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Abstract—Cyber-physical systems (CPS) are systems of 
cooperating autonomous components which closely interact with 
and control the physical environment. Being distributed and 
typically based on periodic activities, CPS have to cope with the 
problem that data capturing a distributed state of the system and 
its environment are inherently inaccurate (they represent belief 
on the state). In particular, this poses a problem when 
dependability is being pursued. In this paper we address this 
issue by modeling belief at the architecture level. In particular, 
we enhance the architecture by models describing belief 
inaccuracy over time. We exploit these models to quantify at 
runtime the impact of belief staleness on its inaccuracy. We then 
use this quantification to drive architectural adaptation with the 
aim to increase dependability of the running CPS system. 

Keywords—cyber-physical systems; component architectures; 
self-adaptivity; state-space models; belief 

I. INTRODUCTION 

Cyber-physical systems (CPS) [1] are systems of 
collaborating entities, typically materialized as software 
components that closely interact and control the physical 
environment. In addition to being distributed, CPS often have a 
dynamic architecture and are to a degree autonomic and self-
adaptive to handle changes in their environments. 

A specific property of CPS is that components usually 
maintain belief about the state of other components and/or of 
the real state of their physical environment. Because of 
distribution and periodic nature of real state sensing, a belief is 
necessarily outdated (stale). Naturally, this implies belief 
inaccuracy (i.e., a deviation of the belief from the real state) 
and impacts the correctness and safety attributes of CPS. An 
important property of belief is that it often reflects real state 
that changes gradually (e.g., physical distance of an obstacle). 
Consequently, the staler the belief, the more inaccurate it is. 
This is also often the implicit assumption in a CPS architecture, 
which enables components to operate correctly in the “normal” 
case when their belief is not “too stale”.  

Obviously, key problems are how to quantify the maximum 
allowed staleness and how to handle situations when it exceeds 
such maximum. The first problem pertains to how to establish 
a relation between belief staleness and its inaccuracy since it 
heavily depends on the nature of belief data domain (e.g., 

position may change much faster than ambient light level). The 
second problem is related to architectural adaptations; for 
instance, detecting that belief inaccuracy exceeded a given 
threshold may trigger architecture mode switching [2] resulting 
in a configuration guaranteeing a safe state. 

Addressing these problems essentially requires (i) to 
provide a model that predicts evolution (prediction model) of 
the real state captured by a belief, (ii) to associate the 
prediction model with the component architecture to allow 
describing architecture adaptations at the design level, and (iii) 
to employ the prediction model at runtime to estimate the 
belief inaccuracy dynamically. Additionally, it is also 
necessary to design and perform the actual architectural 
adaptations; since this topic is adequately covered in existing 
literature [3]–[5] , we do not deal with this topic here and focus 
only on challenges (i) to (iii).    

To our knowledge, there are no approaches that would 
specifically address the problem of capturing belief inaccuracy 
at the architecture level and that would connect the inaccuracy 
estimation with architectural adaptation in support of retaining 
CPS dependable under changing conditions.  

The contribution of this paper lies in proposing a method 
which specifically addresses the challenges (i)-(iii) above. We 
do so in the context of DEECo [6] – a component model that 
specifically targets the design and development of CPS by 
explicitly supporting dynamic architecture evolution in 
physical environment and by handling belief of inherently 
distributed components which interact with and control this 
environment. 

II. MOTIVATING EXAMPLE 

To illustrate belief inaccuracy and its prediction, we use as 
a motivating example a simplified version of the cooperative 
adaptive cruise control system (CACC) [7]. CACC is an 
extension of an adaptive cruise control (ACC). CACC 
maintains a specified distance of a rear vehicle (follower) from 
the vehicle ahead (leader). If there is no leader, follower 
maintains a desired velocity. Contrary to ACC, which typically 
relies solely on headway sensors (radar-, laser-, camera-based) 
to continuously measure the distance to the leader, CACC 
assumes wireless communication of, e.g., the current position 
and velocity between vehicles. This enables CACC to make 



decisions regarding congestion avoidance in a broader time 
frame than a conventional ACC. In this paper, we assume for 
brevity that position and velocity are one-dimensional 
magnitudes. 

The key fragments of the CACC architecture are captured 
in Figure 1  by means  of the DEECo architecture model. A 
vehicle is represented as an instance of the Vehicle component. 
A DEECo component constitutes state, referred to as 
knowledge, and behavior, expressed via periodic processes 
operating upon the knowledge. For each role of the Vehicle 
component (i.e., leader and follower) the figure shows the 
relevant knowledge and processes. 

Facilitating dynamic architectures, component interaction 
in DEECo is encapsulated into ensembles, which take the role 
of dynamic connectors realizing attribute-based 
communication. Such communication is centered around 
dynamic component binding based on component attributes 
(knowledge exposed for this purpose), rather than explicit 
component identification. Specifically, the set of components 
to take part in an ensemble is defined declaratively via the 
membership condition. Among components that meet the 
membership condition, the interaction takes the form of 
implicit knowledge exchange (handled by the execution 
environment). The architecture of our example comprises 
a single ensemble – UpdateLeaderPositionAndVelocity, which 
groups together the leader and its follower with the goal of 
sharing the leader’s velocity and position with the follower. 
Specifically, this ensemble simply ensures copying the leader’s 
velocity and position (real state) to the knowledge of the 
follower – this copy becomes the belief of the follower on 
these magnitudes. Details on the semantics of ensembles can 
be found in [6], [8]. 

The CACC architecture described in Figure 1 brings about 
potential staleness and consequent inaccuracy of the follower’s 
belief (i.e., leader’s position/velocity), due to the unreliability 
of wireless communication and delays introduced by periodic 
execution of processes and knowledge exchange (not 
necessarily executed immediately after completion of sensing 
in the leader). However, safe operation of such CACC 
architecture can be assumed only if the belief inaccuracy fits 
within certain “expected” margins. Thus, it is imperative to 
capture these inaccuracy margins at the level of the 
architecture, enable for run-time inaccuracy estimation, and, in 
case of an excess, perform architecture adaptation towards, 
e.g., the traditional ACC. Note, that ACC employs less-
sophisticated control as a trade-off for avoiding leader-to-
follower communication (therefore ACC is not impacted by the 
inaccuracy of the follower’s belief).  

III. MODELING BELIEF ACCURACY 

When investigating the above-mentioned challenge in the 
frame of our example, we observe that the leader cannot brake 
the vehicle to full stop immediately, since there is an inherent 
physical process (determined by the kinetics of the vehicle) 
that governs how fast the vehicle can slow down1. This process 

                                                           
1 Here, we assume normal conditions; exceptional conditions, such as 

emergency stops, have to be handled separately (e.g., via obstacle detection). 

can be described as a time-invariant state-space model [9], 
which is a standard representation of a number of physical 
processes. In a simplified form it can be mathematically 
captured as ݀ܺ/݀ݐ ൌ ,ሺܺܨ ሻܥ , where ܺ  is a vector that 
represents the state of the system (e.g., vehicle’s velocity and 
position), ܥ  is a vector that represents the control (e.g., 
brake/gas pedal level), and ܨ is a function that represents the 
physical process. In our running example ܨ  computes the 
acceleration/deceleration and position change of the vehicle 
based on its state (i.e., current velocity and position) and the 
control (i.e., brake/gas). In practice, state-space models are 
widely used – typically empirically measured under nominal 
conditions and tabulated by manufactures for their products 
(e.g., the braking distance of a vehicle or its maximum 
acceleration at different velocities). 

The knowledge of the physical process makes it possible to 
predict the real state of the leader (i.e., its minimal potential 
velocity and the minimal potential distance to it) based on the 
value of the belief about the leader’s state and the staleness of 
it. This prediction is based on the worst-case assumption that 
since the time when the belief’s value was observed, the leader 
had applied maximal braking. 

The idea of providing a prediction model that defines 
potential evolutions of a real state given the belief value and its 
staleness is of course not specific to CACC. It is relevant to all 
systems employing belief regardless of the nature of the real 
state (be it based on a physical process or be it a state of 
software entity). In the following we show how this idea can be 
generalized for states that can be modeled by a time-invariant 
state-space model ݀ܺ/݀ݐ ൌ ,ሺܺܨ   .ሻܥ

component Vehicle 
     // leader’s role 
     knowledge: 
            position, velocity, ... 
      process measurePosition(out position): 
            function: 
                  position ← GPS.getCoordinates() 
             scheduling: periodic( 100ms  ) 
     // follower’s role 
      knowledge: 
            position, velocity, leaderPosition, leaderVelocity, targetAcc,  ... 
      process measurePosition(out position)  
      process computeAccelerationCACC(in position, in velocity, in leaderPosition, 

 in leaderVelocity, out targetAcc): 
            function:                 
                  targetAcc ←PIDController. 

computeTargetAcceleration(position, velocity, leaderPosition, 
leaderVelocity, DESIRED_DISTANCE) 

             scheduling: periodic( 200ms  ) 
      // switching between CACC and ACC to be decided 
      process computeAccelerationACC(in distance, in velocityDifference, out targetAcc): 
            … 
 ensemble UpdateLeaderPositionAndVelocity: 
      coordinator: Vehicle as follower 
      member: Vehicle as leader 
      membership: 
            distance(coordinator.position, member.position)  
                  ൑ 2 * DESIRED_DISTANCE  
      knowledge exchange: 
            coordinator.leaderPosition ← closest(coordinator.position, members).position 
            coordinator.leaderVelocity ← closest(coordinator.position, members).velocity 
      scheduling: periodic( 200ms )  
… 

Figure 1: Excerpt of the motivating example in DEECo DSL. 



We capture the prediction model by a pair of functions 
,௠௜௡ܨ ௠௔௫:Թ௡ܨ → Թ௡, which for a given state ܺ ∈ Թ௡ (e.g., a 
tuple of position and velocity) return the minimal and maximal 
derivative of the state. Formally, ܨ௠௜௡ሺܺሻ ൌ ,ሺܺܨ  ௠௜௡ሻandܥ
௠௔௫ሺܺሻܨ ൌ ,ሺܺܨ ௠௔௫ሻܥ  where ܥ௠௜௡ and ܥ௠௔௫ correspond to 
extremal control (e.g., maximal braking and maximal 
acceleration). In the running example (Figure 2), ܨ௠௜௡ 
computes the deceleration (i.e., rate of velocity decrease) and 
velocity (i.e., rate of position change) for maximum braking, 
while ܨ௠௔௫  computes the acceleration and position change 
when the gas pedal is maximally pressed. Note that specifically 
for the running example, since the derivative of position 
(velocity) is part of the state ܺ, ܨ௠௜௡ and ܨ௠௔௫ do not depend 
on the position explicitly.  

Next, we explicitly associate the functions ܨ௠௜௡,  ௠௔௫ onܨ
the level of the component architecture with corresponding 
component knowledge fields and provide means for calculating 
the accuracy of the real value based on the model captured by 
,௠௜௡ܨ   .௠௔௫ܨ

Formally, we attach a pair of ܨ௠௜௡, ௠௔௫:Թ௡ܨ → Թ௡  to a 
tuple of component knowledge fields ܭ ൌ ሺ݇ଵ, … , ݇௡ሻ whose 
valuation ܤ ൌ ሺܾଵ,… , ܾ௡ሻ ∈ Թ௡  forms the belief about a real 
state modeled by ܨ௠௜௡, -௠௔௫. For example, in the state-spaceܨ
models section of Figure 2, we associate leaderPosition and 
leaderVelocity with ܨ௠௜௡, ௠௔௫ܨ  modeling the actual position 
and velocity of the leader vehicle. The accuracy of a belief ܤ 
can then be computed as an interval ܣ ൌ ሾܺ௠௜௡ሺݐሻ; ܺ௠௔௫ሺݐሻሿ, 
where ܺ௠௜௡  is the solution to the differential equation ݀ܺ/
ݐ݀ ൌ ௠௜௡ሺܺሻ with initial condition ܺሺ0ሻܨ ൌ  is ݐ and where ,ܤ
the staleness of ܤ. Similarly, ܺ௠௔௫ is the solution to ݀ܺ/݀ݐ ൌ
 ܤ ௠௔௫ሺܺሻ with the same initial condition. In other words, ifܨ
was observed (i.e., ܤ was equal to the real state) time ݐ ago, the 
real state has to be within the bounds of ܣ.  

Note that the time-invariance of the model (i.e., that 
functions ܨ௠௜௡, ௠௔௫ܨ  do not depend on time even though ܺ 
does) and the fact that we quantify the accuracy only based on 
extremal control, make it possible to conveniently construct 
,௠௜௡ܨ  ௠௔௫ as an interpolation in tables obtained by empiricalܨ
measurements. In Figure 2, ܨ௠௜௡ is based on interpolation of a 
maximum-deceleration table; e.g., for velocity of 35 m/s, the 
maximum deceleration is -5 m/s2. This table can be established 
simply by bringing the vehicle to its top velocity and then 
intensively braking and measuring the rate of velocity change 
over time until the full stop. If an analytical model is available, 
it can alternatively be employed for constructing ܨ௠௜௡  and 
 .௠௔௫ directlyܨ

The last step is to enrich the component architecture with 
rules for architecture adaptation based on the safe margins of 
belief accuracy supported by the architecture. Figure 2 gives an 
example of specifying a condition that triggers architecture 
adaptation via mode switching [2]. Specifically, the process 
corresponding to CACC, resp. the process corresponding to 
traditional ACC, is annotated with a condition specifying the 
mode in which the process is activated; i.e., when the estimated 
inaccuracy of the distance between leader and follower 
(computed from their positions) is below, resp. above, a given 

threshold. Here, inaccuracy means the size of the accuracy 
interval ܣ for the current staleness of the distance belief.  

IV. COMPOSITION OF BELIEF INACURACCY 

An important observation when modeling belief accuracy is 
that a component process/ensemble knowledge exchange ܲ 
may aggregate multiple input beliefs ܤଵ,… ,  ௠ (i.e. beliefs ofܤ
different accuracy and model). As a consequence, the result of 
executing ܲ  with ܤଵ,… , ௠ܤ  as inputs, i.e., ܲሺܤଵ,… , ௠ሻܤ , is 
again a belief ܤ௢௨௧ , whose value, accuracy, and model are 
given by the composition (determined by ܲ ) of ܤଵ,… , ௠ܤ . 
Thus ܲ acts as a composition function upon the accuracy of 
input beliefs.  

In a general case, the definition of ܲ thus consists of both 
(i) a specification of how to compute its output based on the 
inputs, and (ii) a specification of how to compute the accuracy 
of output based on the accuracy of inputs. Advantageously, 
when ܲ  can be represented as a composition of continuous 
functions (e.g., +, -, *, /, max, min, sin, cos, etc.), which is 
indeed a typical case, we can deduce (ii) from (i) and thus (ii) 
does not have to be specified explicitly (which is also the case 
of the accuracy of distance in our example). 

V. REALIZATION IN JAVA 

 To evaluate the feasibility of our approach we have 
implemented2 a prototype of the motivating example in the 
jDEECo framework, which is the Java realization of the 
DEECo component model. The implementation contains the 
Java code of the components and ensembles, accompanied by 
the respective Simulink models, which graphically represent 
the control in the components and responses of the 
environment. For numerical solving of the differential 
equations of the prediction models, the Apache Commons 
Mathematical Library is employed. Solving takes place prior to 
the execution of every process, for the relevant input 
knowledge fields. 

We are currently working on integrating the proposed 
extensions to jDEECo. Specifically, we are working on (i) 

                                                           
2 http://d3s.mff.cuni.cz/projects/components_and_services/deeco/ 

component Vehicle      
      knowledge: 
            leaderPosition, leaderVelocity, ... 
     state-space-models: 
            [leaderPosition, leaderVelocity]:   

// Tables for  lookup of max. deceleration/acceleration based on current velocity.
// The tables consist of tuples (velocity (in m/s) -> acceleration (in m/s2)) 
maxDecTable = {0 -> -6, 35 -> -5, 51 -> -3} 
maxAccTable = {0 ->  4, 35 ->3, 51 -> 0} 
Fmin(leaderPosition , leaderVelocity )  

= (leaderVelocity , interpolate(maxDecTable , leaderVelocity )) 
Fmax(leaderPosition , leaderVelocity )  

= (leaderVelocity , interpolate(maxAccTable, leaderVelocity )) 
             ... 
     process computeAccelerationCACC(in position, in velocity, in leaderPosition, 

 in leaderVelocity, out targetAcc):  
             mode-trigger: inaccuracy(distance(position, leaderPosition)) <= THRESHOLD 
             ... 
     process computeAccelerationACC(in distance, in velocityDifference, out targetAcc): 
             mode-trigger: inaccuracy(distance(position, leaderPosition)) > THRESHOLD 
             ... 

Figure 2: Representation of state-space model in our example. 



associating the state-space models with knowledge fields and 
component modes via Java annotations, (ii) keeping track of 
the last time the value of a field was updated, so that the 
staleness can be determined, and (iii) integrating the 
differential equation solver into the jDEECo runtime 
framework. The final goal is to make the minimum and 
maximum predicted values of a knowledge field accessible via 
an API, which would be available in both processes and mode 
switching conditions (mode-triggers). 

VI. RELATED WORK  

The work presented in this paper is positioned in the broad 
context of self-adaptive autonomic systems [10][11]. Such 
systems typically feature execution based on the Monitor-
Analyze-Plan-Execute (MAPE-K) control loop [12]. Our 
approach is directly connected to MAPE-K adaptation 
mechanisms by providing a form of “augmented” sensing. 
Sensing approaches proposed in literature span from direct 
(hardware) sensing [13] to monitoring of extra-functional 
properties (e.g., performance monitoring [14][15]) and from 
environment sensing to monitoring of internal state via 
introspection (often termed self-awareness). On top of 
reasoning over present and past data, prediction-based 
approaches (e.g., [14]) allow for foreseeing a faulty or harmful 
situation (e.g., high load on server farm, traffic congestion 
along a lane) and for adapting in order to prevent such 
situations. The main distinction of our approach is that 
adaptation decisions are based not on predicted future values, 
but on anticipating what the current values of the input data 
could be (with respect to their staleness).  

Time-based analysis of hybrid systems [16] (e.g., via timed 
automata) is also applicable to CPS. Whereas the goal there is 
model checking, in our case the associated time analysis aims 
at guiding runtime adaptation. Dealing with inaccuracy in the 
sensed data is also tackled in the data-filtering domain, 
typically within the context of control systems.  For example, 
approaches based on Kalman filtering [17] employ linear 
quadratic estimation to remove the measurement noise and 
produce a statistically optimal estimate of the underlying 
system state. Even though these methods can be considered as 
alternatives to pure state-space-based estimations, they would 
have to be adapted to explicitly deal with staleness of belief 
and to be seamlessly integrated with the architecture.  

Finally, although incorporating the above-discussed prediction 
models into other component models (e.g., Simulink) is 
technically feasible, it is difficult as these models usually do 
not provide appropriate abstractions for explicit handling of 
belief and its accuracy at the level of architecture.  

VII. CONCLUSION 

In this paper, we have presented an approach for modeling 
and estimating inaccuracy of belief in distributed cyber-
physical systems (CPS) for the purpose of architecture 
adaptation. Specifically, we have (i) proposed a prediction 
model to capture the evolution of the real state captured by 
a belief, (ii) enriched architecture definition with the prediction 
model to allow describing architecture adaptations based on 
belief inaccuracy at the design level, and (iii) shown how to 

employ the prediction model at runtime to estimate the belief 
inaccuracy dynamically, allowing for runtime adaptation. 

Our approach of associating the model at the level of 
architecture can be easily adapted for other types of models 
(e.g., those based on machine learning). Nevertheless, 
a significant advantage of the proposed prediction models 
(specifically the time-invariant state-space models) is that these 
models are invariably used in modeling physical properties of 
CPS and thus well known. They can also be easily obtained by 
empirical measurements.  

ACKNOWLEDGMENT  

This work has been partially supported by the European 
Union Seventh Framework Programme FP7-PEOPLE-2010-
ITN under grant agreement n°264840, and partially by the EU 
project ASCENS 257414. 

REFERENCES 
[1] B. K. Kim and P. R. Kumar, “Cyber–Physical Systems: A Perspective at 

the Centennial,” Proc. IEEE, vol. 100, no. Special Centennial, pp. 1287–
1308, 2012. 

[2] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes for software 
architectures,” in Proc. of the 3rd European conference on Software 
Architecture, EWSA ’06, 2006, pp. 113–126. 

[3] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, 
“Rainbow: Architecture-Based Self-Adaptation with Reusable 
Infrastructure,” Computer (Long. Beach. Calif)., vol. 37, no. 10, pp. 46–
54, 2004. 

[4] J. Kramer and J. Magee, “Self-managed systems: an architectural 
challenge,” in Future of Software Engineering, 2007, pp. 259–268. 

[5] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. 
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An 
Architecture-Based Approach to Self-Adaptive Software,” Intell. Syst. 
their Appl. IEEE, vol. 14, no. 3, pp. 54 – 62, 1999. 

[6] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. 
Plasil, “DEECo – an Ensemble-Based Component System,” in Proc. of 
CBSE’13, 2013, pp. 81–90. 

[7] C. Desjardins and B. Chaib-draa, “Cooperative Adaptive Cruise Control: 
A Reinforcement Learning Approach,” IEEE Trans. Intell. Transp. Syst., 
vol. 12, no. 4, pp. 1248–1260, Dec. 2011. 

[8] J. Barnat, N. Benes, T. Bures, I. Cerna, J. Keznikl, and F. Plasil, 
“Towards Verification of Ensemble-Based Component Systems,” in 
Proc. of FACS’13, 2013. 

[9] B. Friedland, Control System Design: An Introduction to State-Space 
Methods. Dover Publications, Inc. Mineola, New York, 1986. 

[10] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape and 
Research Challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, 
May, pp. 1–40, 2009. 

[11] C. Ghezzi, L. Pinto, P. Spoletini, and G. Tamburrelli, “Managing Non-
functional Uncertainty via Model-Driven Adaptivity,” in Proc. of ICSE 
’13, 2013, pp. 33–42. 

[12] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” 
Computer (Long. Beach. Calif)., vol. 36, no. 1, pp. 41–50, 2003. 

[13] J. Eidson, E. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed Real-
Time Software for Cyber–Physical Systems,” Proc. IEEE, vol. 100, no. 
1, pp. 45 – 59, 2012. 

[14] S. Kounev, “Performance Modeling and Evaluation of Distributed 
Component-Based Systems Using Queueing Petri Nets,” IEEE Trans. 
Softw. Eng., vol. 32, no. 7, pp. 486–502, 2006. 

[15] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards Self-Aware 
Performance and Resource Management in Modern Service-Oriented 
Systems,” 2010 IEEE Int. Conf. Serv. Comput., pp. 621–624, Jul. 2010. 

[16] A. van der Schaft and H. Schumacher, An Introduction to Hybrid 
Dynamical Systems. LNCS vol. 251, Springer, 2000, pp. 111–132. 

[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and 
S. S. Sastry, “Kalman Filtering with Intermittent Observations,” IEEE 
Trans. Automat. Contr., vol. 49, no. 9, pp. 1453 – 1464, 2004.  


