain of autonomous and self-adaptive systems that also focus exclusively on
the first two design phases.

The underlying idea of KAOS is to use goals to capture the intent (the “why”)
behind the functionality of the system-to-be. Goals in KAOS are iteratively de-
composed into sub-goals until they reach the level where they can be mapped
to requirements or assumptions of the system-to-be. The process then continues
with assigning each requirement to an individual system agent. Goals in KAOS
can be formalized in real-time linear temporal logic (LTL) [2] and used to check
a requirements specification for consistency, completeness and pertinence. Al-
though KAOS is a well-established methodology in requirements engineering
with strong focus on formal specification and reasoning, its application in the
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design of ACEs is not straightforward. The main issue is that, although there
have been preliminary efforts towards this [17], KAOS does not provide a smooth
alignment between requirements with architecture (third design phase mentioned
in the previous paragraph). For instance, if a goal in our running example is to
“maintain the availability of the parking stations up-to-date”, the way to reflect
this goal in system architecture is open to interpretation and heavily depends
on the underlying component model used for development and deployment.

Tropos is an agent-oriented methodology where goals, soft-goals, tasks and
dependencies are analyzed from the perspective of the individual agents in the
system-to-be. Tropos uses the i* notation [23] for producing goal and actor mod-
els, which are later mapped to agent architectures that follow the Belief-Desire-
Intention (BDI) reference model [20]. In this respect, it is more effective than
KAOS in aligning system requirements with system architecture and implemen-
tation. When applied to the design of ACEs, the main shortcoming of Tropos
is that it fails to address the special concerns of the ACEs domain, i.e., that of
distributed dynamic feedback loop-based systems. In such systems, it is impor-
tant to capture the relation of the system with the environment at every time
instant, as opposed to focus on future states (the case of goals in Tropos).

SOTA [1] is a requirements modeling approach for the domain of ACEs and
autonomic systems in general. The key idea of SOTA is to abstract the behavior
of a system with a single trajectory through a state space, which represents the
set of all possible states of the system at a single point of time. The requirements
of a system in SOTA are captured in terms of goals. A goal is an area of the SOTA
space that a system should eventually reach, and it can be characterized by its
pre-condition, post-condition, and utilities. Thus SOTA provides the means to
capture the early requirements of different component cooperation schemes, but
not to guide the requirements-driven design of ACEs. A mathematical formal-
ization of SOTA is provided by the General Ensemble Model (GEM) [14] The
GEM semantics of SOTA is based on timed streams of domain states which
closely corresponds to the higher-order predicate semantics of IRM (cf. Section
5). Chapter II.1 [4] in this volume discusses GEM in more detail.

Autonomy Requirements Engineering (ARE) [21] is a methodology for elicita-
tion and expression of autonomy requirements developed within ASCENS. ARE
relies on goal-oriented requirements engineering approaches (such as KAOS and
Tropos) to elicit and define the system goals, and uses a Generic Autonomy
Requirements (GAR) model to derive and define assistive and eventually al-
ternative goals (or objectives) of the system. However, similar to classical goal
oriented approaches, ARE focuses on the requirements phase and not on the
mapping between requirements and architecture. ARE is discussed in detail in
Chapter III.3 [22] of this volume.

A key challenge in the design of ACEs is to provide a concept that, contrary
to the system goal, captures the operational normalcy at every time instant,
i.e., the property of being within certain limits that define the range of normal
operation of the system. The next challenge is to use this concept in order to
systematically map situation-specific high-level goals to low-level artifacts of sys-
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Fig. 2. Top-level design of the case study.

tem architecture (e.g., component processes, ensemble specifications, component
modes) so that the compliance of design decisions with the overall system goals
and requirements is explicitly captured and (if possible) formally verified.

4 Invariant Refinement Method

We have addressed the above challenge by introducing a novel design method
called IRM (Invariant Refinement Method), which specifically focuses on ACEs.
IRM builds on goal-based requirements elaboration as pioneered by [16]. Similar
to [16], IRM focuses on the system-to-be from a global perspective and reasons
about the goals and requirements of the system as whole. By gradual refinement
it allows refining these goals down to the responsibilities of individual compo-
nents, component processes, and ensembles.

IRM captures goals and requirements of the systems as invariants that de-
scribe the desired state of the system-to-be at every time instant. This corre-
sponds to the operational normalcy of the system-to-be and thus it aligns well
with the need of continuous operation of ACEs.

Fig. 2 illustrates an IRM refinement tree reflecting the running example. Each
rounded rectangle represents system’s requirements represented by an invariant
– e.g., the top-level invariant (1): “All Vehicles meet their route/parking

calendar”.



8 Bures, T., Gerostathopoulos, I, Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.

4.1 Invariants and Assumptions

The IRM tree employs first class entities – invariants, assumptions, and com-
ponents. A component is a primary functional entity of the system-to-be (e.g.,
Vehicle and Parking Station in Fig. 2). At the abstraction level of IRM,
each component comprises specific knowledge, i.e., its domain-specific data. The
valuation of components’ knowledge evolves over time as the result of their au-
tonomous behavior (i.e., execution of the associated component processes) and
knowledge exchange. Also, a component may take up a particular role (i.e., a
responsibility) in the system-to-be. This is a consequence of being referred to by
an invariant.

Technically, an invariant establishes a condition over the knowledge valua-
tion of a set of components. An invariant references components by role names –
e.g., in the invariant (1) the component Vehicle takes the role V while Parking

Station takes the role P. This way, an invariant captures the operational nor-
malcy of the system-to-be or its logical parts (i.e., groups of components).

Invariants need not only describe the responsibilities of components, but
they may also express assumptions about the environment. An assumption is
thus a condition that is expected to hold during knowledge evolution and is not
intended to be maintained explicitly by the system-to-be (in figures depicted as
yellow hexagon; e.g., (4) in Fig. 2).

4.2 Invariants vs. Computation Activities

The core idea of IRM is that each invariant which is not an assumption is
associated with a computation activity – an abstract computation that produces
output knowledge given a particular input knowledge such that the invariant
(over the input and output knowledge) is satisfied. This way, the computation
activity provides a dual view on the invariant – while the invariant reflects the
operational normalcy, the computation activity represents means for maintaining
it.

For instance, Fig. 3 provides the dual view of computation activities reflecting
the invariants in Fig. 2.

The duality of the invariants and computation activities gives a convenient
option of refer to invariants for the purpose of logic-based reasoning and refer to
computation activities when low-level implementation aspects are of concern.

An abstract computation activity can be related to an invariant at any level
in the IRM tree. The computation activity however gets a special significance
for the leaves of the IRM tree, where it corresponds to a component process or
a knowledge exchange. Thus, following the dual perspective, the goal of IRM is
to refine high-level invariants (i.e., the abstract activities) to the very concrete
invariants which via their computation activities lead to the design of component
processes and knowledge exchange.

Note that the activities associated with high-level system goals are abstract,
representing the whole system implementation. At this level of abstraction, not
all input knowledge can be precisely identified, this is exemplified in Fig. 3, where
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w.r.t.knowledge from Parking lots 
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Fig. 3. Dual, activity-based view on the top-level design of the case study from Fig. 2].

the input knowledge of the activity associated with (1) comprises V::calendar

and potentially some knowledge of parking lots, which is not yet clear, thus
denoted by P::?. The output knowledge comprises V::position, which is the
knowledge the evolution of which the system can effectively control by the ac-
tivity.

The relations between component knowledge and input/output knowledge of
activities are captured as knowledge flows on the IRM diagram. For example,
Fig. 3 shows the knowledge flow between the Vehicle and the activity asso-
ciated with (3) (with V::plan, resp., V::position as its input, resp., output
knowledge).

4.3 Invariant Refinement

The basic process in IRM is a systematic, gradual refinement of a higher-level
invariant by means of its decomposition (i.e., structural elaboration) into a con-
junction or disjunction of lower-level sub-invariants, i.e., Ip  Is1∧ . . .∧ Isn and
Ip  Is1 ∨ . . . ∨ Isn.

Formally, decomposition of a parent invariant Ip into a conjunction of sub-
invariants Is1,...,Isn is a refinement if the conjunction of the sub-invariants entails
the parent invariant, i.e., if it holds that:

Is1 ∧ . . . ∧ Isn ⇒ Ip (entailment)
Is1 ∧ . . . ∧ Isn 6⇒ false (consistency)



10 Bures, T., Gerostathopoulos, I, Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.
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Fig. 4. Invariant refinement of “Up-to-date V::plan w.r.t. knowledge from P

reflecting V::calendar is available”.

This definition follows the classical interpretation of refinement, where the
composition of the children exhibits all the behaviors expected from the parent
and (potentially) some more.

Similarly, the OR-decomposition of a parent invariant Ip into the sub-invariants
Is1,...,Isn is a refinement if it holds that:

Is1 ∨ . . . ∨ Isn ⇒ Ip (alternative entailment)
Is1 ∨ . . . ∨ Isn 6⇒ false (alternative consistency)

The refinement via AND- and OR-branching is applied recursively. This
starts with high-level invariants that reflect the overall system goals and in-
volve a number of components and ends with low-level invariants that involve a
single component or an ensemble of components.

To keep the semantics of the refinement, only the components that take a role
in the parent invariant may also take a role in the sub-invariants. However, as
the refinement also leads to concretization of the problem and its solutions, new
knowledge can be added to the components that take a role in the sub-invariants
(e.g., V::planFeasibility in Fig. 4).

The process of refinement is demonstrated in Fig. 2. As a design decision the
invariant (1) is refined into a conjunction of three sub-invariants: (2) having an
up-to-date plan, (3) keeping the vehicle’s position in alignment with the plan,
and (4) an assumption that an up-to-date plan can always be followed by the
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vehicle (i.e., the environment dynamics – traffic, parking availability, etc. – will
never prevent the car from following an up-to-date plan) and that it always
schedules reaching the destination in time. The refinement further continues in
Fig. 4, where the invariant (2) is further refined, up to the leaves.

Note the OR-decomposition below the invariant (6). Formally, the IRM re-
finement allows only AND-refinement or OR-refinement, but not a combination
of both. If a combination is necessary, it has to be formally modeled by intro-
duction of synthetic invariants following the abstract-syntax tree of the desired
formula. As these synthetic invariants do not provide any additional knowledge,
the graphical notation used in the figure omits them and permits direct connec-
tion of refinement symbols.

Seeing the refinement from the dual perspective of computation activities,
the computation activity of a parent is formed by parallel execution of its sub-
activities. In case of AND-refinement, this involves all sub-activities. In case of
OR-refinement, this involves executing exactly one sub-activity. To help deter-
mine which sub-activity of an OR-refinement to execute, the design practice is to
equip each OR-branch with an assumption which acts as a guard to the branch
(see assumptions (13) and (16) in Fig. 4).

4.4 Leaves of Refinement

As the rule of thumb the refinement is finished when each leaf invariant of the re-
finement tree is either an assumption or is a computation activity corresponding
to a process or knowledge exchange (see Section 2.1). In particular, the invari-
ant corresponds to a process if it captures the operational normalcy of a single
component (technically it means that it refers only to knowledge of a single com-
ponent). Such an invariant is called a process invariant (in diagrams marked by
P, e.g., (3) in Fig. 2).

Similarly, an invariant corresponds to knowledge exchange (called exchange
invariant) if it captures the fact that the knowledge of one component is in
certain relationship (typically in “identity” relationship) to knowledge of another
component. Invariant (12) in Fig. 4 is in example of an exchange invariant.
Exchange invariants are marked by X.

Generally, it is possible to refine invariants where several components take
a role (e.g., (5)) to process and exchange invariants which are eventually asso-
ciated with “real” computation activities. This typically involves a number of
refinement steps in which (a) the invariants are gradually split by roles and (b)
exchange invariants are introduced that collect needed knowledge.

Specifically, to refine an invariant Ip, referencing the components C1,...,Cm

into sub-invariants Is1,...,Isn we introduce the belief of C1 over the knowledge
of C2,...,Cm. In this context, the belief BC2,...,Cm

C1
(K) is knowledge of C1 that

represents C1’s snapshot of a part K of the knowledge of C2,...,Cm. For in-
stance, in Fig. 4, the belief V::availabilityList of Vehicle over the knowl-
edge P::availability of Parking Stations is an example of such a knowledge
snapshot (denoted as V::availabilityList=BParkingStation

V ehicle (P::availabili-
ty)).
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Thus, Is1 formulates the normalcy properties of BC2,...,Cm

C1
, whereas Is2,...,Isn

refine Ip while substituting the references to the knowledge of C2,...,Cm by ref-

erences to BC2,...,Cm

C1
. Note that BC2,...,Cm

C1
is a new knowledge introduced into C1.

For example, (15) formulates the condition on creating the belief V::availabili-

tyList=BParkingStation
V ehicle (P::availability), whereas (14) refines (6) while sub-

stituting the references to P::availability by references to V::availability-

List.
Furthermore, Is2,...,Isn are potentially process/exchange invariants, since, in

general, the number of components taking a role in Is2,...,Isn is, compared to
Ip, decreased at least by one due to references to the belief BC2,...,Cm

C1
(such as

when comparing (6) and (14)).

4.5 From Invariants to Final Architecture

Once the refinement reaches the level of process and exchange invariants, the
design continues to the implementation level by refining each process invariant
into a component process and each exchange invariant into an ensemble. For
example, in Listing 1.1 Vehicle is reified by Vehicle42, while (14) is refined
into the Vehicle42’s computePlanWhenFarFromPOI process, and (15) is refined
into the UpdateAvailabilityWhenFarFromPOI ensemble. Thus, determined by
the invariant refinement, this step yields the final architecture of the system. The
details are beyond the scope of this text; we refer the interested reader to [8].

5 IRM Abstraction Levels and Invariant Patterns

There is a significant abstraction gap between the high-level and low-level in-
variants. The former ones capture general operational normalcy while the latter
ones reflect architectural elements and thus capture the ACEs-specific aspects.
In this section we provide a detailed description of bridging the gap during the in-
variant refinement, i.e., during generation of low-level invariants from high-level
ones. We have identified five patterns of invariants that reflect the way opera-
tional normalcy is captured at four adjacent abstraction levels that are covering
the abstraction gap. With these patterns we can precisely set out the rules and
guidelines for refinement of the invariants on the same/adjacent abstraction lev-
els. The rules/guidelines allow for iterative refinement to continuously lower the
level of abstraction until the architectural elements level is reached.

In particular, the patterns are as follows (from the most abstract to the least
abstract):

1. general invariants,
2. present-past invariants,
3. activity invariants,
4. process invariants, and
5. exchange invariants (patterns 4. and 5. are at the same level of abstraction).
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Fig. 5. Patterns of invariants in the case study.

The patterns of invariants in the case study are illustrated in Fig. 5.
In the rest of the section we use a predicate formalization of the invariants in

order to allow their precise definition and, in particular, to highlight the differ-
ences between the patterns. In principle, an invariant expresses the operational
normalcy in terms of a condition to be maintained during knowledge evolution
in time. Using this formalization, it is possible to refer to timed sequences of the
knowledge values, and thus it allows for viewing the complete knowledge value
evolution in time. An important aspect of ACEs-based systems is that they are
inherently asynchronous. Thus, the formalization has to capture the evolution in
terms of asynchrony and delays. As an example, the knowledge evolution shown
in Fig. 6 can be assumed. In it, we are interested in a formalization of the form
“The value of V::pAvailable always equals the value of P::available that is not
older than the period” rather than in “V::pAvailable equals P::available” (which
does not always hold).

5.1 Formalization

We formalize the invariants as follows.

Definition 1. Time is represented by a non-negative real number, i.e., T def
= R+

0 .
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time

P::available

V::pAvailable
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V::pAvailable	
  :=	
  P::available	
  

≤	
  period ≤	
  period

knowledge	
  valuation
at	
  the	
  given	
  time	
  instant

Fig. 6. Example of knowledge evolution in time when employing (periodic) knowledge
exchange.

Definition 2. Knowledge is a set K = k1, ..., kn of knowledge elements, where
the domain of ki is denoted as Vi.

Definition 3. Knowledge valuation of element ki is a function T → Vi which
for a time t yields a value of ki (denoted as ki[t]).

Definition 4. Invariant is a predicate (in a higher-order predicate logic with
arithmetic) over knowledge valuations and time.

Of course, the invariant definition above is not the only possible one. For
example, real-time LTL [2] can be used too. Nevertheless, we use the proposed
formalization as our primary goal is not model checking but rather a description
of invariant refinement. For it, we believe the formalization is more suitable and
allows for straightforward formulating and proving relevant theorems.

In the rest of this section, we detail the identified invariant patterns and
provide formal definitions as well as macros to ease their usage.

5.2 General Invariants

General invariants are defined at the top-level of abstraction and they capture
the operational normalcy by relating the past and current knowledge valuations
to a future knowledge valuation.

An example of this pattern is the invariant (1): “All Vehicles meet their
route/parking calendar”, which can be formalized as follows (for the sake of
brevity, it assumes only the calendar with a single POI not changing in time):

∃t ∈ T, t ≤ DEADLINE : v.pos[t] = DEST

Importantly, the invariant does not refer to current time; instead, it refers to
a particular time instant in the future.
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5.3 Present-past Invariants

On the lower level of abstraction, there are present-past invariants that cap-
ture the operational normalcy employing the current and/or past knowledge
valuations. This corresponds with the fact that software systems can work with
current and/or past data and cannot depend on future data. This fact has been
abstracted away at the level of general invariants. To limit the amount of needed
past data, the lag of a present-past invariant is defined as the maximal distance
in the past that is needed to formulate the operational normalcy of the invariant.
As in real-time software control systems, it is assumed that the smaller the lag,
the bigger precision and robustness and vice-versa. An idealized and unreachable
case is the zero lag, which would mean that the beliefs of all components are
always up-to-date and their actions are instant.

Importantly, when a general invariant is refined into present-past invariants
(or more precisely into a conjunction of them), assumptions have to be added
that guarantee that maintaining the operational normalcy based on the cur-
rent/past knowledge valuation will eventually result in reaching the operational
normalcy based on a future knowledge valuation. An example of such an as-
sumption is the assumption (4) in Fig. 2.

Definition 5. (Present-past invariants) For a predicate P capturing the relation
between valuation of knowledge elements I1, . . . , In and O1, . . . , Om, and the lag
L, the expression PL

p−p[I1, . . . , In][O1, . . . , Om] denotes the following present-past
invariant:

∀t ∈ T,∃t1, . . . , tn : 0 ≤ t− ti ≤ L, i ∈ 1..n :

P (I1[t1], . . . , In[tn], O1[t], . . . , Om[t])

In this context, we call I1, . . . , In “input” variables and O1, . . . , Om “output”
variables of the invariant so as to denote the correspondence of these variables
to the inputs/outputs of the computation that is responsible for maintaining the
invariant.

Invariant (2): “Up-to-date V::plan, w.r.t. knowledge from P, reflecting V::calendar
is available” is an example of a present-past invariant. For parking lots P1..Pn

and lag L it can be formalized as follows:
“At any time, for the current valuation of V::plan there is a valuation of

knowledge of P1, ..., Pn and V::calendar not older than the lag L such that
they together meet the condition expressed by the UpToDatePlan predicate.”

In the predicate logic, it can be captured as follows:

∀tcur ∈ T,∃t1, ..., tn, tcal ∈ T, 0 ≤ tcur − ti ≤ L, i ∈ 1..n, cal :
UpToDateP lan(P1[t1], ..., Pn[tn], V ::calendar[tcal], V ::plan[t])

In this predicate, if the lag L greater than zero, it means that the V::plan is
outdated regarding the current knowledge of the parking lots (the greater L ⇒
more outdated parking-lot knowledge valuation). The zero lag would mean the
plan is up-to-date at any moment.
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Using the shortcut introduced in Definition 5, we can rewrite the expression
as:

UpToDateP lanL
p−p[P1, ..., Pn, V ::calendar][V ::plan]

Such an shortcut can be also used during invariant refinement for introducing
new present-past invariants. It would serve as a “macro” that transforms a time-
oblivious predicate (e.g., UpToDatePlan) into a formalized present-past invariant
of the above-described structure.

5.4 Activity Invariants

Frequently, properties of a (soft) real-time activity have to be assumed. A com-
monly used property is then that each output knowledge valuation is based
on the same or newer input knowledge valuation than the previous one. Fig. 7
illustrates this.

time

I1

I2

O

0

0

0

2

1

1

2

2

4

t1a2(t1)a1(t1) a1(t2) t2a2(t2) a1(t3)a2(t3) t3

≤L ≤L ≤L

valuation

Fig. 7. Illustration of a valid knowledge valuation with respect to an activity where
the output O represents the sum of inputs I1 and I2, while meeting lag L.

An activity invariant expresses the fact that the output knowledge valuation
changes only as a result of performing the activity. Moreover, the activity never
exceeds the corresponding time limit (the lag). More rigorously, at any time the
output knowledge valuation corresponds to the outcome of the activity applied
on input knowledge valuation not older than the lag. Plus, each output is based
on the same or newer inputs than the previous output.

Definition 6. (Activity invariant) For a predicate P reflecting the post-condition
of an activity with inputs I1, . . . , In and outputs O1, . . . , Om, and for lag L, the
expression PL

act[I1, . . . , In][O1, . . . , Om] denotes the following activity invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ L, ai non-decreasing, i ∈ 1..n :

P (I1[a1(t)], . . . , In[an(t)], O1[t], . . . , Om[t])
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where the non-decreasing function ai gives for each time t the corresponding
time t′ such that the valuation of Ii at t′ was “used to compute” the valuation
of O1, . . . , Om at t, as shown in Fig. 7.

Invariant (6) can serve as an example of the activity invariant: “Up-to-date
V::plan, w.r.t. P::availability and V::planFeasibility, reflecting V::calendar is
available”. For parking lots P1..Pn and lag L it can be formalized as follows:

“There is an execution of the planning activity maintaining the condition
UpToDatePlan such that at any time the valuation of V::plan corresponds to
the outcome of the activity applied on the valuation of the input knowledge
P::availability, V::planFeasibility, and V::calendar not older than lag
L. Moreover, each valuation of V::plan is based on newer valuation of the input
knowledge than the previous one.”

Using the predicate logic, it can be expressed as follows:

∃a1, ..., an, apF , acal : T→ T,
0 < x− ai(x) ≤ L,∀i ∈ {1..n, pF, cal},

ai(x) ≤ ai(y),∀x, y : x ≤ y,∀i ∈ {1..n, pF, cal},

UpToDateP lan


P1::availability[an(t)],...

Pn::availability[an(t)],
V ::planFeasibility[apF (t)],

V ::calendar[acal(t)],
V ::plan[t]


The aspect that V::plan may change only as the result of an execution

of a planning activity is captured by the usage of the non-decreasing function
ai : T → T rather than a particular ti ∈ T. The ai function also captures the
read consistency.

Similarly as in the previous invariant, the lag greater than zero means that
the outdated valuation of P::availability and V::planFeasibility is con-
sidered. The zero lag reflects the case where the valuation of V::plan is at each
time instant up-to-date with respect to the current valuation of P::availability
of the parking lots and V::planFeasibility of the vehicle (i.e., the activity
computes infinitely fast and infinitely often).

Using the shortcut introduced in Definition 6, we can write the formalization
of invariant (6) as:

UpToDateP lanL
act


P1::availability[an(t)],...

Pn::availability[an(t)],
V ::planFeasibility[apF (t)],

V ::calendar[acal(t)],
V ::plan[t]


V ::plan


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5.5 Process Invariants

Process invariants are in the leaves of invariant decomposition, i.e., at the lowest
level of abstraction. Such an invariant captures a periodic real-time component
process. Into it, an activity invariant capturing local computation (while assum-
ing read consistency) is refined.

Contrary to the activity invariants, the process invariant adds a constraint
that the activity is executed exactly once in every period. Therefore, the period
can be seen as a refinement of the activity lag and the output knowledge evalu-
ation is determined by the release time (time at which a task becomes ready for
execution) and finish time in each period [9].

Specifically, such an invariant captures that if the current time is before the
finish time of the process in the current period, then the outputs are the same as
in the previous period (i.e., they correspond to the inputs used in the previous
period). Otherwise, the outputs correspond to the inputs at the release time of
the process in this period.

Definition 7. (Process invariant) For a predicate P reflecting the post-condition
of a periodic real-time process with inputs I1, . . . , In, outputs O1, . . . , Om, and
period L, the expression PL

proc[I1, . . . , In][O1, . . . , Om] denotes the following pro-
cess invariant:

∀x ∈ N, ∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x),

∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[R(p− 1)], . . . , In[R(p− 1)], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[R(p)], . . . , In[R(p)], O1[t], . . . , Om[t])

where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time process in the n-th
period.

In contrast to the activity invariant, there is the same R for every input I. It
reflects the fact that at the release time, all the inputs are read by the process
atomically.

The invariant (11) can be taken as an example of the process invariant:
“Up-to-date V::plan, w.r.t. V::availabilityList and V::planFeasibility, reflecting
V::calendar is available”. For period L, it can be formalized as follows:

“If the current time is before the finish time of the process in the current pe-
riod, then the V::plan valuation is the same as in the previous period; i.e., it cor-
responds to the outcome of the process w.r.t. the inputs V::availabilityList,
V::planFeasibility, and V::calendar at the release time of the process in the
previous period. Otherwise, V::plan corresponds to the outcome of the process
w.r.t. the inputs at the release time in this period.”

In the predicate logic, it can be captured as follows:
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∀x ∈ N, ∃R,F : N→ T, E(x− 1) ≤ R(x) < F (x) < E(x),
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ UpToDateP lan


V ::availabilityList[R(p− 1)],
V ::planFeasibility[R(p− 1)],

V ::calendar[R(p− 1)],
V ::plan[t]



t ≥ F (p)⇒ UpToDateP lan


V ::availabilityList[R(p)],
V ::planFeasibility[R(p)],

V ::calendar[R(p)],
V ::plan[t]


where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time process in the n-th
period, as per Definition 7.

In the process invariant case, the zero L means that the V::plan is at each
time instant infinitely close to the up-to-date plan with respect to the current
V::availability, V::planFeasibility, and V::calendar of the vehicle.

With the help of the shortcut from Definition 7, the formalization of (11) can
be shortened as:

UpToDateP lanL
proc

V ::availabilityList,
V ::planFeasibility,

V ::calendar

V ::plan


5.6 Exchange Invariants

The activity invariants that capture the establishment of a belief (that can be
addressed by ensemble knowledge exchange) while assuming distributed read
consistency, are refined into exchange invariants, which capture periodic knowl-
edge exchange of an ensemble.

In contrast to process invariants, the input values in exchange invariants can
be obtained at different times (but the times still have to belong to the same
period), as the input values are potentially distributed. Additionally, knowledge
propagation delays are also considered. These delays can arise for example from
delays in network communication.

In summary, the exchange invariants depict a composite activity composed
of knowledge transfer and periodic evaluation of the knowledge exchange and
membership condition.

Importantly, each component processes the incoming knowledge exchange by
itself. The required input knowledge is sent asynchronously by other components.
If the knowledge transfer time is larger than the knowledge exchange period, the
composite activities may partially overlap.

Definition 8. (Exchange invariant) Let P be a predicate reflecting the post-
condition of a periodic knowledge exchange with inputs I1, . . . , In, outputs O1, . . . ,
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Om, and period L. Provided that it takes at most T for the knowledge to be-
come available at the component executing the knowledge exchange, the expres-
sion PL,T

exc [I1, . . . , In][O1, . . . , Om] denotes the following exchange invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ T, ai non-decreasing, i ∈ 1..n :

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[a1(R(p− 1))], . . . , In[an(R(p− 1))], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[a1(R(p))], . . . , In[an(R(p))], O1[t], . . . , Om[t])

where E : N0 → T and E(n) = n · L, i.e., the end of the n-th period. R(n)
and F (n) denote the release and finish time of the real-time knowledge exchange
in the n-th period. Finally, ai gives for each time t the corresponding time t′

such that the valuation of Ii that was available to the component executing the
knowledge exchange at t was sent to the component at t′.

For every input Ii, the ai can be a different value as the component executing
the knowledge exchange can receive the inputs at different times. On the other
hand, the knowledge exchange is assumed to be unidirectional. It means that
that the exchange is written into the knowledge of a single component only, and
therefore these writes can be atomic. Thus, for every output Oi there is the
same t.

The invariant (12) of the running example can taken as a representative
of the exchange invariant: “V::availabilityList – Vs belief over P::availability of
trip-relevant parking lots – is up-to-date”. For parking lots P1..Pn, period L, and
upper bound for knowledge transfer T it can be formalized as follows:

“If the current time is before the finish time of the knowledge exchange for
V in the current period, then the V::availabilityList valuation is the same
as in the previous period. Otherwise, V::availabilityList equals the set of
P::availability for all relevant Pi as available at V at the release time in
this period. It takes at most T for the knowledge of Pi to become available at V.
Further always the newest knowledge of Pi is taken into account.”

The predicate logic can capture it as follows:

∃a1, ..., an : T→ T, 0 < x− ai(x) ≤ T, ∀i ∈ {1..n},
∃R,F : N→ T, E(x− 1) ≤ R(x) < F (x) < E(x),
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < FV (p)⇒ EqualsRelevant


P1::availability[a1(R(p− 1))],...

Pn::availability[an(R(p− 1))],
V ::availabilityList[t]



t ≥ FV (p)⇒ EqualsRelevant


P1::availability[a1(R(p))],...

Pn::availability[an(R(p))],
V ::availabilityList[t]


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In this case, zero L means that, at each time instant, the V::availabilityList
is infinitely close to the set of the current P::availability of all the relevant
parking lots.

With the help of the shortcut from Definition 8, the invariant (12) can be
formalized as:

EqualsRelevantL,T
exc

P1::availability,...

Pn::availability,

V ::availabilityList


5.7 Refinement Between Invariant Patterns

With the invariant patterns described, we can now introduce the guidelines for
decomposition at the corresponding levels of abstraction. The goal of these guide-
lines is to guarantee the refinement between invariants following the patterns.
The guidelines are presented here informally only; the formal definitions and
proofs are in [7].

General → Present-past. As already mentioned in section 5.3, when a general
invariant is refined into (a conjunction of) present-past invariants, assumption
invariants have to be introduced (e.g., invariant (4) in Fig. 2). From the formal
point of view, this refinement is the most demanding one as it is necessary to
proof each case separately.

Present-past → Present-past. When a single present-past invariant is refined
into a conjunction of other present-past invariants, the combined lag of the sub-
invariants is not greater that the parent’s lag. The combination is figured out by
the knowledge dependencies among the sub-invariants. (By knowledge depen-
dency, we mean here a situation, when an invariant uses knowledge produced by
the activity associated with another invariant.)

Present-past → Activity. It holds that the activity invariant pattern is a strict
refinement of the present-past invariant pattern; i.e., PL

act[I][O]⇒ PL
p−p[I][O] for

each P , I, and O.

Activity → Activity. As in the case of present-past → present-past invariant
refinement, an activity invariant can also refined into a conjunction of other
activity invariants. For our predicate formalization, it is possible to determine
this form of refinement solely based on the time-oblivious skeletons of the invari-
ants and the structure of the decomposition (i.e., without interpreting the full
invariants via a theorem prover).

Activity → Process. It holds that the process invariant pattern is a refinement
of the activity invariant pattern with lag equal twice the period of the process
invariant pattern; i.e., PL

proc[I][O]⇒ P 2L
act[I][O] for each P , I, and O. This com-

plies with the well-known fact in the area of real-time scheduling: in order to
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achieve a particular end-to-end response time with a real-time periodic process
with relative deadline equal to period, the period needs to be at most half of the
response time [9].

Activity → Exchange. Similarly, it holds that the exchange invariant pattern is
a refinement of the activity invariant pattern with lag equal twice the period
of the exchange invariant pattern plus the time for distributed transfer of the
knowledge; i.e., PL,T

exc [I][O]⇒ P 2L+T
act [I][O] for each P , I, and O.

Impact of IRM Design on the Case Study. By identifying invariants in the case
study, classifying them into the available invariant patterns (Sections 5.2-5.6),
and subsequently refining them using the above guidelines, we systematically
constructed the IRM tree of the case study. This can be used in turn to derive
the DEECo specification of the case study (Listing 1.1 in Section 2.1).

6 Conclusions

In this chapter, we have presented IRM – a requirements elicitation and archi-
tectural design method that guides the design of ACEs. With respect to the
Ensemble Development Life Cycle (cf. Chapter III.1 [13]), IRM lies in the tran-
sition between the Requirements Engineering and the Modeling Phase of the
design wheel. IRM takes similar approach as found in goal-oriented require-
ments engineering, but specifically focuses on “maintain” goals, as these are
critical for continuously running systems that constantly interact and control
their environment (such as cyber-physical systems).

The core idea of IRM is to describe the variability of a system by AND and
OR invariant decompositions that capture the required functionality of the sys-
tem under different runtime situations. IRM establishes systematic refinement
between high-level requirements and low-level architectural concepts, i.e., com-
ponents, component processes, and knowledge exchange functions as defined in
the DEECo component model. This directly allows deriving an architecture of
ACEs and brings about strong traceability.
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