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ABSTRACT

Although approaches that effectively address the distribu-
tion and dynamism of adaptive systems at a middleware
level exist, the design of complex, ensemble-based systems
still remains a significant challenge. This hinders the de-
velopment of real-life applications based on the ensemble
paradigm. A promising approach appears to be the cou-
pling of proven low-level concepts with high-level ones, re-
visiting requirements modeling in the realm of ensemble-
based systems. To this end, the goal of this paper is to
point out the specific challenges related to the design of
ensemble-based systems and show that classic requirements
models and methods cannot be applied out-of-the-box in a
requirements-driven design of ensemble-based applications.
In response to this problem, a novel design method based on
the iterative refinement of system requirements expressed by
predicates on stakeholder’s knowledge is discussed.
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1. INTRODUCTION

Current trends in the area of information technology fo-
cus on the development of highly distributed systems com-
prised of sophisticated on-demand computing services, of-
ten characterized as cloud systems. A subset of such sys-
tems is the ones operating in the so-called ad-hoc clouds,
i.e., in highly dynamic environments (typically over ad-hoc
networks), where no guarantees regarding the availability
and responsiveness of their constituting parts exist. Ex-
amples are systems of intelligent vehicle navigation, decen-
tralized flight planning and healthcare monitoring. These
systems feature a significant level of autonomy [24], which is
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connected with (self-) awareness [26] and (self-) adaptation
[18] properties. At the same time, they feature a number
of challenges in their development, as traditional software
development approaches rely on static software architecture
and static pre-defined behavior and fail to efficiently capture
the dynamic architecture and support the overall develop-
ment process.

In response to this problem, the new paradigm of ensemble-
based development has been suggested to guide the develop-
ment of large-scale adaptive systems operating in dynamic
environments, termed Ensemble-Based Component Systems
(EBCSs) [6]. These systems are typically composed of au-
tonomous service-components, forming dynamic groups which
encapsulate knowledge, interaction, and goals specific to the
groups. These dynamic groups of components are termed
ensembles [11].

The goal of this paper is to point out the specific chal-
lenges related to the design of EBCSs and suggest ways to
deal with them. First, EBCSs are described (section 2),
then the challenges are articulated (section 3) and finally
two "classic” and one novel approach are assessed on how
well they deal with the identified challenges (sections 4 and
5). The last two sections present key related work (section
6) and conclude (section 7).

2. ENSEMBLE-BASED COMPONENT SYS-
TEMS

Investigating ways to model and design systems based on
the ensemble paradigm is the core of the European project
ASCENS (Autonomic Service-Component ENSembles) [12].
A first attempt to formalize the concept of ensembles within
ASCENS has led to the development of SCEL (Service-
Component Ensemble Language) [9], a formal language for
modeling component systems enabling them for further anal-
ysis and verification. Relying on the concepts of SCEL,
DEECo (Dependable Emergent Ensembles of Components)
component model [6, 14] has been conceived and is currently
under development and refinement.

The goal of DEECo is to allow for building systems con-
sisting of autonomous, self-aware, and adaptable compo-
nents, which are implicitly organized in ensembles. To this
end, DEECo suggests a slightly different way of perceiving
a component than is common in component-based software
engineering; i.e., as a self-aware unit of computation, relying
solely on its local data that are subject to modification dur-
ing the execution time. The whole communication process
relies on data exchange among components (prescribed by
ensembles), entirely externalized and automated within the
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runtime. This way, the components have to be programmed
as autonomous units, without relying on whether/how the
distributed communication is performed, which makes them
very robust and suitable for rapidly changing environments.

Apart from being perceived and articulated in terms of
autonomous components and ensembles, EBCSs are built
around three key ideas:

e The notion of belief and its explicit management have
a central role. Every component in an EBCS operates
upon its local "private” knowledge, which represents
the component’s view of the environment and of the
other components. Since this knowledge is at any time
subject to change by the runtime framework, which
is responsible for mapping parts of one component’s
private knowledge body to knowledge bodies of other
components, it is better viewed as the "belief” that a
component preserves. In that sense, ensembles, being
prescriptions of knowledge mappings between compo-
nents, stand as the belief management mechanism.

e Component computation is performed in isolation. In
EBCSs, there are no means for a component to explic-
itly communicate with others. Component commu-
nication is realized implicitly by knowledge exchange
externalized from the components and performed by
the underlying framework. Thus, every computation
is necessarily performed within a component’s bound-
aries, which strengthens the notion of component au-
tonomy.

e Component bindings are dynamic. In EBCSs, there
are no explicit bindings between components. En-
sembles bind components implicitly by prescribing the
appropriate knowledge exchange. However, ensembles
are formed only when specific conditions hold in the
system, not always. This dynamic nature of ensem-
bles makes the architecture of EBCSs "emerge” during
runtime.

As an example illustrating the main concepts of EBCSs,
let us consider a system of intelligent vehicle navigation.
The system consists of drivers, moving around a city in their
”smart” vehicles. Drivers have to reach particular destina-
tions within some time limits, which depend on their daily
schedule. Vehicles are equipped with sensors of basic capa-
bilities, e.g., monitoring the fuel and battery level of the car,
but also more sophisticated ones, e.g., monitoring the traffic
level along the route. Vehicles can only park and refuel in
designated stations. They can also communicate with each
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Figure 2: Possible ensembles between a Vehicle com-
ponent and several Parking/Refueling Station com-
ponents.

other and with the parking/refueling stations that lie within
their transmission spectrum. No central coordination point
is assumed; there is no global control or global planning.
The whole system can be seen as a set of nodes which form
dynamic communication networks (ad-hoc clouds) to serve
a specific goal: vehicles should arrive at their destinations
in time, leveraging the infrastructure resources in a close-to-
optimal way.

When viewing the above system as an EBCS, the obvious
candidates for (DEECo) components are vehicles, parking
stations and refueling stations. For example, the Vehicle
component can be specified in terms of its knowledge and
processes as in Figure 1.

Possible (DEECo) ensembles are identified by looking at
the different interaction scenarios among the components.
For example, when a vehicle is close to a parking station, it
may need to contact it to get informed about the available
parking lots and reserve a lot if possible. This interaction
is prescribed by one ensemble operating between a vehicle
and (possibly multiple) parking stations, where the Vehi-
cle obtains a belief over the lot availability information of
the Parking Stations. A graphical representation of pos-
sible ensembles between a vehicle and parking or refueling
stations is shown in Figure 2.

3. PROBLEM STATEMENT

It is clear that the number of different components and
possible combinations of them in ensembles grows together
with the magnitude of the system and the number and com-
plexity of interactions we want to model. Consequently, even
if we are able to engineer the above intelligent navigation
system in terms of DEECo concepts, it remains challenging
to design such a emergent system and retain some guaran-
tees regarding its overall behavior and interactions.

This stems from the fact that DEECo concepts are rather
low-level and focus primarily on supporting the implementa-
tion and deployment. They lack a broader system view that
will take into account the system requirements and design
alternatives. A broad, high-level view is crucial when deal-
ing with systems of high complexity as it allows abstract-
ing away from details of computation and interaction and
reasoning about properties of the (distributed) system as a
whole. Examples of interesting properties are performance-
related ones, like communication overhead, information uti-
lization, etc., and stability-related ones, like immunity to
environmental changes, adaptability, robustness, etc.



Another issue is that it is problematic to map the ar-
chitecture of the system (naturally comprising a number of
components and ensembles) to the purpose it serves (its ra-
tionale). This is especially true for complex systems with
numerous components and ensembles: in such cases tracing
a low-level design decision, like the inclusion of a dynamic
communication link in the system, back to its origin in the
requirements analysis gets extremely difficult. At the same
time, in such cases, specifying why an interaction has to take
place is as important as specifying the interaction itself, as
it allows for design justification and system predictability.

4. REQUIREMENTS MODELING

In order to be able to design and reason about an EBCS,
we need to differentiate between stable and volatile infor-
mation by obtaining a high-level view over the system. In
this section, we will focus on approaches that capture the
high-level behavior of a software system. For that, we need
to draw our attention into the early phases of software de-
velopment, such as the requirements analysis phase. It is
thus necessary to examine effective approaches in require-
ments modeling and assess their applicability in the domain
of EBCSs.

A useful abstraction in Requirements Engineering (RE) is
proven to be the system goal. A goal can be defined as a pre-
scriptive statement of intent about some system whose sat-
isfaction in general requires the cooperation of some agents
forming the system. Goal-Oriented Requirements Engineer-
ing (GORE) [19] is concerned with the identification of sys-
tem requirements through the elicitation and analysis of sys-
tem goals.

Another useful abstraction is that of the agent. Agents are
active components, i.e., with a choice of behavior, which may
restrict their behavior to ensure the constraints that they are
assigned. In GORE, agents are assigned responsibility for
achieving goals.

In the rest of the section, the two most prominent ap-
proaches in GORE, KAOS and Tropos/i* methods are pre-
sented and discussed.

41 KAOS

KAOS is a goal-oriented requirements engineering method-
ology with a rich set of formal analysis techniques. KAOS
stands for Keep All Objects Satisfied [23]. It is grounded on
the following main ideas:

e The notion of goals has a prominent role during the re-
quirements acquisition and analysis processes, offering
the common advantages of goal-oriented approaches in
RE [19].

e Formal methods are used when and where needed for
RE-specific tasks. This allows different levels of ex-
pression and reasoning: semi-formal for modeling and
structuring goals, qualitative for selection among alter-
natives, and formal for more accurate reasoning. This
is possible, as each element modeled in KAOS has,
in general, a two-level structure: the outer, semantic
layer where the concept is declared together with its
attributes and relationships to other concepts and the
inner, formal layer for formally defining the concept.
Formal reasoning can be used e.g., for checking goal re-
finement [8] and goal operationalization [15], conflict
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Figure 3: An excerpt of a KAOS goal model of the
intelligent navigation case study.

management [21] and obstacle (hazard,threat) analy-
sis [22].

A KAOS specification is a collection of complementary
core models, which represent different views over the target
system. In order to assess the applicability of KAOS models
in the design of EBCSs, we will exemplify the process of
deriving a KAOS specification on our intelligent navigation
case study. The process spans four (practically interleaved)
steps:

Goal elaboration step.

Goals are primarily obtained through the inspection of in-
tentional keywords in natural language of stakeholders and
by asking why and how questions about such statements.
Goals are defined at different levels of abstraction: high-level
goals capture global, strategic objectives; low-level goals
capture local, technical objectives. After the elicitation of
main goals, goals are organized into AND/OR refinement
hierarchies with obvious semantics.

Goal refinement ends when every terminal goal is real-
izable by a single agent assigned to it. This means that
the goal must be expressible in terms of conditions that are
monitorable and controllable by the agent. In particular, a
goal assigned to a software agent is a software requirement,
whereas a goal assigned to an environment agent (e.g., a
human agent) is an expectation or assumption.

Figure 3 depicts a possible goal refinement in the intelli-
gent navigation case study, where the parent goal of having
the vehicles refuel in the designated stations is decomposed
into a requirement (vehicles reserve their places in the sta-
tions), an assumption (stations continue to operate) and a
domain property (stations are available). Domain proper-
ties are descriptive statements (as opposed to prescriptive
ones, like goals or assumptions) that are explicitly captured
in the goal model and serve for checking its completeness.

As an example of a complete goal specification, Figure 4
depicts the goal that vehicles should reserve their places in
the refueling stations. Apart from its semantic layer, the



Name Lot in Station reserved if available
Def If a place is available, then it must be
booked by the vehicle in order to refuel
Type Achieve

Category Satisfaction
Source interview with companies Achieve[Lot in station
Priority Medium reserved if available]

FormalSpec

V v: Vehicle, rl: RefuelingLot:
LowFuel(v) A Available(rl) =
O c1min BoOked(v,rl)

Figure 4: Formal specification of a goal in KAOS.

goal’s formal layer is captured in real-time Linear Temporal
Logic (LTL). This enables the automatic verification of the
goal model.

Agent modeling step.

An agent is an active object of the system, which acts as
processor for operations. Agents can be software entities,
but also environment entities, like human agents, devices,
etc. They appear in the system in order to handle some re-
quirement or assumption assigned to them during goal elab-
oration. For example, in Figure 3, the Vehicle and Station
Operator agents are introduced. There is no single correct
agent assignment; as with choosing among alternative goal
refinements, assigning terminal goals to agents represents a
design choice.

Object modeling step.

Objects are things of interest in the system whose in-
stances may evolve from state to state. An object is modeled
as an entity, association or event, depending on whether it is
independent, dependent or instantaneous, respectively. Ob-
jects are derived by traversing the goal model and inspecting
which entities are concerned in every goal. In our case study,
examples of objects are the Refueling station entity, the
Reserved association and the Alarm issued event.

Operationalization step.

The functions the agents need to employ in order to oper-
ationalize (fulfill) their assigned requirements is defined in
terms of operations. An operation is an input-output re-
lation over objects (specifically, object instances), whereas
the application of the operation defines object creation and
object state transition. Operations are derived both by goal
fluents and from interaction scenarios, identified during re-
quirements acquisition. Operations are declared by signa-
tures over objects and have pre-, post-, and trigger condi-
tions, specified in real-time LTL. As an example from our
case study, a Reserve lot operation receiving a Reserva-
tion request object and creating the Lot reservation ob-
ject could operationalize the Lot in station reserved if avail-
able” requirement (Figure 3).

4.1.1 Discussion

Overall, KAOS is a well-developed methodology which ex-
hibits the virtues of goal-oriented analysis in the field of re-
quirements engineering. It successfully separates the stable
(goals, assumptions, properties) from the volatile informa-
tion (agents, operations) and provides a high-level view over
the target system.

Another strong point of KAOS methodology is its formal

1. captures the (intended) system behavior at a high
+ " level

. allows for automatic formal reasoning

. does not align requirements with architecture
is intended for requirements analysis and docu-
mentation, not system design

IV

Table 1: KAOS positive and negative points.

reasoning support. When goals, domain properties, assump-
tions and operations are specified formally, the underlying
models can be checked for consistency and completeness,
typically by employing a SAT solver or theorem prover [16].
A semi-formal approach is also provided: during goal refine-
ment and goal operationalization, the analyst can rely on
instantiations of formal refinement patterns (extracted from
a patterns catalogue) that are proven once and for all [8,
15].

A limitation of KAOS is that it does not provide a con-
nection between requirements and architecture. Preliminary
efforts towards this direction can be found in [20], where a
process of deriving an architectural draft from goal, agent
and operation models, is proposed. This draft is then itera-
tively refined based on instantiation of pre-defined architec-
tural styles and patterns. This is a preliminary and rather
generic attempt towards bridging the well-known gap be-
tween requirements and architecture [20]. When designing
EBCSs, a tailored approach, dealing with the specific do-
main intricacies (high distribution, dynamism), seems more
viable.

The main problem in directly applying KAOS towards
meeting our goal of designing EBCSs is that the (classic)
outcome of KAOS analysis is a Software Requirements Spec-
ification (SRS) document. While this serves the needs of re-
quirements analysis, a successful design of complex, ensemble-
based systems demands a mapping of the high-level models
to lower-level ones and eventually to implementation arti-
facts.

The applicability of KAOS in the design of EBCSs is sum-
marized in Table 1.

4.2 Tropos and i*

Tropos [4] is a methodology for building agent-oriented
software systems that uses the i* modeling notation [25] (i-
star refers to distributed intentionality). Tropos is based on
the following key ideas:

e The notion of agent and related notions (e.g., goals,
plans) are used in all software development phases,
from early requirements down to actual implementa-
tion. To qualify as an agent, a software (or hardware)
system is often required to have properties such as au-
tonomy, social ability, reactivity, proactivity and ra-
tionality.

e The early phases of requirements analysis, i.e., the
phases which precede the prescriptive requirements spe-
cification of the system-to-be, are considered equally
important to the later phases and are thus elaborated
in detail. This allows for a deeper understanding of the
environment (organizational context) where the soft-
ware must operate and facilitates the early resolution
of conflicts between stakeholders.
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The Tropos methodology spans four levels:

Early requirements.

The early requirements phase is concerned with the under-
standing of a problem by studying its organizational setting
(the system-as-is). The output of this phase is an i* Strategic
Dependency (SD) and an i* Strategic Rationale (SR) model.
The SD model captures the relevant actors and their inter-
dependencies in terms of goals to be achieved, tasks to be
performed and resources to be furnished. The SR model
determines through a means-end analysis how the goals can
be fulfilled through contributions of other actors.

Late requirements.

During late requirements phase the system-to-be (target
system) is described within its operational environment. The
output of this phase is a requirements specification in the
form of SD and SR models (refined versions of the early
requirements phase models), which describes all functional
and non-functional requirements of the system-to-be. The
difference from the early requirements phase is that now the
software to be developed comes into the picture as one or
more intentional actors.

Figure 5 depicts a possible SD graph of our intelligent
navigation case study at the late requirements phase. As
depicted, the User actor depends on Vehicle to arrive at
his destinations in time and, vice-versa, Vehicle depends
on the fact that User will follow the routine of entering the
meetings in the calendar. Dependencies exist between the
Vehicle and the Parking/Refueling Station (modeled to-
gether for brevity) as well. Journey Planner has been intro-
duced at this phase as part of the software to be developed.
Journey Planner is delegated the responsibility of comput-
ing an (optimal) journey plan.

A means-end analysis of the Vehicle and the Parking/Re-
fueling Station actors is depicted in the SR model of Fig-
ure 6. Specifically, the Vehicle’s goal of meeting the sched-
uled deadlines is decomposed into sub-goals, which are op-
erationalized into tasks. As an example, the goal of being
able to stop at the meeting points is satisfied by performing
(in advance) reservations at the parking/refueling stations,
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Figure 6: A possible i* Strategic Rationale model
for Vehicle and Parking/Refueling Station actors.

which in turn is decomposed into the tasks of obtaining the
station availability information, requesting a place in the rel-
evant stations, and receiving reservation confirmations. At
the Station’s side, the identified goals and tasks are decom-
posed in a similar manner.

Architectural design.

Architectural design defines the system’s global architec-
ture in terms of sub-systems, interconnected through data
and control flows. The SD and SR models derived from pre-
vious levels are further refined. The refinement — inclusion
and removal of actors and dependencies — is determined by a
quality analysis (analysis and refinement of softgoals). The
quality analysis guides the selection between alternative ar-
chitectural styles from a catalogue of organizational styles
(pre-defined in terms of the i* concepts of actors, depen-
dencies, goals and tasks) [10]. For example, if during the
requirements phase of our intelligent navigation case study
the "response time” softgoal was identified, we could choose
an organizational style which ensures low response time, e.g.,
the ”joint venture” or the "pyramid” style.

After the refinement of the actor and goal models, the
capabilities needed by the actors to fulfill their goals and
plans are identified by inspecting the extended SD (actor)
diagram, presuming that each actor’s dependency relation-
ship can give place to one or more capabilities triggered by
external events.

As a final step, a set of system agents is identified and
for each of them one or more capabilities are assigned. In
general, the process of assigning capabilities to agents is not
unique and depends heavily on the designer’s view of the
system (in terms of agents). Nonetheless, Tropos offers a
set of pre-defined social patterns recurrent in multi-agent
literature like Bidding, Broker, Matchmaker, Embassy, etc.,
to guide this process [10].



Detailed design.

Detailed design deals with the specification of the agents’
micro-level, that is, the agents’ behavior and communica-
tion. During detailed design, multiple capability and plan
diagrams are created. Agent-UML (AUML) sequence dia-
grams are also employed to specify the interaction protocols.

Following the detailed design, a concrete implementation
of the system is produced by using one of the agent-oriented
development environments. For example, JACK Intelligent
Agents [2] can be employed, which stands as a reification
of the conceptual Belief-Desire-Intention (BDI) [17] agent
model in Java programming language.

4.2.1 Discussion

The main contribution of Tropos methodology is that it
tries to align requirements analysis with system design and
implementation. Its novel idea is to base such an align-
ment on early requirements concepts, such as actors, goals
and plans, rather than implementation-level concepts, like
classes and methods. A strong point of Tropos is that it
provides a small and manageable set of knowledge level no-
tions, which are used throughout the software development
process.

At the same time, the biggest shortcoming of this method-
ology is the plethora of design phases and models (actor/goal
models, capability /plan/sequence models, BDI agent model),
which complicates the design process. Moreover, the transi-
tion between the phases is in most cases manual and relies
heavily on subjective design decisions. In the design of com-
plex EBCSs the automatic transition between abstraction
levels is a necessity and cannot be overlooked.

To conclude, the direct application of Tropos method in
the design of EBCSs would eventually result into mapping
one or more system agents to (DEECo) components and
agent communication to ensembles. However, current agent
development frameworks [2, 3] assume static bindings be-
tween the system actors and therefore fail to cope with the
dynamic, emergent architecture (captured in terms of en-
sembles), which is one of the key characteristics of EBCSs.

The applicability of Tropos in the design of EBCSs is sum-
marized in Table 2.

S. TOWARDS AN ENSEMBLE-BASED DE-
SIGN METHOD

Having evaluated KAOS and Tropos methods, it is clear
that they are not directly applicable in the design of EBCSs.
On their background, in this section we will describe a novel
design method termed Predicate Refinement Method (PRM)
[5], which employs similar concepts. We will also justify why
PRM successfully deals with the intricacies of EBCSs, by ac-
counting for what is missing in KAOS and Tropos.

PRM builds upon the idea of iterative refinement of sys-
tem specification, employed in goal-oriented requirements
engineering. The main goal of PRM is to complement DEECo
low-level concepts with design-level abstractions that will al-
low for a) design-time reasoning, and b) automatic prepara-
tion of DEECo artifacts.

PRM is based on capturing the high-level system goals
expressed in terms of propositional claims (predicates). It
consists of three levels (phases): system level design, en-
semble level design, and component level design, followed
directly by implementation.

aligns the requirements phase with architecture
" and implementation phases

preserves a manageable set of concepts throughout
" the software development phases

comprises a number of models with manual map-
" pings between them

9 does not cope with the emergent architecture of
" EBCSs

Table 2: Tropos positive and negative points.

As a starting point, at the system level, PRM elaborates
on the questions ”which (global) goals must be achieved?”
and ”which system attributes must be maintained?”. The
next question is "who is responsible for achieving/maintaining
these attributes?”. Answering these questions yields the sys-
tem’s initial stakeholders and interaction predicates.

A stakeholder is a participant/actor of the system. Each
stakeholder is defined in particular by its knowledge (i.e.,
its domain-specific data). For example, when applying the
method in the running case study (Figure 7), the Vehicle
and Parking/Refueling Stations stakeholders are identi-
fied. At this level, the system goals are expressed by pred-
icates over the stakeholders and their knowledge; each in-
volvement of a stakeholder in an predicate is a role of the
stakeholder in the predicate. Unlike i*, PRM does not cap-
ture the dependencies of actors at a strategic level, but at
the lower level of data that has to be exchanged and "be-
lieved”; stakeholders contribute their knowledge (interfaced
by roles) for the assessment of each predicate they take a
role in. Predicates represent system properties that should
hold over the whole system lifetime. In an idealized sys-
tem, predicates would become system invariants, whereas
in a real system predicates should hold "frequently enough”.
As opposed to goals in KAOS, predicates have a more de-
scriptive nature, and typically refer to the present state, not
some future actions.

After identifying all top-level predicates, the process con-
tinues into refining them into sets of sub-predicates. The
refinement is essentially an AND-decomposition, with the
conjunction of sub-predicates implying the parent predicate.
The iterative refinement process in PRM ends once all the
leaf predicates are directly mappable to DEECo computa-
tional or communication semantics, that is, to component
and ensemble processes. In particular, a predicate needs
no further decomposition when a) it involves a single stake-
holder and can be ensured by manipulation of this stake-
holder’s knowledge (via an underlying component process)
— local predicate — or b) the predicate involves exactly two
stakeholders and can be ensured by mapping one stake-
holder’s knowledge part(s) to the other (via an underlying
knowledge exchange mechanism) — ezchange predicate.

Figure 7 depicts a partial decomposition tree of the top-
level predicate of having all destinations visited by the Ve-
hicle. This predicate is refined into three "necessities”, in-
dependent to each other: the necessity a) to have a feasible
plan, b) to follow it, and c) to have places in stations re-
served accordingly. Following the plan’s route is essentially
a local predicate, as it involves the Vehicle stakeholder only.
In contrast, the predicate of having a correct belief over the
reservation requests (Figure 7) is an example of an exchange
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Figure 7: A partial decomposition of the main sys-
tem predicate in the intelligent mobility case study.

predicate, as it involves both the Vehicle and the Park-
ing/Refueling Station stakeholder.

At the next phases of PRM, the predicates are trans-
formed to precise system specifications. Specifically, during
ensemble level design, the exchange predicates are turned
into DEECo ensembles, by specifying the necessary con-
dition for knowledge exchange along with the information
of which knowledge parts are going to be exchanged. In
component level design, finally, stakeholders are turned into
DEECo components, comprising the stakeholders’ knowl-
edge and “operationalizing” (in terms of KAOS) the local
predicates they are involved in by means of (DEECo) pro-
cesses.

Compared to PRM, KAOS and Tropos address well the
high-level modeling, however naturally they do not provide
constructs for alignment with the emergent architecture of
EBCSs. This is summarized in Table 3. Further, to complete
this picture, we evaluate below in more detail how PRM
addresses the three fundamental characteristics of EBCSs.

Belief handling.

The semantics of the belief that components in EBCSs
preserve about the other components and the environment
is what remains stable throughout the system phases (over
the whole lifetime of the system) and provides an effective
way to reason about global properties of interest. In PRM,
we explicitly capture this semantics at a higher level by mod-
eling the knowledge flow in terms of knowledge that has to
be distributed and "believed”. Moreover, the mapping of
exchange predicates to ensembles provides a convenient be-
lief managing mechanism. Although the concept of belief
is not new (agent-based approaches like Tropos employ the
same concept in the design of agent-based architectures, like
BDI), the novelty of PRM lies in featuring belief as the base
abstraction that aligns requirements with architecture and
implementation phases.

Isolated computation.
In order for component autonomy to be reified, compo-
nents in DEECo perform their tasks in isolation. This is re-

KAOS Tropos PRM

high-level modeling + + +
req/ments & architecture _

alignment + +
dynamic, emergent archi- _ _ +

tecture support

Table 3: A comparison of PRM with KAOS and
Tropos methods.

flected in the design by introducing local predicates, which
are mapped to component processes as the process pro-
gresses. In that sense, PRM captures both the requirements
of the whole system (higher-level predicates) and of isolated
components (local predicates), in contrast with requirements
elicitation a la KAOS, which is necessarily system-wise.

Dynamic component links.

Dynamic component links, reified by ensembles in DEECo,
provide the way to deal with the emergent architecture of
EBCSs. In PRM, dynamic links are reflected by exchange
predicates. This property of EBCSs is not directly sup-
ported either by KAOS or Tropos methods.

6. RELATED WORK

As we are not aware of any work that combines the en-
semble paradigm with goal-oriented requirements analysis
to devise a design method for EBCSs, in this section we will
refer to general approaches towards the requirements mod-
eling and design of EBCSs. We have already extensively
described, in section 4, two prominent approaches in goal-
oriented modeling and design, namely KAOS and Tropos/i*
methods.

Recent work in requirements modeling and in particular
targeting the domain of EBCSs has been carried out within
the scope of the ASCENS project and has been integrated
into Statement of the Affairs (SOTA) [1], General Ensembles
Model (GEM)[13] and POEM [12] models.

SOTA is concerned with the overall domain and the re-
quirements of the system. The key idea is to abstract the
behavior of a system with a single trajectory through a state
space (or state-of-the-affairs space), which represents the set
of all possible states of the system at a single point of time.
Similarly to PRM, the requirements of a system in SOTA
are captured in terms of goals. A goal is an area of the
SOTA space that a system should eventually reach, and
it can be characterized by a goal pre-condition, its post-
condition, and utilities (non-functional requirements or con-
straints). To support adaptation, SOTA relies on the goal
model to help understand according to which (self-adaptive)
architectural scheme a system should be architected so goals
can be achieved [7].

For a more detailed specification of behaviors and goals,
POEM [12] model has been proposed and is currently at
a rather preliminary stage. Finally, GEM [13] stands as a
formal system model which represents ensembles as relations
that describe the complete behavior of the ensemble over its
lifetime. GEM is intended to serve as a semantic foundation
for various kinds of calculi and formal methods that often
have a particular associated logic.



7. CONCLUSION

In this paper, the characteristics of systems based on the
ensemble paradigm have been described. The challenges
related to the design of EBCSs have also been identified.
A successful design method should be able to capture the
high-level objectives of the system under consideration in a
model amenable to design-time analysis, and, at the same
time, simplify the transition towards architecture-level mod-
els, like DEECo model. As possible ways to construct mod-
els of the system at a high-level we have looked into two
prominent methods in requirements modeling, KAOS and
Tropos/i*. They both possess their strong points but also
feature serious limitations, when employed in the design of
EBCSs. In response to that, a novel method based on the
iterative refinement of system requirements expressed by
predicates on stakeholders’ knowledge was outlined. The
novelty of the proposed method lies in reasoning along the
line of what needs to hold in the system at every time in-
stant (predicates), instead of what needs to be performed
(actions) or achieved (goals).

As future work, we plan to work on a prototype implemen-
tation of PRM, which will exhibit the advantage of deriving
the system components and ensembles from requirements in
a (semi-) automatic way. We also plan to formalize the con-
cepts of predicate and predicate refinement in such way that
will allow for formal verification of the design model.
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