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Abstract. Modern Cyber-Physical Systems (CPS) not only need to be depend-

able, but also resilient to and able to adapt to changing situations in their envi-

ronment. When developing such CPS, however, it is often impossible to antici-

pate all potential situations upfront and provide corresponding tactics. Situations 

that lie out of this “envelope of adaptability” can lead to problems that range from 

single component malfunctioning to complete system failure. The existing ap-

proaches to self-adaptation cannot typically cope with such situations as they still 

rely on a fixed set of tactics, which in case of complex systems does not guarantee 

achieving correct functionality. To alleviate this problem, we propose the concept 

of meta-adaptation strategies, which extends the limits of adaptability of a system 

by constructing new tactics at runtime to reflect the changes in the environment. 

The approach is demonstrated on an existing architecture-based self-adaptation 

method and exemplified by two concrete meta-adaptation strategies.  
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1 Introduction 

An important feature of efficient and dependable CPS is self-adaptivity, i.e., the abil-

ity to change their behavior or structure in response to changes in their environment. 

Self-adaptation in software systems is usually achieved in three fundamental ways: (i) 

by relying on a detailed application model, e.g., Markov Decision Processes (MDP), 

and employing simulations or other means of state-space traversal to infer the best re-

sponse of the system, (ii) by identifying control parameters and employing feedback-

based control techniques from control theory, and (iii) by reconfiguring architecture 

models, typically with the help of Event-Condition-Action rules – architecture-based 

self-adaptation. 

Existing approaches. A common denominator for all these three fundamental ways is 

that they monitor the state of the environment and select an operation to perform from 

a pre-designed fixed set of actions. In (i), a model of the environment is assumed to be 

available (either known or learned) and the self-adaptation selects an action (e.g., “go 

straight”, “turn left”, “turn right”) to maximize future reward. In (ii) a fixed set of con-



trol parameters is given and the actions consist of setting (increasing/decreasing) a pa-

rameter value (e.g., Java heap size). In (iii), self-adaptation rules are expressed as ac-

tions involving particular architecture reconfigurations applicable under certain condi-

tions in the presence of certain events or situations [1, 2]. The combination of Rainbow 

framework with the Stitch language is representative of (iii). In Stitch, a tactic is a 

specification of an activity with a pre- and post-condition and an associated action. The 

self-adaptation in (iii) can be thus seen as selecting one or more tactics from a fixed set. 

These three ways have also been used both combined and together with learning-

based approaches. For example, control theory has been employed in the runtime mod-

ification of the probabilities of a MDP [3]. Learning-based approaches have been pro-

posed to deduce the impact of adaptation actions at runtime [4], and to mine the appli-

cation model from system execution traces [5]. 

In the realm of CPS, where we deal with large complex distributed systems, the high 

level view of architecture-based self-adaptation (i.e., (iii)) is generally favored [1, 2, 6, 

7]. At the same time, due to external uncertainty [8] (e.g., hardware failures, temporary 

network unavailability), anticipating all potential situations upfront is not an option. As 

a result, adapting by switching between available tactics applicable in different situa-

tions is problematic, as the CPS may arrive in a situation where no combination of 

tactics applies. A similar problem of selecting only from fixed actions and parameters 

applies also to (i) and (ii).  

Goals. As a remedy, focusing specifically on architecture-based self-adaptation, we 

propose to generate new tactics at runtime to reflect the changes in the environment and 

increase the overall system utilities, in particular safety, performance, and availability. 

We do so by introducing the concept of meta-adaptation strategies (MAS). MAS allow 

us to enrich the adaptation logic of the system (thus the “meta” prefix) by systematically 

generating new tactics. This provides a dynamic space of actions and effectively ex-

tends the limits of adaptability of the system.  

In particular, we present the idea of MAS and define their structure similar to design 

and adaptation patterns. On top of this basis, we show two examples of MAS and 

demonstrate their applicability. The two MAS examples of course do not cover the 

whole space of potential MAS, however, we believe that by introducing the idea of 

MAS as means for dynamically extending the limits of systems adaptability, we provide 

helpful inspiration for future research on self-adaptive systems. 

2 Running Example and Background 

To demonstrate the concept of MAS, we briefly overview below the running exam-

ple and the IRM-SA self-adaptation method along with the DEECo component model, 

which serve as the model and technological basis we use to exemplify MAS. 

Running Example: Firefighter Coordination System. Firefighters belonging to tactical 

groups are deployed on the emergency field and communicate via low-power nodes 

integrated into their personal protective equipment. Each of these nodes is configured 



 

 

at runtime depending on the task assigned to its bearer. For example, a hazardous situ-

ation might need closer monitoring of a certain parameter (e.g., temperature). 

In the setting of the complete case study [9], firefighters have to communicate with 

the officers (their group leaders), who are equipped with tablets; the software running 

on these tablets provides a model of the current situation (e.g., on a map) based on data 

measured at and aggregated from the low-power nodes. Parameters measured at each 

low-power node are position, external temperature, battery level, and oxygen level. The 

data aggregation on the side of the group leaders is done with the intention that each 

leader can infer whether any of his/her group members is in danger and take strategic 

decisions. Such a coordination system has increased safety and performance require-

ments. It needs to operate on top of opportunistic ad-hoc networks, where no guarantees 

for end-to-end response time exist, with minimum energy consumption, and without 

jeopardizing its end-users. It also needs to respond to a number of challenging situa-

tions: What if the temperature sensor starts malfunctioning or completely fails at 

runtime?  What if firefighters are deployed inside a building where GPS readings are 

not available? What if the communication between members and their leader is lost? 

In all these situations, each node has to adapt its behavior according to the latest 

information available. For example, if a firefighter node detects that it is in the situation 

“indoors”, it has to switch from the tactic of determining the position via the GPS to 

the tactic of using an indoors tracking system. Other tactics include increasing the sens-

ing rate in face of a danger or even relying on the nearby nodes for strategic actions 

when communication with the group leader is lost. 

Obtaining an exhaustive list of situations that trigger adaptations in the firefighter 

coordination system is not a realistic option, as the environment is highly dynamic and 

unpredictable. We rather need to be able to build a system that would dynamically 

change its behavior by (i) generating new tactics on demand, and (ii) using them in the 

adaptation actions in order to deal with unanticipated situations. 

IRM-SA and DEECo. The Invariant Refinement Method for Self-Adaptivity (IRM-SA) 

[9, 10] is a requirements-oriented design method tailored for the CPS domain. IRM-SA 

captures goals and requirements of the systems as invariants that describe the desired 

state of the system-to-be at every time instant. For example, consider invariant (1) in 

Fig. 1, which specifies that the leader of each firefighter group should have an up-to-

date view (encapsulated in the positionMap field) of his/her group members. This “ne-

cessity” is AND-decomposed into invariants (2) and (3), which specify the necessities 

of propagating the position from each member to the leader and determining the posi-

tion on the side of each member, respectively. The refinement is finished when each 

leaf invariant of the refinement tree is either an assumption or is a computation activity 

corresponding to a process or knowledge exchange. Alternative designs are captured 

by the OR-decomposition pattern, where each variant is guarded by an assumption cap-

turing the state of the environment. For example, invariant (3) can be satisfied either by 

determining the position through an indoors tracking system – invariant (5) – or a global 

positioning system – invariant (7). At runtime, the system monitors the satisfaction of 

assumptions (4) and (6) and activates the activity corresponding to the chosen branch 

in the tree.  



Although IRM-SA is a method that can be used independently, it is very well aligned 

with the DEECo component model [11]. DEECo features autonomous components 

forming dynamic goal-driven collaboration groups – ensembles. Components contain 

knowledge (their data) and processes, whose periodic execution results in periodic up-

dates in their knowledge. Components are not bound to each other; they can only indi-

rectly communicate within an ensemble. The communication takes the form of mapping 

a component’s knowledge field into another component’s knowledge field – knowledge 

exchange. Membership of a component in an ensemble is not static, but periodically 

evaluated at runtime based on a condition specified over ensemble-specific interfaces 

that provide partial views over the components’ knowledge. 

In the IRM-SA–to–DEECo mapping, IRM-SA components correspond to DEECo 

components; process invariants to component processes; exchange invariants to ensem-

bles; and assumptions to DEECo runtime monitors. The IRM-SA graph corresponds to 

the adaptation logic that DEECo applications use in order to switch on and off certain 

features (according to the branches selected at runtime on the IRM-SA graph). In this 

frame, an adaptation action is choosing an applicable configuration by choosing among 

the branches in the IRM-graph, whereas a tactic corresponds to an individual leaf in-

variant. An adaptation action thus consists of selecting a set of tactics.  

3 Meta-Adaptation Strategies 

As already discussed in the previous sections, a system, even a self-adaptive one, 

can be designed to handle a limited number of runtime situations. Interestingly, the 

number of new distinct tactics that can be devised in response to an unanticipated situ-

ation is in principle infinite. Hence, apart from being able to devise new tactics, it is 

important to be able to rank them according to their effect on the system, in order to be 

able to select the most promising one, or, at least, to select the ones that are worth trying. 

Fig. 1. Excerpt from the IRM-SA model of the running example. 



 

 

(Here, we assume the general adaptation loop in which the adaptation mechanism acti-

vates a tactic, observes its effect on the system and, depending on its impact, either 

keeps it or tries another tactic.) 

To systematize the creation of new tactics, we rely on the concept of meta-adaptation 

strategies (MAS). MAS serve as patterns for extending the limits of adaptability of the 

system, with each strategy extending the limits in a certain way. The goal of such a 

strategy is twofold: 

1. To provide an algorithm to systematically generate a set of tactics at runtime. 

2. To provide a metric on the generated set according to which the tactics can be 

ranked. 

In the rest of the section, we exemplify our proposal by describing two MAS. Note 

that the two strategies can be applied sequentially or in parallel in the running system, 

since they are by design orthogonal to each other. Due to space constraints, we omit a 

third strategy that we have so far developed – details on that can be found in [12]. 

Tactics Generated by Data Classification. In CPS, exploiting the interdependencies be-

tween sensed data is an opportunity for introducing specific meta-adaptation strategies. 

A particular case is the location-dependency of data, i.e., the fact that the value of cer-

tain measurable system attributes depends on the physical location of the sensors that 

provide the data. Below we describe a strategy providing a way to automatically create 

knowledge exchange specifications (ensemble specifications in DEECo) that introduce 

“collaborative sensing” (when direct sensing is not possible anymore) and feed them 

into the running system. Hence, such new ensembles represent new tactics. 

Strategy Name: Knowledge Exchange by Data Classification 

Intent: To increase the robustness of the system, prolong its acceptable functioning, 

or achieve graceful degradation in face of data unavailability and outdatedness.  

Context: The strategy targets the case when values of a knowledge field of a com-

ponent become outdated to the extent that they cannot be relied upon in terms of correct 

behavior of the component. For instance, there is a sensor malfunction that prevents 

value updates.  

Behavior: To make up for losing the ability to obtain the actual value of an outdated 

knowledge field, create a new ensemble specification through which the field is as-

signed an approximated value based on the up-to-date related knowledge values of 

other components. This specification consists of (i) a membership condition, which 

prescribes the condition under the components should interact, and (ii) a knowledge 

exchange function, which specifies the knowledge exchange that takes place between 

the collaborating components. (For simplicity, we consider the knowledge exchange 

that just copies the data without manipulating them in any other way.)  

To be able to construct the membership condition when the situation targeted by the 

strategy happens, observe first the system when it is healthy and log components’ 

knowledge (as a time series of the knowledge evolution). Analyze (typically offline) 

the logged knowledge and find conditional correlations indicating that when values of 

some knowledge fields 𝐴1, 𝐵1 , … , 𝐴𝑛, 𝐵𝑛 are pairwise “close” then other values of other 

knowledge fields 𝐶, 𝐷 are “close” as well. Formulate an ensemble (to be instantiated 



when the situation targeted by the strategy happened), which uses the pairwise “close-

ness” of 𝐴1, 𝐵1, … , 𝐴𝑛, 𝐵𝑛 as the membership condition and has the assignment 𝐷 ≔ 𝐶 

as the knowledge exchange. 

Generate a number of possible membership conditions corresponding to different 

tactics. Then, select a tactic by applying the metric of selecting the tactic which provides 

the most general condition given the target confidence level. 

Contraindications: The analysis of the collected time series can be very resource 

demanding and therefore a dedicated hardware infrastructure should be used. Similarly, 

the data collection may be a rather resource-intensive process, especially when compo-

nents’ knowledge is big or changes frequently. Also, introducing superfluous new en-

sembles can overload the system with unnecessary replicated data.  

Example: In the firefighter coordination case study, each firefighter component fea-

tures the knowledge fields of position and temperature. Suppose that the temperature 

values are used to control the suit cooling system. Obviously, when the temperature 

sensor breaks, a real-life threat arises. Since firefighters are usually moving in groups 

so that those close to each other obtain similar temperature readings, the temperature 

value of one component can be approximated based on the temperature values of the 

others, when their positions are close. Technically, the threshold of temperature prox-

imity can be set (e.g., 20°C). 

Tactics Generated by Period Adjusting. A CPS typically brings real-time requirements 

that are reflected in schedulability parameters of component processes. The schedula-

bility parameters can be typically inferred by real-time design via schedulability anal-

ysis. However, when schedulability parameters influence the systems in a complex 

manner (e.g., when there is a tradeoff between CPU utilization, battery, network utili-

zation), it is not possible to infer them by systematic analysis. Rather, the schedulability 

parameters are set manually, based on the experience of the system’s architect. The 

strategy below addresses the case when the manually set schedulability parameters can-

not cope with an unanticipated situation. 

Strategy Name: Process Period Adjusting 

Intent: To optimize the scheduling of processes with respect to overall system (ap-

plication-specific) performance in a system where processes are scheduled periodically.  

Context: The strategy targets situations when the system starts failing due to vio-

lated timing requirements and the schedulability parameters cannot be inferred a priori 

because they influence the system in a complex manner. 

Behavior: Let R be the set of all active real-time processes in the system. To be able 

to identify the situation when a requirement for a process ri in R with period pi is not 

satisfied anymore, equip each ri with a runtime monitor returning a fitness value fi (real 

number in [0-1]). Generate tactics that correspond to a new real-time processes ri’ cre-

ated from ri by adjusting (reducing or enlarging within pre-defined permissible bounds) 

pi to pi’, when fi drops below an acceptable threshold. To explore the search space of 

possible period adjustments, employ the genetic algorithm (1+1)-ONLINE EA [13]. 

Changing pi can be interpreted as generating a new tactic ri’ and using it to substitute 

the tactic ri in the system. Terminate the period adjusting procedure when the adjust-

ment of each pi has been exercised in both directions and there is no further benefit. 



 

 

In this strategy, tactics (new processes) are compared by substituting them to the 

running system and calculating the overall system fitness as a function of fi’s. 

Contraindications: Reducing periods (a usual action) may have a negative impact 

on other resources (CPU, battery, network). In such a case, the impact would have to 

be modelled and taken into consideration in the state-space search. 

Example: Consider extending the design of our running example by a root invariant 

that specifies that “battery consumption should be kept minimized”. In order to satisfy 

this invariant, the system will try at runtime to tweak the processes’ periods to invoke 

them as scarcely as possible. At the same time, when there is high inaccuracy in the 

GPS readings (e.g., less than 3 satellites in sight), the GPS process may need to be 

invoked more often to make sure the cumulative inaccuracy of the estimated position 

of a moving firefighter is within certain bounds. (The cumulative inaccuracy is essen-

tially the sum of the initial inaccuracy of the GPS reading and the distance a firefighter 

has moved since the last GPS reading.) It is thus a dynamic trade-off between availa-

bility and dependability that has to be resolved at runtime. 

4 Experimental Evaluation and Conclusion 

In order to evaluate the feasibility of the proposed MAS, we implemented them as 

extensions of the IRM-SA jDEECo plugin1. Our evaluation scenario consisted of three 

firefighters moving in a building, periodically monitoring their battery level, position, 

and external temperature. The objective of the system was to obtain accurate enough 

values of position and temperature, while keeping battery consumption minimal. Two 

malfunctions were introduced: (i) the GPS of one of the firefighters became inaccurate, 

and (ii) the temperature sensor of the firefighter was broken completely.  

The MAS described in the paper were able to successfully cope these unanticipated 

malfunctions – the “Process Period Adjusting” reduced the inaccuracy stemming from 

knowledge outdatedness thus compensating the inaccuracy of the GPS reading; the 

“Knowledge Exchange by Data Classification” created and deployed a new ensemble, 

which provided a temperature estimation to compensate for the broken sensor. The 

evaluation, together with all the measurements, is described in detail in [12].  

Conclusion. In this paper, we suggested a way to address the problem of limited adapt-

ability caused by a fixed set of tactics. To this end, we have introduced the concept of 

meta-adaptation strategies (MAS) as a means for creating new tactics by observing the 

behavior of a system at runtime. In addition to laying out the general concept of MAS, 

we have exemplified the concept by two instances of MAS. Generally, if a system is 

subject to environment uncertainty, the extent of the problem space that should be cov-

ered by systems adaptability is unknown. This makes it impossible to devise all adap-

tation tactics at design time. It of course makes it also impossible to presume all neces-

sary meta-adaptation strategies, as each strategy covers only a certain sub-space of the 

problem space. However, compared to pre-designed tactics, the meta-adaptation strat-

                                                           
1 https://github.com/d3scomp/IRM-SA/tree/ECSA2015 



egy involves observation of system’s and environment’s evolution at runtime and uti-

lizes this to formulate new tactics. As such, it has the potential to carry through higher 

expressive power than pre-designed tactics and consequently achieve significantly 

higher coverage of the problem space. 

Acknowledgements. The work on this paper has been supported by Charles University 

institutional funding SVV-2015-260222. 

References 

1. Cheng, S.-W., Garlan, D., Schmerl, B.: Stitch: A language for architecture-based 

self-adaptation. J. Syst. Softw. 85, 1–38 (2012). 

2. David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language 

support for navigation and reliable reconfiguration of Fractal architectures. Ann. 

Telecommun. 64, 45–63 (2009). 

3. Filieri, A., Ghezzi, C., Leva, A., Maggio, M., Milano, P.: Self-Adaptive Software 

Meets Control Theory: A Preliminary Approach Supporting Reliability Require-

ments. In: Proc. of ASE ’11. pp. 283–292. IEEE (2011). 

4. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A Framework for Engineering 

Self-tuning Self-adaptive Software Systems. In: Proc. of FSE ’10. pp. 7–16. ACM 

(2010). 

5. Yuan, E., Esfahani, N., Malek, S.: Automated Mining of Software Component In-

teractions for Self-Adaptation. In: Proc. of SEAMS ’14. pp. 27–36. ACM (2014). 

6. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: 

Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer. 37, 

46–54 (2004). 

7. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for Software Architectures. 

In: Proceedings of EWSA’06. pp. 113–126. Springer (2006). 

8. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-

ware. In: Proc. of SIGSOFT/FSE ’11. pp. 234–244. ACM (2011). 

9. Gerostathopoulos, I., Bures, T., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F., Plou-

zeau, N.: Self-Adaptation in Cyber-Physical Systems: from System Goals to Ar-

chitecture Configurations. Department of Distributed and Dependable Systems, 

D3S-TR-2015-02 (2015). 

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.: De-

sign of Ensemble-Based Component Systems by Invariant Refinement. In: Proc. 

of CBSE’13. pp. 91–100. ACM (2013). 

11. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: 

DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13. pp. 81–

90. ACM (2013). 

12. Gerostathopoulos, I., Bures, T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.: 

Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems. Depart-

ment of Distributed and Dependable Systems, D3S-TR-2015-01 (2015). 

13. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-Line, On-Board Evolution of Robot 

Controllers. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., and Lut-

ton, E. (eds.) Artifical Evolution. pp. 110–121. Springer Berlin Heidelberg (2010). 


