
Architecture Adaptation Based on Belief Inaccuracy
Estimation

Rima Al Ali1, Tomas Bures1,2, Ilias Gerostathopoulos1, Jaroslav Keznikl1,2, Frantisek Plasil1

1 Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic

2 Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic

{alali, bures, gerostathopoulos, keznikl, plasil}@d3s.mff.cuni.cz

Abstract—Cyber-physical systems (CPS) are systems of
cooperating autonomous components which closely interact with
and control the physical environment. Being distributed and
typically based on periodic activities, CPS have to cope with the
problem that data capturing a distributed state of the system and
its environment are inherently inaccurate (they represent belief
on the state). In particular, this poses a problem when
dependability is being pursued. In this paper we address this
issue by modeling belief at the architecture level. In particular,
we enhance the architecture by models describing belief
inaccuracy over time. We exploit these models to quantify at
runtime the impact of belief staleness on its inaccuracy. We then
use this quantification to drive architectural adaptation with the
aim to increase dependability of the running CPS system.

Keywords—cyber-physical systems; component architectures;
self-adaptivity; state-space models; belief

I. INTRODUCTION

Cyber-physical systems (CPS) [1] are systems of
collaborating entities, typically materialized as software
components that closely interact and control the physical
environment. In addition to being distributed, CPS often have a
dynamic architecture and are to a degree autonomic and self-
adaptive to handle changes in their environments.

A specific property of CPS is that components usually
maintain belief about the state of other components and/or of
the real state of their physical environment. Because of
distribution and periodic nature of real state sensing, a belief is
necessarily outdated (stale). Naturally, this implies belief
inaccuracy (i.e., a deviation of the belief from the real state)
and impacts the correctness and safety attributes of CPS. An
important property of belief is that it often reflects real state
that changes gradually (e.g., physical distance of an obstacle).
Consequently, the staler the belief, the more inaccurate it is.
This is also often the implicit assumption in a CPS architecture,
which enables components to operate correctly in the “normal”
case when their belief is not “too stale”.

Obviously, key problems are how to quantify the maximum
allowed staleness and how to handle situations when it exceeds
such maximum. The first problem pertains to how to establish
a relation between belief staleness and its inaccuracy since it
heavily depends on the nature of belief data domain (e.g.,

position may change much faster than ambient light level). The
second problem is related to architectural adaptations; for
instance, detecting that belief inaccuracy exceeded a given
threshold may trigger architecture mode switching [2] resulting
in a configuration guaranteeing a safe state.

Addressing these problems essentially requires (i) to
provide a model that predicts evolution (prediction model) of
the real state captured by a belief, (ii) to associate the
prediction model with the component architecture to allow
describing architecture adaptations at the design level, and (iii)
to employ the prediction model at runtime to estimate the
belief inaccuracy dynamically. Additionally, it is also
necessary to design and perform the actual architectural
adaptations; since this topic is adequately covered in existing
literature [3]–[5] , we do not deal with this topic here and focus
only on challenges (i) to (iii).

To our knowledge, there are no approaches that would
specifically address the problem of capturing belief inaccuracy
at the architecture level and that would connect the inaccuracy
estimation with architectural adaptation in support of retaining
CPS dependable under changing conditions.

The contribution of this paper lies in proposing a method
which specifically addresses the challenges (i)-(iii) above. We
do so in the context of DEECo [6] – a component model that
specifically targets the design and development of CPS by
explicitly supporting dynamic architecture evolution in
physical environment and by handling belief of inherently
distributed components which interact with and control this
environment.

II. MOTIVATING EXAMPLE

To illustrate belief inaccuracy and its prediction, we use as
a motivating example a simplified version of the cooperative
adaptive cruise control system (CACC) [7]. CACC is an
extension of an adaptive cruise control (ACC). CACC
maintains a specified distance of a rear vehicle (follower) from
the vehicle ahead (leader). If there is no leader, follower
maintains a desired velocity. Contrary to ACC, which typically
relies solely on headway sensors (radar-, laser-, camera-based)
to continuously measure the distance to the leader, CACC
assumes wireless communication of, e.g., the current position
and velocity between vehicles. This enables CACC to make

decisions regarding congestion avoidance in a broader time
frame than a conventional ACC. In this paper, we assume for
brevity that position and velocity are one-dimensional
magnitudes.

The key fragments of the CACC architecture are captured
in Figure 1 by means of the DEECo architecture model. A
vehicle is represented as an instance of the Vehicle component.
A DEECo component constitutes state, referred to as
knowledge, and behavior, expressed via periodic processes
operating upon the knowledge. For each role of the Vehicle
component (i.e., leader and follower) the figure shows the
relevant knowledge and processes.

Facilitating dynamic architectures, component interaction
in DEECo is encapsulated into ensembles, which take the role
of dynamic connectors realizing attribute-based
communication. Such communication is centered around
dynamic component binding based on component attributes
(knowledge exposed for this purpose), rather than explicit
component identification. Specifically, the set of components
to take part in an ensemble is defined declaratively via the
membership condition. Among components that meet the
membership condition, the interaction takes the form of
implicit knowledge exchange (handled by the execution
environment). The architecture of our example comprises
a single ensemble – UpdateLeaderPositionAndVelocity, which
groups together the leader and its follower with the goal of
sharing the leader’s velocity and position with the follower.
Specifically, this ensemble simply ensures copying the leader’s
velocity and position (real state) to the knowledge of the
follower – this copy becomes the belief of the follower on
these magnitudes. Details on the semantics of ensembles can
be found in [6], [8].

The CACC architecture described in Figure 1 brings about
potential staleness and consequent inaccuracy of the follower’s
belief (i.e., leader’s position/velocity), due to the unreliability
of wireless communication and delays introduced by periodic
execution of processes and knowledge exchange (not
necessarily executed immediately after completion of sensing
in the leader). However, safe operation of such CACC
architecture can be assumed only if the belief inaccuracy fits
within certain “expected” margins. Thus, it is imperative to
capture these inaccuracy margins at the level of the
architecture, enable for run-time inaccuracy estimation, and, in
case of an excess, perform architecture adaptation towards,
e.g., the traditional ACC. Note, that ACC employs less-
sophisticated control as a trade-off for avoiding leader-to-
follower communication (therefore ACC is not impacted by the
inaccuracy of the follower’s belief).

III. MODELING BELIEF ACCURACY

When investigating the above-mentioned challenge in the
frame of our example, we observe that the leader cannot brake
the vehicle to full stop immediately, since there is an inherent
physical process (determined by the kinetics of the vehicle)
that governs how fast the vehicle can slow down1. This process

1 Here, we assume normal conditions; exceptional conditions, such as

emergency stops, have to be handled separately (e.g., via obstacle detection).

can be described as a time-invariant state-space model [9],
which is a standard representation of a number of physical
processes. In a simplified form it can be mathematically
captured as ݀ܺ/݀ݐ ൌ ,ሺܺܨ ሻܥ , where ܺ is a vector that
represents the state of the system (e.g., vehicle’s velocity and
position), ܥ is a vector that represents the control (e.g.,
brake/gas pedal level), and ܨ is a function that represents the
physical process. In our running example ܨ computes the
acceleration/deceleration and position change of the vehicle
based on its state (i.e., current velocity and position) and the
control (i.e., brake/gas). In practice, state-space models are
widely used – typically empirically measured under nominal
conditions and tabulated by manufactures for their products
(e.g., the braking distance of a vehicle or its maximum
acceleration at different velocities).

The knowledge of the physical process makes it possible to
predict the real state of the leader (i.e., its minimal potential
velocity and the minimal potential distance to it) based on the
value of the belief about the leader’s state and the staleness of
it. This prediction is based on the worst-case assumption that
since the time when the belief’s value was observed, the leader
had applied maximal braking.

The idea of providing a prediction model that defines
potential evolutions of a real state given the belief value and its
staleness is of course not specific to CACC. It is relevant to all
systems employing belief regardless of the nature of the real
state (be it based on a physical process or be it a state of
software entity). In the following we show how this idea can be
generalized for states that can be modeled by a time-invariant
state-space model ݀ܺ/݀ݐ ൌ ,ሺܺܨ .ሻܥ

component Vehicle
 // leader’s role
 knowledge:
 position, velocity, ...
 process measurePosition(out position):
 function:
 position ← GPS.getCoordinates()
 scheduling: periodic(100ms)
 // follower’s role
 knowledge:
 position, velocity, leaderPosition, leaderVelocity, targetAcc, ...
 process measurePosition(out position)
 process computeAccelerationCACC(in position, in velocity, in leaderPosition,

 in leaderVelocity, out targetAcc):
 function:
 targetAcc ←PIDController.

computeTargetAcceleration(position, velocity, leaderPosition,
leaderVelocity, DESIRED_DISTANCE)

 scheduling: periodic(200ms)
 // switching between CACC and ACC to be decided
 process computeAccelerationACC(in distance, in velocityDifference, out targetAcc):
 …
 ensemble UpdateLeaderPositionAndVelocity:
 coordinator: Vehicle as follower
 member: Vehicle as leader
 membership:
 distance(coordinator.position, member.position)
 2 * DESIRED_DISTANCE
 knowledge exchange:
 coordinator.leaderPosition ← closest(coordinator.position, members).position
 coordinator.leaderVelocity ← closest(coordinator.position, members).velocity
 scheduling: periodic(200ms)
…

Figure 1: Excerpt of the motivating example in DEECo DSL.

We capture the prediction model by a pair of functions
,ܨ ௫:Թܨ → Թ, which for a given state ܺ ∈ Թ (e.g., a
tuple of position and velocity) return the minimal and maximal
derivative of the state. Formally, ܨሺܺሻ ൌ ,ሺܺܨ ሻandܥ
௫ሺܺሻܨ ൌ ,ሺܺܨ ௫ሻܥ where ܥ and ܥ௫ correspond to
extremal control (e.g., maximal braking and maximal
acceleration). In the running example (Figure 2), ܨ
computes the deceleration (i.e., rate of velocity decrease) and
velocity (i.e., rate of position change) for maximum braking,
while ܨ௫ computes the acceleration and position change
when the gas pedal is maximally pressed. Note that specifically
for the running example, since the derivative of position
(velocity) is part of the state ܺ, ܨ and ܨ௫ do not depend
on the position explicitly.

Next, we explicitly associate the functions ܨ, ௫ onܨ
the level of the component architecture with corresponding
component knowledge fields and provide means for calculating
the accuracy of the real value based on the model captured by
,ܨ .௫ܨ

Formally, we attach a pair of ܨ, ௫:Թܨ → Թ to a
tuple of component knowledge fields ܭ ൌ ሺ݇ଵ, … , ݇ሻ whose
valuation ܤ ൌ ሺܾଵ,… , ܾሻ ∈ Թ forms the belief about a real
state modeled by ܨ, -௫. For example, in the state-spaceܨ
models section of Figure 2, we associate leaderPosition and
leaderVelocity with ܨ, ௫ܨ modeling the actual position
and velocity of the leader vehicle. The accuracy of a belief ܤ
can then be computed as an interval ܣ ൌ ሾܺሺݐሻ; ܺ௫ሺݐሻሿ,
where ܺ is the solution to the differential equation ݀ܺ/
ݐ݀ ൌ ሺܺሻ with initial condition ܺሺ0ሻܨ ൌ is ݐ and where ,ܤ
the staleness of ܤ. Similarly, ܺ௫ is the solution to ݀ܺ/݀ݐ ൌ
 ܤ ௫ሺܺሻ with the same initial condition. In other words, ifܨ
was observed (i.e., ܤ was equal to the real state) time ݐ ago, the
real state has to be within the bounds of ܣ.

Note that the time-invariance of the model (i.e., that
functions ܨ, ௫ܨ do not depend on time even though ܺ
does) and the fact that we quantify the accuracy only based on
extremal control, make it possible to conveniently construct
,ܨ ௫ as an interpolation in tables obtained by empiricalܨ
measurements. In Figure 2, ܨ is based on interpolation of a
maximum-deceleration table; e.g., for velocity of 35 m/s, the
maximum deceleration is -5 m/s2. This table can be established
simply by bringing the vehicle to its top velocity and then
intensively braking and measuring the rate of velocity change
over time until the full stop. If an analytical model is available,
it can alternatively be employed for constructing ܨ and
 .௫ directlyܨ

The last step is to enrich the component architecture with
rules for architecture adaptation based on the safe margins of
belief accuracy supported by the architecture. Figure 2 gives an
example of specifying a condition that triggers architecture
adaptation via mode switching [2]. Specifically, the process
corresponding to CACC, resp. the process corresponding to
traditional ACC, is annotated with a condition specifying the
mode in which the process is activated; i.e., when the estimated
inaccuracy of the distance between leader and follower
(computed from their positions) is below, resp. above, a given

threshold. Here, inaccuracy means the size of the accuracy
interval ܣ for the current staleness of the distance belief.

IV. COMPOSITION OF BELIEF INACURACCY

An important observation when modeling belief accuracy is
that a component process/ensemble knowledge exchange ܲ
may aggregate multiple input beliefs ܤଵ,… , (i.e. beliefs ofܤ
different accuracy and model). As a consequence, the result of
executing ܲ with ܤଵ,… , ܤ as inputs, i.e., ܲሺܤଵ,… , ሻܤ , is
again a belief ܤ௨௧ , whose value, accuracy, and model are
given by the composition (determined by ܲ) of ܤଵ,… , ܤ .
Thus ܲ acts as a composition function upon the accuracy of
input beliefs.

In a general case, the definition of ܲ thus consists of both
(i) a specification of how to compute its output based on the
inputs, and (ii) a specification of how to compute the accuracy
of output based on the accuracy of inputs. Advantageously,
when ܲ can be represented as a composition of continuous
functions (e.g., +, -, *, /, max, min, sin, cos, etc.), which is
indeed a typical case, we can deduce (ii) from (i) and thus (ii)
does not have to be specified explicitly (which is also the case
of the accuracy of distance in our example).

V. REALIZATION IN JAVA

 To evaluate the feasibility of our approach we have
implemented2 a prototype of the motivating example in the
jDEECo framework, which is the Java realization of the
DEECo component model. The implementation contains the
Java code of the components and ensembles, accompanied by
the respective Simulink models, which graphically represent
the control in the components and responses of the
environment. For numerical solving of the differential
equations of the prediction models, the Apache Commons
Mathematical Library is employed. Solving takes place prior to
the execution of every process, for the relevant input
knowledge fields.

We are currently working on integrating the proposed
extensions to jDEECo. Specifically, we are working on (i)

2 http://d3s.mff.cuni.cz/projects/components_and_services/deeco/

component Vehicle
 knowledge:
 leaderPosition, leaderVelocity, ...
 state-space-models:
 [leaderPosition, leaderVelocity]:

// Tables for lookup of max. deceleration/acceleration based on current velocity.
// The tables consist of tuples (velocity (in m/s) -> acceleration (in m/s2))
maxDecTable = {0 -> -6, 35 -> -5, 51 -> -3}
maxAccTable = {0 -> 4, 35 ->3, 51 -> 0}
Fmin(leaderPosition , leaderVelocity)

= (leaderVelocity , interpolate(maxDecTable , leaderVelocity))
Fmax(leaderPosition , leaderVelocity)

= (leaderVelocity , interpolate(maxAccTable, leaderVelocity))
 ...
 process computeAccelerationCACC(in position, in velocity, in leaderPosition,

 in leaderVelocity, out targetAcc):
 mode-trigger: inaccuracy(distance(position, leaderPosition)) <= THRESHOLD
 ...
 process computeAccelerationACC(in distance, in velocityDifference, out targetAcc):
 mode-trigger: inaccuracy(distance(position, leaderPosition)) > THRESHOLD
 ...

Figure 2: Representation of state-space model in our example.

associating the state-space models with knowledge fields and
component modes via Java annotations, (ii) keeping track of
the last time the value of a field was updated, so that the
staleness can be determined, and (iii) integrating the
differential equation solver into the jDEECo runtime
framework. The final goal is to make the minimum and
maximum predicted values of a knowledge field accessible via
an API, which would be available in both processes and mode
switching conditions (mode-triggers).

VI. RELATED WORK

The work presented in this paper is positioned in the broad
context of self-adaptive autonomic systems [10][11]. Such
systems typically feature execution based on the Monitor-
Analyze-Plan-Execute (MAPE-K) control loop [12]. Our
approach is directly connected to MAPE-K adaptation
mechanisms by providing a form of “augmented” sensing.
Sensing approaches proposed in literature span from direct
(hardware) sensing [13] to monitoring of extra-functional
properties (e.g., performance monitoring [14][15]) and from
environment sensing to monitoring of internal state via
introspection (often termed self-awareness). On top of
reasoning over present and past data, prediction-based
approaches (e.g., [14]) allow for foreseeing a faulty or harmful
situation (e.g., high load on server farm, traffic congestion
along a lane) and for adapting in order to prevent such
situations. The main distinction of our approach is that
adaptation decisions are based not on predicted future values,
but on anticipating what the current values of the input data
could be (with respect to their staleness).

Time-based analysis of hybrid systems [16] (e.g., via timed
automata) is also applicable to CPS. Whereas the goal there is
model checking, in our case the associated time analysis aims
at guiding runtime adaptation. Dealing with inaccuracy in the
sensed data is also tackled in the data-filtering domain,
typically within the context of control systems. For example,
approaches based on Kalman filtering [17] employ linear
quadratic estimation to remove the measurement noise and
produce a statistically optimal estimate of the underlying
system state. Even though these methods can be considered as
alternatives to pure state-space-based estimations, they would
have to be adapted to explicitly deal with staleness of belief
and to be seamlessly integrated with the architecture.

Finally, although incorporating the above-discussed prediction
models into other component models (e.g., Simulink) is
technically feasible, it is difficult as these models usually do
not provide appropriate abstractions for explicit handling of
belief and its accuracy at the level of architecture.

VII. CONCLUSION

In this paper, we have presented an approach for modeling
and estimating inaccuracy of belief in distributed cyber-
physical systems (CPS) for the purpose of architecture
adaptation. Specifically, we have (i) proposed a prediction
model to capture the evolution of the real state captured by
a belief, (ii) enriched architecture definition with the prediction
model to allow describing architecture adaptations based on
belief inaccuracy at the design level, and (iii) shown how to

employ the prediction model at runtime to estimate the belief
inaccuracy dynamically, allowing for runtime adaptation.

Our approach of associating the model at the level of
architecture can be easily adapted for other types of models
(e.g., those based on machine learning). Nevertheless,
a significant advantage of the proposed prediction models
(specifically the time-invariant state-space models) is that these
models are invariably used in modeling physical properties of
CPS and thus well known. They can also be easily obtained by
empirical measurements.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union Seventh Framework Programme FP7-PEOPLE-2010-
ITN under grant agreement n°264840, and partially by the EU
project ASCENS 257414.

REFERENCES
[1] B. K. Kim and P. R. Kumar, “Cyber–Physical Systems: A Perspective at

the Centennial,” Proc. IEEE, vol. 100, no. Special Centennial, pp. 1287–
1308, 2012.

[2] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes for software
architectures,” in Proc. of the 3rd European conference on Software
Architecture, EWSA ’06, 2006, pp. 113–126.

[3] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure,” Computer (Long. Beach. Calif)., vol. 37, no. 10, pp. 46–
54, 2004.

[4] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in Future of Software Engineering, 2007, pp. 259–268.

[5] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
Architecture-Based Approach to Self-Adaptive Software,” Intell. Syst.
their Appl. IEEE, vol. 14, no. 3, pp. 54 – 62, 1999.

[6] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “DEECo – an Ensemble-Based Component System,” in Proc. of
CBSE’13, 2013, pp. 81–90.

[7] C. Desjardins and B. Chaib-draa, “Cooperative Adaptive Cruise Control:
A Reinforcement Learning Approach,” IEEE Trans. Intell. Transp. Syst.,
vol. 12, no. 4, pp. 1248–1260, Dec. 2011.

[8] J. Barnat, N. Benes, T. Bures, I. Cerna, J. Keznikl, and F. Plasil,
“Towards Verification of Ensemble-Based Component Systems,” in
Proc. of FACS’13, 2013.

[9] B. Friedland, Control System Design: An Introduction to State-Space
Methods. Dover Publications, Inc. Mineola, New York, 1986.

[10] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape and
Research Challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
May, pp. 1–40, 2009.

[11] C. Ghezzi, L. Pinto, P. Spoletini, and G. Tamburrelli, “Managing Non-
functional Uncertainty via Model-Driven Adaptivity,” in Proc. of ICSE
’13, 2013, pp. 33–42.

[12] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer (Long. Beach. Calif)., vol. 36, no. 1, pp. 41–50, 2003.

[13] J. Eidson, E. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed Real-
Time Software for Cyber–Physical Systems,” Proc. IEEE, vol. 100, no.
1, pp. 45 – 59, 2012.

[14] S. Kounev, “Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets,” IEEE Trans.
Softw. Eng., vol. 32, no. 7, pp. 486–502, 2006.

[15] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards Self-Aware
Performance and Resource Management in Modern Service-Oriented
Systems,” 2010 IEEE Int. Conf. Serv. Comput., pp. 621–624, Jul. 2010.

[16] A. van der Schaft and H. Schumacher, An Introduction to Hybrid
Dynamical Systems. LNCS vol. 251, Springer, 2000, pp. 111–132.

[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman Filtering with Intermittent Observations,” IEEE
Trans. Automat. Contr., vol. 49, no. 9, pp. 1453 – 1464, 2004.

